/usr/lib/mlton/sml/mlnlffi-lib/c.sig is in mlton-basis 20130715-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 | (* c.sig
* 2005 Matthew Fluet (mfluet@acm.org)
* Adapted for MLton.
*)
(*
* Encoding the C type system in SML.
*
* (C) 2001, Lucent Technologies, Bell Laboratories
*
* author: Matthias Blume
*)
signature C = sig
exception OutOfMemory
(* objects of type 't, constness 'c;
* The 't type variable will be instantiated with the object's "witness"
* type. The intention is that there be an isomorphism between such
* witness types and corresponding C types.
*
* Witness types are often the same as the (abstract) type of the value
* stored in the object. However, this is merely a coincidence. For
* example, a constant object holding a pointer to a read-write integer
* would have type
* ((sint, rw) ptr, ro) obj
* and the value itself has type
* (sint, rw) ptr.
*
* However, in the case of the "light" version of this object (see below),
* the object type is
* ((sint, rw) ptr, ro) obj'
* while fetching from this object gives a value of type
* (sint, rw) ptr'.
*
* (In other words, we use the "heavy" versions of value types as witness
* types -- even in the "light" case.) *)
type ('t, 'c) obj
(* an alternative "light-weight" version that does not carry RTTI at
* the cost of requiring explicit passing of RTTI for certain operations *)
eqtype ('t, 'c) obj'
(* constness property, to be substituted for 'c *)
type ro and rw
(* Pointers come in two varieties in C: Pointers to things we
* know and pointers to "incomplete" types. The "ptr" type constructor
* below encodes both kinds using the following convention:
* - in the case of complete target types, 'o will be instantiated
* to some ('t, 'c) obj
* - in the case of incomplete target types, 'o will be instantiated
* to some fresh (abstract) type (see iptr.sig for what this will
* look like in practice)
*)
(* pointer to 'o *)
type 'o ptr
(* light-weight alternative *)
eqtype 'o ptr'
(* 'n-sized array with 't elements *)
type ('t, 'n) arr
(* no values, admits equality *)
eqtype void
(* void* is really a base type, but it happens to take the
* form of a light-weight pointer type (with an abstract target).
* This design makes it possible to use those ptr-related
* functions that "make sense" for void*. *)
(* C's void* *)
type voidptr = void ptr'
(* function pointers *)
(* a function pointer *)
type 'f fptr
(* light-weight alternative *)
eqtype 'f fptr'
(* structures and unions *)
(* struct/union named 'tag;
* 'tag is drawn from the types defined in the Tag module
*)
type 'tag su
(* enumerations *)
eqtype 'tag enum
(* primtypes (signed/unsigned char, short, int, long, long long; float, double) *)
eqtype schar and uchar
eqtype sshort and ushort
eqtype sint and uint
eqtype slong and ulong
eqtype slonglong and ulonglong
type float and double
(* going from abstract to concrete and vice versa;
* (this shouldn't be needed except when calling functions through
* function pointers) *)
structure Cvt : sig
(* ML -> C *)
val c_schar : MLRep.Char.Signed.int -> schar
val c_uchar : MLRep.Char.Unsigned.word -> uchar
val c_sshort : MLRep.Short.Signed.int -> sshort
val c_ushort : MLRep.Short.Unsigned.word -> ushort
val c_sint : MLRep.Int.Signed.int -> sint
val c_uint : MLRep.Int.Unsigned.word -> uint
val c_slong : MLRep.Long.Signed.int -> slong
val c_ulong : MLRep.Long.Unsigned.word -> ulong
val c_slonglong : MLRep.LongLong.Signed.int -> slonglong
val c_ulonglong : MLRep.LongLong.Unsigned.word -> ulonglong
val c_float : MLRep.Float.real -> float
val c_double : MLRep.Double.real -> double
val i2c_enum : MLRep.Int.Signed.int -> 'e enum
(* C -> ML *)
val ml_schar : schar -> MLRep.Char.Signed.int
val ml_uchar : uchar -> MLRep.Char.Unsigned.word
val ml_sshort : sshort -> MLRep.Short.Signed.int
val ml_ushort : ushort -> MLRep.Short.Unsigned.word
val ml_sint : sint -> MLRep.Int.Signed.int
val ml_uint : uint -> MLRep.Int.Unsigned.word
val ml_slong : slong -> MLRep.Long.Signed.int
val ml_ulong : ulong -> MLRep.Long.Unsigned.word
val ml_slonglong : slonglong -> MLRep.LongLong.Signed.int
val ml_ulonglong : ulonglong -> MLRep.LongLong.Unsigned.word
val ml_float : float -> MLRep.Float.real
val ml_double : double -> MLRep.Double.real
val c2i_enum : 'e enum -> MLRep.Int.Signed.int
end
(* type-abbreviations for a bit more convenience. *)
type 'c schar_obj = ( schar, 'c) obj
type 'c uchar_obj = ( uchar, 'c) obj
type 'c sshort_obj = ( sshort, 'c) obj
type 'c ushort_obj = ( ushort, 'c) obj
type 'c sint_obj = ( sint, 'c) obj
type 'c uint_obj = ( uint, 'c) obj
type 'c slong_obj = ( slong, 'c) obj
type 'c ulong_obj = ( ulong, 'c) obj
type 'c slonglong_obj = (slonglong, 'c) obj
type 'c ulonglong_obj = (ulonglong, 'c) obj
type 'c float_obj = ( float, 'c) obj
type 'c double_obj = ( double, 'c) obj
type 'c voidptr_obj = ( voidptr, 'c) obj
type ('e, 'c) enum_obj = ( 'e enum, 'c) obj
type ('f, 'c) fptr_obj = ( 'f fptr, 'c) obj
type ('s, 'c) su_obj = ( 's su, 'c) obj
(* light-weight alternatives *)
type 'c schar_obj' = ( schar, 'c) obj'
type 'c uchar_obj' = ( uchar, 'c) obj'
type 'c sshort_obj' = ( sshort, 'c) obj'
type 'c ushort_obj' = ( ushort, 'c) obj'
type 'c sint_obj' = ( sint, 'c) obj'
type 'c uint_obj' = ( uint, 'c) obj'
type 'c slong_obj' = ( slong, 'c) obj'
type 'c ulong_obj' = ( ulong, 'c) obj'
type 'c slonglong_obj' = (slonglong, 'c) obj'
type 'c ulonglong_obj' = (ulonglong, 'c) obj'
type 'c float_obj' = ( float, 'c) obj'
type 'c double_obj' = ( double, 'c) obj'
type 'c voidptr_obj' = ( voidptr, 'c) obj'
type ('e, 'c) enum_obj' = ( 'e enum, 'c) obj'
type ('f, 'c) fptr_obj' = ( 'f fptr, 'c) obj'
type ('s, 'c) su_obj' = ( 's su, 'c) obj'
(* bitfields aren't "ordinary objects", so they have their own type *)
eqtype 'c sbf and 'c ubf
structure W : sig
(* conversion "witness" values *)
type ('from, 'to) witness
(* A small calculus for generating new witnesses.
* Since the only witness constructors that do anything real are
* rw and ro, all this calculus gives you is a way of changing
* "const" attributes at any level within a bigger type.
*
* (The calculus can express nonsensical witnesses -- which
* fortunately are harmless because they can't be applied to any
* values.) *)
val trivial : ('t, 't) witness
val pointer : ('from, 'to) witness ->
('from ptr, 'to ptr) witness
val object : ('from, 'to) witness ->
(('from, 'c) obj, ('to, 'c) obj) witness
val arr : ('from, 'to) witness ->
(('from, 'n) arr, ('to, 'n) arr) witness
val ro : ('from, 'to) witness ->
(('from, 'fc) obj, ('to, ro) obj) witness
val rw : ('from, 'to) witness ->
(('from, 'fc) obj, ('to, 'tc) obj) witness
end
(* Object conversions that rely on witnesses: *)
val convert : (('st, 'sc) obj, ('tt, 'tc) obj) W.witness ->
('st, 'sc) obj -> ('tt, 'tc) obj
val convert' : (('st, 'sc) obj, ('tt, 'tc) obj) W.witness ->
('st, 'sc) obj' -> ('tt, 'tc) obj'
(*
* A family of types and corresponding values representing natural numbers.
* (An encoding in SML without using dependent types.)
*)
structure Dim : sig
(* Internally, a value of type ('a, 'z) dim0 is just a number.
* The trick here is to give each of these numbers a different unique
* type. 'a will be a decimal encoding of the number's value in
* "type digits". 'z keeps track of whether the number is zero or not.
*)
type ('a, 'z) dim0
(* We can always get the internal number back... *)
val toInt : ('a, 'z) dim0 -> int
(* These two types act as "flags". They will be substituted for 'z
* and remember whether the value is zero or not. *)
type zero
type nonzero
type 'a dim = ('a, nonzero) dim0
(* These are the "type digits". Type "dec" acts as a "terminator".
* We chose its name so to remind us that the encoding is decimal.
* If a nonzero value's decimal representation is "<Dn>...<D0>", then
* its type will be "(dec dg<Dn> ... dg<D0>, nonzero) dim0", which
* is the same as "dec dg<Dn> ... dg<D0> dim". The type of the zero
* value is "(dec, zero) dim0". *)
type dec
type 'a dg0 and 'a dg1 and 'a dg2 and 'a dg3 and 'a dg4
type 'a dg5 and 'a dg6 and 'a dg7 and 'a dg8 and 'a dg9
(* Here are the corresponding constructors for ('a, 'z) dim0 values.
* The type for dg0 ensures that there will be no "leading zeros" in
* any encoding. This guarantees a 1-1 correspondence of constructable
* values and their types.
* To construct the value corresponding to a nonzero number whose
* decimal representation is "<Dn>...<D0>", one must invoke
* "dg<D0>' (... (dg<Dn>' dec')...)", i.e., the least significant
* digit appears leftmost. *)
val dec' : (dec, zero) dim0
val dg0' : 'a dim -> 'a dg0 dim
val dg1' : ('a, 'z) dim0 -> 'a dg1 dim
val dg2' : ('a, 'z) dim0 -> 'a dg2 dim
val dg3' : ('a, 'z) dim0 -> 'a dg3 dim
val dg4' : ('a, 'z) dim0 -> 'a dg4 dim
val dg5' : ('a, 'z) dim0 -> 'a dg5 dim
val dg6' : ('a, 'z) dim0 -> 'a dg6 dim
val dg7' : ('a, 'z) dim0 -> 'a dg7 dim
val dg8' : ('a, 'z) dim0 -> 'a dg8 dim
val dg9' : ('a, 'z) dim0 -> 'a dg9 dim
(* Since having to reverse the sequence of digits seems unnatural,
* here is another set of constructors for dim values. These
* constructors use continuation-passing style and themselves
* have more complicated types. But their use is easier:
* To construct the value corresponding to a nonzero number whose
* decimal representation is "<Dn>...<D0>", one must invoke
* "dec dg<Dn> ... dg<D0> dim"; i.e., the least significant
* digit appears rightmost -- just like in the usual decimal
* notation for numbers that we are all familiar with.
* [Moreover, for any 'a dim value we have the neat property that
* it can be constructed by taking its type (expressed using "dim")
* and interpreting it as an expression. For example, the dim
* value representing 312 is "dec dg3 dg1 dg2 dim" and it can
* be constructed by evaluating "dec dg3 dg1 dg2 dim".] *)
val dec : ((dec, zero) dim0 -> 'b) -> 'b
val dg0 : 'a dim -> ('a dg0 dim -> 'b) -> 'b
val dg1 : ('a, 'z) dim0 -> ('a dg1 dim -> 'b) -> 'b
val dg2 : ('a, 'z) dim0 -> ('a dg2 dim -> 'b) -> 'b
val dg3 : ('a, 'z) dim0 -> ('a dg3 dim -> 'b) -> 'b
val dg4 : ('a, 'z) dim0 -> ('a dg4 dim -> 'b) -> 'b
val dg5 : ('a, 'z) dim0 -> ('a dg5 dim -> 'b) -> 'b
val dg6 : ('a, 'z) dim0 -> ('a dg6 dim -> 'b) -> 'b
val dg7 : ('a, 'z) dim0 -> ('a dg7 dim -> 'b) -> 'b
val dg8 : ('a, 'z) dim0 -> ('a dg8 dim -> 'b) -> 'b
val dg9 : ('a, 'z) dim0 -> ('a dg9 dim -> 'b) -> 'b
val dim : ('a, 'z) dim0 -> ('a, 'z) dim0
end
(* sub-structure for dealing with run-time type info (sizes only) *)
structure S : sig
(* Our size info itself is statically typed!
* The size info for a value stored in ('t, 'c) obj has
* the following type: *)
type 't size
(* get a number out *)
val toWord : 't size -> word
(* sizes for simple things *)
val schar : schar size
val uchar : uchar size
val sshort : sshort size
val ushort : ushort size
val sint : sint size
val uint : uint size
val slong : slong size
val ulong : ulong size
val slonglong : slonglong size
val ulonglong : ulonglong size
val float : float size
val double : double size
val voidptr : voidptr size
val ptr : 'o ptr size
val fptr : 'f fptr size
val enum : 'tag enum size
end
(* sub-structure for dealing with run-time type info *)
structure T : sig
(* Our RTTI itself is statically typed!
* The RTTI for a value stored in ('t, 'c) obj has
* the following type: *)
type 't typ
(* get the RTTI from an actual object *)
val typeof : ('t, 'c) obj -> 't typ
(* constructing new RTTI from existing RTTI *)
val pointer : 't typ -> ('t, rw) obj ptr typ
val target : ('t, 'c) obj ptr typ -> 't typ
val arr : 't typ * 'n Dim.dim -> ('t, 'n) arr typ
val elem : ('t, 'n) arr typ -> 't typ
val ro : ('t, 'c) obj ptr typ -> ('t, ro) obj ptr typ
(* calculating the size of an object given its RTTI *)
val sizeof : 't typ -> 't S.size
(* dimension of array type *)
val dim : ('t, 'n) arr typ -> 'n Dim.dim
(* RTTI for simple things *)
val schar : schar typ
val uchar : uchar typ
val sshort : sshort typ
val ushort : ushort typ
val sint : sint typ
val uint : uint typ
val slong : slong typ
val ulong : ulong typ
val slonglong : slonglong typ
val ulonglong : ulonglong typ
val float : float typ
val double : double typ
val voidptr : voidptr typ
val enum : 'tag enum typ
end
(* convert from regular (heavy) to alternative (light) versions *)
structure Light : sig
val obj : ('t, 'c) obj -> ('t, 'c) obj'
val ptr : 'o ptr -> 'o ptr'
val fptr : 'f fptr -> 'f fptr'
end
(* and vice versa *)
structure Heavy : sig
val obj : 't T.typ -> ('t, 'c) obj' -> ('t, 'c) obj
val ptr : 'o ptr T.typ -> 'o ptr' -> 'o ptr
val fptr : 'f fptr T.typ -> 'f fptr' -> 'f fptr
end
(* calculate size of an object *)
val sizeof : ('t, 'c) obj -> 't S.size
(* "fetch" methods for various types;
* fetching does not care about constness *)
structure Get : sig
(* primitive types; the results are concrete here *)
val schar : 'c schar_obj -> MLRep.Char.Signed.int
val uchar : 'c uchar_obj -> MLRep.Char.Unsigned.word
val sshort : 'c sshort_obj -> MLRep.Short.Signed.int
val ushort : 'c ushort_obj -> MLRep.Short.Unsigned.word
val sint : 'c sint_obj -> MLRep.Int.Signed.int
val uint : 'c uint_obj -> MLRep.Int.Unsigned.word
val slong : 'c slong_obj -> MLRep.Long.Signed.int
val ulong : 'c ulong_obj -> MLRep.Long.Unsigned.word
val slonglong : 'c slonglong_obj -> MLRep.LongLong.Signed.int
val ulonglong : 'c ulonglong_obj -> MLRep.LongLong.Unsigned.word
val float : 'c float_obj -> MLRep.Float.real
val double : 'c double_obj -> MLRep.Double.real
val enum : ('e, 'c) enum_obj -> MLRep.Int.Signed.int
(* alt *)
val schar' : 'c schar_obj' -> MLRep.Char.Signed.int
val uchar' : 'c uchar_obj' -> MLRep.Char.Unsigned.word
val sshort' : 'c sshort_obj' -> MLRep.Short.Signed.int
val ushort' : 'c ushort_obj' -> MLRep.Short.Unsigned.word
val sint' : 'c sint_obj' -> MLRep.Int.Signed.int
val uint' : 'c uint_obj' -> MLRep.Int.Unsigned.word
val slong' : 'c slong_obj' -> MLRep.Long.Signed.int
val ulong' : 'c ulong_obj' -> MLRep.Long.Unsigned.word
val slonglong' : 'c slonglong_obj' -> MLRep.LongLong.Signed.int
val ulonglong' : 'c ulonglong_obj' -> MLRep.LongLong.Unsigned.word
val float' : 'c float_obj' -> MLRep.Float.real
val double' : 'c double_obj' -> MLRep.Double.real
val enum' : ('e, 'c) enum_obj' -> MLRep.Int.Signed.int
(* fetching pointers; results have to be abstract *)
val ptr : ('o ptr, 'c) obj -> 'o ptr
val fptr : ('f, 'c) fptr_obj -> 'f fptr
val voidptr : 'c voidptr_obj -> voidptr
(* alt *)
val ptr' : ('o ptr, 'c) obj' -> 'o ptr'
val fptr' : ('f, 'c) fptr_obj' -> 'f fptr'
val voidptr' : 'c voidptr_obj' -> voidptr
(* bitfields; concrete again *)
val sbf : 'c sbf -> MLRep.Int.Signed.int
val ubf : 'c ubf -> MLRep.Int.Unsigned.word
end
(* "store" methods; these require rw objects *)
structure Set : sig
(* primitive types; use concrete values *)
val schar : rw schar_obj * MLRep.Char.Signed.int -> unit
val uchar : rw uchar_obj * MLRep.Char.Unsigned.word -> unit
val sshort : rw sshort_obj * MLRep.Short.Signed.int -> unit
val ushort : rw ushort_obj * MLRep.Short.Unsigned.word -> unit
val sint : rw sint_obj * MLRep.Int.Signed.int -> unit
val uint : rw uint_obj * MLRep.Int.Unsigned.word -> unit
val slong : rw slong_obj * MLRep.Long.Signed.int -> unit
val ulong : rw ulong_obj * MLRep.Long.Unsigned.word -> unit
val slonglong : rw slonglong_obj * MLRep.LongLong.Signed.int -> unit
val ulonglong : rw ulonglong_obj * MLRep.LongLong.Unsigned.word -> unit
val float : rw float_obj * MLRep.Float.real -> unit
val double : rw double_obj * MLRep.Double.real -> unit
val enum : ('e, rw) enum_obj * MLRep.Int.Signed.int -> unit
(* alt *)
val schar' : rw schar_obj' * MLRep.Char.Signed.int -> unit
val uchar' : rw uchar_obj' * MLRep.Char.Unsigned.word -> unit
val sshort' : rw sshort_obj' * MLRep.Short.Signed.int -> unit
val ushort' : rw ushort_obj' * MLRep.Short.Unsigned.word -> unit
val sint' : rw sint_obj' * MLRep.Int.Signed.int -> unit
val uint' : rw uint_obj' * MLRep.Int.Unsigned.word -> unit
val slong' : rw slong_obj' * MLRep.Long.Signed.int -> unit
val ulong' : rw ulong_obj' * MLRep.Long.Unsigned.word -> unit
val slonglong' : rw slonglong_obj' * MLRep.LongLong.Signed.int -> unit
val ulonglong' : rw ulonglong_obj' * MLRep.LongLong.Unsigned.word -> unit
val float' : rw float_obj' * MLRep.Float.real -> unit
val double' : rw double_obj' * MLRep.Double.real -> unit
val enum' : ('e, rw) enum_obj' * MLRep.Int.Signed.int -> unit
(* storing pointers; abstract *)
val ptr : ('o ptr, rw) obj * 'o ptr -> unit
val fptr : ('f, rw) fptr_obj * 'f fptr -> unit
val voidptr : rw voidptr_obj * voidptr -> unit
(* alt *)
val ptr' : ('o ptr, rw) obj' * 'o ptr' -> unit
val fptr' : ('f, rw) fptr_obj' * 'f fptr' -> unit
val voidptr' : rw voidptr_obj' * voidptr -> unit
(* When storing, voidptr is compatible with any ptr type
* (just like in C). This should eliminate most need for RTTI in
* practice. *)
val ptr_voidptr : ('o ptr, rw) obj * voidptr -> unit
(* alt *)
val ptr_voidptr' : ('o ptr, rw) obj' * voidptr -> unit
(* bitfields; concrete *)
val sbf : rw sbf * MLRep.Int.Signed.int -> unit
val ubf : rw ubf * MLRep.Int.Unsigned.word -> unit
end
(* copying the contents of arbitrary objects *)
val copy : { from: ('t, 'c) obj, to: ('t, rw) obj } -> unit
(* alt *)
val copy' : 't S.size -> { from: ('t, 'c) obj', to: ('t, rw) obj' } -> unit
(* manipulating object constness
* rw -> ro: this direction just accounts for the fact that
* rw is conceptually a subtype of ro
* ro -> rw: this is not safe, but C makes it so easy that we
* might as well directly support it;
* Concretely, we make both operations polymorphic in the argument
* constness. Moreover, the second (unsafe) direction is also
* polymorphic in the result. This can be used to effectively
* implement a conversion to "whatever the context wants".
*
* Note: fun ro x = convert (W.ro W.trivial) x
* etc.
*)
val ro : ('t, 'c) obj -> ('t, ro) obj
val rw : ('t, 'sc) obj -> ('t, 'tc) obj
(* alt *)
val ro' : ('t, 'c) obj' -> ('t, ro) obj'
val rw' : ('t, 'sc) obj' -> ('t, 'tc) obj'
(* operations on (mostly) pointers *)
structure Ptr : sig
(* going from object to pointer and vice versa *)
val |&| : ('t, 'c) obj -> ('t, 'c) obj ptr
val |*| : ('t, 'c) obj ptr -> ('t, 'c) obj
(* alt *)
val |&! : ('t, 'c) obj' -> ('t, 'c) obj ptr'
val |*! : ('t, 'c) obj ptr' -> ('t, 'c) obj'
(* comparing pointers *)
val compare : 'o ptr * 'o ptr -> order
(* alt *)
val compare' : 'o ptr' * 'o ptr' -> order
(* going from pointer to void*; this also accounts for a conceptual
* subtyping relation and is safe *)
val inject : 'o ptr -> voidptr
(* alt *)
val inject' : 'o ptr' -> voidptr
(* the opposite is not safe, but C makes it not only easy but also
* almost necessary; we use our RTTI interface to specify the pointer
* type (not the element type!) *)
val cast : 'o ptr T.typ -> voidptr -> 'o ptr
(* alt, needs explicit type constraint on result! *)
val cast' : voidptr -> 'o ptr'
(* NULL as void* *)
val vnull : voidptr
(* projecting vnull to given pointer type *)
val null : 'o ptr T.typ -> 'o ptr
(* the "light" NULL pointer is simply a polymorphic constant *)
val null' : 'o ptr'
(* fptr version of NULL *)
val fnull : 'f fptr T.typ -> 'f fptr
(* again, "light" version is simply a polymorphic constant *)
val fnull' : 'f fptr'
(* checking for NULL pointer *)
val isVNull : voidptr -> bool
(* combining inject and isVNull for convenience *)
val isNull : 'o ptr -> bool
(* alt *)
val isNull' : 'o ptr' -> bool
(* checking a function pointer for NULL *)
val isFNull : 'f fptr -> bool
(* alt *)
val isFNull' : 'f fptr' -> bool
(* pointer arithmetic *)
val |+| : ('t, 'c) obj ptr * int -> ('t, 'c) obj ptr
val |-| : ('t, 'c) obj ptr * ('t, 'c) obj ptr -> int
(* alt; needs explicit size (for element) *)
val |+! : 't S.size -> ('t, 'c) obj ptr' * int -> ('t, 'c) obj ptr'
val |-! : 't S.size -> ('t, 'c) obj ptr' * ('t, 'c) obj ptr' -> int
(* subscript through a pointer; this is unchecked *)
val sub : ('t, 'c) obj ptr * int -> ('t, 'c) obj
(* alt; needs explicit size (for element) *)
val sub' : 't S.size -> ('t, 'c) obj ptr' * int -> ('t, 'c) obj'
(* conversions that rely on witnesses *)
val convert : (('st, 'sc) obj ptr, ('tt, 'tc) obj ptr) W.witness ->
('st, 'sc) obj ptr -> ('tt, 'tc) obj ptr
val convert' : (('st, 'sc) obj ptr, ('tt, 'tc) obj ptr) W.witness ->
('st, 'sc) obj ptr' -> ('tt, 'tc) obj ptr'
(* constness manipulation for pointers
* Note: fun ro x = convert (W.pointer (W.ro W.trivial)) x
* etc. *)
val ro : ('t, 'c) obj ptr -> ('t, ro) obj ptr
val rw : ('t, 'sc) obj ptr -> ('t, 'tc) obj ptr
val ro' : ('t, 'c) obj ptr' -> ('t, ro) obj ptr'
val rw' : ('t, 'sc) obj ptr' -> ('t, 'tc) obj ptr'
end
(* operations on (mostly) arrays *)
structure Arr : sig
(* array subscript;
* since we have RTTI, we can actually make this safe: we raise
* General.Subscript for out-of-bounds access;
* for unchecked access, go through arr_decay and ptr_sub
*)
val sub : (('t, 'n) arr, 'c) obj * int -> ('t, 'c) obj
(* alt; needs element size and array dimension *)
val sub' : 't S.size * 'n Dim.dim ->
(('t, 'n) arr, 'c) obj' * int -> ('t, 'c) obj'
(* let an array object decay, yielding pointer to first element *)
val decay : (('t, 'n) arr, 'c) obj -> ('t, 'c) obj ptr
(* alt *)
val decay' : (('t, 'n) arr, 'c) obj' -> ('t, 'c) obj ptr'
(* reconstruct an array object from the pointer to its first element *)
val reconstruct :
('t, 'c) obj ptr * 'n Dim.dim -> (('t, 'n) arr, 'c) obj
(* alt *)
val reconstruct':
('t, 'c) obj ptr' * 'n Dim.dim -> (('t, 'n) arr, 'c) obj'
(* dimension of array object *)
val dim : (('t, 'n) arr, 'c) obj -> 'n Dim.dim
end
(* allocating new objects *)
val new : 't T.typ -> ('t, 'c) obj
(* alt *)
val new' : 't S.size -> ('t, 'c) obj'
(* freeing objects that were allocated earlier *)
val discard : ('t, 'c) obj -> unit
(* alt *)
val discard' : ('t, 'c) obj' -> unit
(* allocating a dynamically-sized array *)
val alloc : 't T.typ -> word -> ('t, 'c) obj ptr
(* alt *)
val alloc' : 't S.size -> word -> ('t, 'c) obj ptr'
(* freeing through pointers *)
val free : 'o ptr -> unit
(* alt *)
val free' : 'o ptr' -> unit
(* perform function call through function-pointer *)
val call : ('a -> 'b) fptr * 'a -> 'b
(* alt; needs explicit type for the function pointer *)
val call' : ('a -> 'b) fptr T.typ -> ('a -> 'b) fptr' * 'a -> 'b
(* completely unsafe stuff that every C programmer just *loves* to do *)
structure U : sig
val fcast : 'a fptr' -> 'b fptr'
val p2i : 'o ptr' -> ulong
val i2p : ulong -> 'o ptr'
end
end
|