This file is indexed.

/usr/share/octave/packages/bim-1.1.5/bim2a_axisymmetric_boundary_mass.m is in octave-bim 1.1.5-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
## Copyright (C) 2006-2014  Carlo de Falco, Massimiliano Culpo
##
## This file is part of:
##     BIM - Diffusion Advection Reaction PDE Solver
##
##  BIM is free software; you can redistribute it and/or modify
##  it under the terms of the GNU General Public License as published by
##  the Free Software Foundation; either version 2 of the License, or
##  (at your option) any later version.
##
##  BIM is distributed in the hope that it will be useful,
##  but WITHOUT ANY WARRANTY; without even the implied warranty of
##  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##  GNU General Public License for more details.
##
##  You should have received a copy of the GNU General Public License
##  along with BIM; If not, see <http://www.gnu.org/licenses/>.
##
##  author: Carlo de Falco     <cdf _AT_ users.sourceforge.net>
##  author: Massimiliano Culpo <culpo _AT_ users.sourceforge.net>
##  author: Matteo porro       <meoo85 _AT_ users.sourceforge.net>
##  author: Emanuela Abbate    <emanuela.abbate _AT_ mail.polimi.it>

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{M}]} = @
## bim2a_axisymmetric_boundary_mass(@var{mesh},@var{sidelist},@var{nodelist})
##
## Build the lumped boundary mass matrix needed to apply Robin and Neumann
## boundary conditions in a problem in cylindrical coordinates with 
## axisymmetric configuration.
##
## The vector @var{sidelist} contains the list of the side edges
## contributing to the mass matrix.
##
## The optional argument @var{nodelist} contains the list of the
## degrees of freedom on the boundary.
##
## @seealso{bim2a_axisymmetric_rhs, bim2a_axisymmetric_advection_diffusion, 
## bim2a_axisymmetric_laplacian, bim2a_axisymmetric_reaction, bim2a_boundary_mass} 
## @end deftypefn

function [M] = bim2a_axisymmetric_boundary_mass(mesh,sidelist,nodelist)

  ## Check input
  if (nargin > 3)
    error ("bim2a_axisymmetric_boundary_mass: wrong number of input parameters.");
  elseif !(isstruct(mesh)     && isfield(mesh,"p") &&
	       isfield (mesh,"t") && isfield(mesh,"e"))
    error("bim2a_axisymmetric_boundary_mass: first input is not a valid mesh structure.");
  elseif !( isvector(sidelist) && isnumeric(sidelist) )
    error("bim2a_axisymmetric_boundary_mass: second input is not a valid numeric vector.");
  elseif !(all(mesh.p(1,:) >= 0) || all(mesh.p(1,:) <= 0))
    error("bim2a_axisymmetric_boundary_mass: the input mesh cannot intersect the rotation axis r=0.");
  endif

  if (nargin < 3)
    [nodelist] = bim2c_unknowns_on_side(mesh,sidelist);
  endif

  r = abs (mesh.p(1,nodelist));

  edges = [];
  for ie = sidelist
    edges = [ edges, mesh.e([1:2 5],mesh.e(5,:)==ie)];
  endfor
  l  = sqrt((mesh.p(1,edges(1,:))-mesh.p(1,edges(2,:))).^2 +
	          (mesh.p(2,edges(1,:))-mesh.p(2,edges(2,:))).^2);
  
  dd = zeros(size(nodelist));
  
  for in = 1:length(nodelist)
    dd (in) = ( sum(r(in).*l(edges(1,:)==nodelist(in))) ...
              + sum(r(in).*l(edges(2,:)==nodelist(in))) )/2;
  endfor
  
  M = sparse(diag(dd));

endfunction

%!test
%! n = 3;
%! [mesh] = msh2m_structured_mesh(linspace(1,2,n+1),linspace(0,1,n+1),1,1:4);
%! mesh   = bim2c_mesh_properties(mesh);
%! uex    = @(r,z) exp(r);
%! duexdr = @(r,z) uex(r,z);
%! d2uexdr2 = @(r,z) uex(r,z);
%! duexdz = @(r,z) 0*uex(r,z);
%! d2uexdz2 = @(r,z) 0*uex(r,z);
%! Rnodesr  = bim2c_unknowns_on_side(mesh,[2]);
%! Rnodesl  = bim2c_unknowns_on_side(mesh,[4]);
%! Nnodes    = columns(mesh.p);
%! Nelements = columns(mesh.t);
%! D = 1; vr = 1; vz = 0;
%! alpha  = D*ones(Nelements,1);
%! gamma  = ones(Nnodes,1);
%! eta    = ones(Nnodes,1);
%! beta   = 1/D*[vr*ones(1,Nelements); vz*ones(1,Nelements)];
%! f = @(r,z) -D./r.*duexdr(r,z) - D.*d2uexdr2(r,z) ...
%!           + vr./r .* uex(r,z) + vr * duexdr(r,z) ...
%!           - D.*d2uexdz2(r,z) + vz * duexdz(r,z);
%! gr = @(r,z) uex(r,z) - 1 * (-D*duexdr(r,z) + vr*uex(r,z));
%! gl = @(r,z) uex(r,z) - (-1) * (-D*duexdr(r,z) + vr*uex(r,z));
%! rhs    = bim2a_axisymmetric_rhs(mesh, ones(Nelements,1), f(mesh.p(1,:), mesh.p(2,:)));
%! S = bim2a_axisymmetric_advection_diffusion(mesh,alpha,gamma,eta,beta);
%! Mr = bim2a_axisymmetric_boundary_mass(mesh,2);  Ml = bim2a_axisymmetric_boundary_mass(mesh,4);
%! S(Rnodesr,Rnodesr) += Mr;
%! rhs(Rnodesr) += diag(Mr) .* gr(mesh.p(1,Rnodesr), mesh.p(2,Rnodesr))';
%! S(Rnodesl,Rnodesl) += Ml;
%! rhs(Rnodesl) += diag(Ml) .* gl(mesh.p(1,Rnodesl), mesh.p(2,Rnodesl))';
%! u = S\rhs; 
%! assert(u,uex(mesh.p(1,:), mesh.p(2,:))',1e-7)

%!test
%! n = 10;
%! [mesh] = msh2m_structured_mesh(linspace(1,2,n+1),linspace(0,1,n+1),1,1:4);
%! mesh   = bim2c_mesh_properties(mesh);
%! uex    = @(r,z) exp(r);
%! duexdr = @(r,z) uex(r,z);
%! d2uexdr2 = @(r,z) uex(r,z);
%! duexdz = @(r,z) 0*uex(r,z);
%! d2uexdz2 = @(r,z) 0*uex(r,z);
%! Rnodesr  = bim2c_unknowns_on_side(mesh,[2]);
%! Rnodesl  = bim2c_unknowns_on_side(mesh,[4]);
%! Rnodesb  = bim2c_unknowns_on_side(mesh,[1]);
%! Rnodest  = bim2c_unknowns_on_side(mesh,[3]);
%! Nnodes    = columns(mesh.p);
%! Nelements = columns(mesh.t);
%! D = 1; vr = 1; vz = 0;
%! alpha  = D*ones(Nelements,1);
%! gamma  = ones(Nnodes,1);
%! eta    = ones(Nnodes,1);
%! beta   = 1/D*[vr*ones(1,Nelements); vz*ones(1,Nelements)];
%! f = @(r,z) -D./r.*duexdr(r,z) - D.*d2uexdr2(r,z) ...
%!           + vr./r .* uex(r,z) + vr * duexdr(r,z) ...
%!           - D.*d2uexdz2(r,z) + vz * duexdz(r,z);
%! gr = @(r,z) uex(r,z) - 1 * (-D*duexdr(r,z) + vr*uex(r,z));
%! gl = @(r,z) uex(r,z) - (-1) * (-D*duexdr(r,z) + vr*uex(r,z));
%! gb = @(r,z) uex(r,z) - (-1) * (-D*duexdz(r,z) + vz*uex(r,z));
%! gt = @(r,z) uex(r,z) - 1 * (-D*duexdz(r,z) + vz*uex(r,z));
%! rhs    = bim2a_axisymmetric_rhs(mesh, ones(Nelements,1), f(mesh.p(1,:), mesh.p(2,:)));
%! S = bim2a_axisymmetric_advection_diffusion(mesh,alpha,gamma,eta,beta);
%! Mr = bim2a_axisymmetric_boundary_mass(mesh,2);  Ml = bim2a_axisymmetric_boundary_mass(mesh,4);
%! Mb = bim2a_axisymmetric_boundary_mass(mesh,1);  Mt = bim2a_axisymmetric_boundary_mass(mesh,3);
%! S(Rnodesr,Rnodesr) += Mr;
%! rhs(Rnodesr) += diag(Mr) .* gr(mesh.p(1,Rnodesr), mesh.p(2,Rnodesr))';
%! S(Rnodesl,Rnodesl) += Ml;
%! rhs(Rnodesl) += diag(Ml) .* gl(mesh.p(1,Rnodesl), mesh.p(2,Rnodesl))';
%! S(Rnodesb,Rnodesb) += Mb;
%! rhs(Rnodesb) += diag(Mb) .* gb(mesh.p(1,Rnodesb), mesh.p(2,Rnodesb))';
%! S(Rnodest,Rnodest) += Mt;
%! rhs(Rnodest) += diag(Mt) .* gt(mesh.p(1,Rnodest), mesh.p(2,Rnodest))';
%! u = S\rhs; 
%! assert(u,uex(mesh.p(1,:), mesh.p(2,:))',1e-7)