/usr/share/maxima/5.41.0/tests/rtestode.mac is in maxima-test 5.41.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | /* ODE tests */
kill(all);
done;
/* Bug #2796 ode2 with n declared constant
*
* Can't load ode2.mac if any formal function args are
* declared constant
*/
(declare(n,constant), load(ode2), remove(n,constant));
done;
/* Trivial ode - bug 866510 */
ode2('diff(y,x),y,x);
y=%c;
/* Examples from "The Maxima Book" */
ode2(x^2*'diff(y,x)+3*x*y=sin(x)/x, y, x);
y = (%c-cos(x))/x^3;
ic1(%, x=1, y=1);
y = -((cos(x)-cos(1)-1)/x^3);
method;
linear;
soln:ode2('diff(y,x,2) + y = 4*x, y, x);
y = %k1*sin(x) + %k2*cos(x) + 4*x;
method;
variationofparameters;
ic2(soln, x=0, y=1, 'diff(y,x)=3);
y = -sin(x)+cos(x)+4*x;
bc2(soln, x=0, y=3, x=2, y=1);
y = -((3*cos(2)+7)*sin(x)/sin(2)) + 3*cos(x) + 4*x;
ode2((3*x^2+4*x+2)=(2*y-1)*'diff(y,x), y, x);
y^2-y = x^3+2*x^2+2*x+%c;
method;
separable;
ode2(x^2*cos(x*y)*'diff(y,x) + (sin(x*y)+x*y*(cos(x*y)))=0, y, x);
x*sin(x*y)=%c;
method;
exact;
ode2( (2*x*y-exp(-2*y))*'diff(y,x)+y=0, y, x);
x*exp(2*y) - log(y) = %c;
method;
exact;
intfactor;
exp(2*y)/y;
ode2( 'diff(y,x)=(y/x)^2+2*(y/x), y, x);
-((x*y+x^2)/y) = %c;
method;
exact;
ode2( 'diff(y,x)+(2/x)*y=(1/x^2)*y^3, y, x);
y = 1/(sqrt( 2/(5*x^5) + %c)*x^2);
method;
bernoulli;
odeindex;
3;
ode2( 'diff(y,x,2)-3*'diff(y,x)+2*y=0, y, x);
y = %k1*exp(2*x) + %k2*exp(x);
method;
constcoeff;
ode2( 'diff(y,x,2)-4*'diff(y,x)+4*y=0, y, x);
y = (%k2*x + %k1)*exp(2*x);
method;
constcoeff;
ode2(x^2*'diff(y,x,2)+x*'diff(y,x)-y=0, y, x);
y=%k2*x-%k1/(2*x);
method;
exact;
ode2( x^2*'diff(y,x,2)+4*x*'diff(y,x)+2*y=0, y, x);
y=%k1/x+%k2/x^2;
method;
exact; /*euler*/
ode2( x^2*'diff(y,x,2)+5*x*'diff(y,x)+4*y=0, y, x);
y=(%k2*log(x)+%k1)/x^2;
method;
euler;
ode2( x^2*'diff(y,x,2)+x*'diff(y,x)+(x^2-1/4)*y=0, y, x);
y=(%k1*sin(x)+%k2*cos(x))/sqrt(x);
method;
bessel;
ode2( x^2*'diff(y,x,2)+x*'diff(y,x)+(x^2-4)*y=0, y, x);
y=%k1*bessel_j(2,x)+%k2*bessel_y(2,x);
method;
bessel;
ode2( (x-1)^2*'diff(y,x,2)+(x-1)*'diff(y,x)+((x-1)^2-4)*y=0, y, x);
y=%k1*bessel_j(2,x-1)+%k2*bessel_y(2,x-1);
method;
bessel;
ode2( x^2*'diff(y,x,2)+x*'diff(y,x)+(x^2-1/9)*y=0, y, x);
y=bessel_j(-1/3,x)*%k2+bessel_j(1/3,x)*%k1;
method;
bessel;
/* Bug report 2876387: asks if obvious non-integers are integers */
(declare(n,integer),ode2(x^2*'diff(y,x,2)+x*'diff(y,x)+(x^2-n^2)*y=0,y,x));
y = %k2*bessel_y(n,x)+%k1*bessel_j(n,x);
(remove(n,integer),method);
bessel;
(declare(v,noninteger),ode2(x^2*'diff(y,x,2)+x*'diff(y,x)+(x^2-v^2)*y=0,y,x));
y = %k1*bessel_j(v,x)+%k2*bessel_j(-v,x);
(remove(v,noninteger),method);
bessel;
ode2(x^2*'diff(y,x,2)+x*'diff(y,x)+(x^2-3)*y=0,y,x);
y = %k1*bessel_j(sqrt(3),x)+%k2*bessel_j(-sqrt(3),x);
method;
bessel;
ode2( 'diff(y,x,2)+2*'diff(y,x)+y=exp(x), y, x);
y=exp(x)/4+(%k2*x+%k1)*exp(-x);
method;
variationofparameters;
yp;
exp(x)/4;
ode2( x*'diff(y,x,2)+('diff(y,x))^2=0, y, x);
/* y='integrate(1/(log(x)+%k1),x)+%k2;
Because of adding more integrals for the power function we get a result
12/2008 */
y=%k2-expintegral_e(1,-log(x)-%k1)*%e^-%k1;
method;
freeofy;
ode2( y*'diff(y,x,2)+('diff(y,x))^2=0, y, x);
y^2/(2*%k1)=x+%k2;
method;
freeofx;
eq: 'diff(y,x,2)+x*'diff(y,x)+exp(-x^2)*y=0;
'diff(y,x,2)+x*'diff(y,x,1)+%e^-x^2*y = 0;
ans:ode2(eq,y,x);
y = %k1*sin((1/2) * sqrt(2)*sqrt(%pi)*erf(x/sqrt(2)))+%k2*cos((1/2) * sqrt(2)*sqrt(%pi)*erf(x/sqrt(2)));
is(ratsimp(ev(eq,ans,diff)));
true;
method;
xformtoconstcoeff;
eq:x*'diff(y,x,2)+(x^2-1)*'diff(y,x,1)+x^3*y=0;
x*'diff(y,x,2)+(x^2-1)*'diff(y,x,1)+x^3*y=0;
ans:ode2(eq,y,x);
y=%e^-(x^2/4)*(%k1*sin(sqrt(3)*x^2/4)+%k2*cos(sqrt(3)*x^2/4));
is(ratsimp(ev(eq,ans,diff)));
true;
method;
xformtoconstcoeff;
/* Tests of desolve */
eqn1:'diff(f(x),x) = sin(x)+'diff(g(x),x);
'diff(f(x),x,1) = 'diff(g(x),x,1)+sin(x);
eqn2:'diff(g(x),x,2) = 'diff(f(x),x)-cos(x);
'diff(g(x),x,2) = 'diff(f(x),x,1)-cos(x);
desolve([eqn1,eqn2],[f(x),g(x)]);
[f(x)=%e^x*(at('diff(g(x),x,1),x = 0))-at('diff(g(x),x,1),x = 0)+f(0),g(x)=%e^x*(at('diff(g(x),x,1),x=0))-at('diff(g(x),x,1),x = 0)+cos(x)+g(0)-1];
atvalue('diff(g(x),x),x = 0,a);
a;
atvalue(f(x),x = 0,1);
1;
desolve([eqn1,eqn2],[f(x),g(x)]);
[f(x) = a*%e^x-a+1,g(x) = cos(x)+a*%e^x-a+g(0)-1];
remove(f,atvalue,g,atvalue);
done;
atvalue('diff(g(x),x),x = 0,a);
a;
atvalue(f(x),x = 0,1);
1;
desolve([eqn1,eqn2],[f(x),g(x)]);
[f(x) = a*%e^x-a+1,g(x) = cos(x)+a*%e^x-a+g(0)-1];
eqn3: 'diff(f(x),x,2)+f(x)=2*x;
'diff(f(x),x,2)+f(x)=2*x;
desolve(eqn3,f(x));
''(f(x) = sin(x)*(at('diff(f(x),x,1),x = 0)-2)+f(0)*cos(x)+2*x);
/* Examples mentioned in bug report [ 1063454 ] bug in ode2
* First one was reported to fail in CMUCL with "run out of heap" message.
* Others were reported to be OK. Put them all here for good measure.
*/
(ode2 ('diff(y, t, 2) + 'diff(y, t) + y - sin(t), y, t),
rhs(%%), ratsimp (diff(%%, t, 2) + diff(%%, t) + %% - sin(t)));
0;
(ode2 ('diff(y, t, 2) + 'diff(y, t) + 2*y - sin(t), y, t),
rhs(%%), ratsimp (diff(%%, t, 2) + diff(%%, t) + 2*%% - sin(t)));
0;
(ode2 ('diff(y, t, 2) + 'diff(y, t) + y - exp(%i*t), y, t),
rhs(%%), ratsimp (diff(%%, t, 2) + diff(%%, t) + %% - exp(%i*t)));
0;
/* bug report 1063454 claims "maxima gets stuck" on the following */
(integrate (my_integrand : exp(t/2) * sin(t) * sin(sqrt(3) * t/2), t),
ratsimp (exponentialize (diff (%%, t) - my_integrand)));
0;
/* Examples to show that ic2 works as expected after revision 1.5 of ode.mac
*/
'diff(y,x,2)+y*('diff(y,x,1))^3 = 0;
'diff(y,x,2)+y*('diff(y,x,1))^3 = 0;
soln:ode2(%,y,x);
(y^3+6*%k1*y)/6 = x+%k2;
ratsimp(ic2(soln, x=0, y=0, 'diff(y,x,1)=2));
(y^3+3*y)/6=x;
ratsimp(ic2(soln, x=0, y=0, 'diff(y,x,1)=1));
(y^3+6*y)/6 = x$
/* This is the example of the bug report
* ID:2881021 - ic2 and bc2 may return incorrect results (solution suggeste)
*/
ratsimp(ic2(soln, x=0, y=1, 'diff(y,x,1)=2));
y^3/6 = (6*x+1)/6;
/* These examples show that ic2 works for a list of equation and nested
* lists of equation.
*/
ratsimp(ic2([soln, soln, soln], x=0, y=0, 'diff(y,x,1)=2));
[(y^3+3*y)/6=x, (y^3+3*y)/6=x, (y^3+3*y)/6=x];
ratsimp(ic2([soln, [soln, soln]], x=0, y=0, 'diff(y,x,1)=2));
[(y^3+3*y)/6=x, [(y^3+3*y)/6=x, (y^3+3*y)/6=x]];
/* Bug report ID: 1839088 - ic2 fails with division by 0
* Maxima no longer gives an error, but does not find the solution.
*/
ode2(y*'diff(y,x,2)=a, y, x);
[sqrt(%pi)*%i*%e^-%k1*erf(%i*sqrt(a*log(y)+%k1*a)/sqrt(a))/(sqrt(2)*sqrt(a))
= x+%k2,
-sqrt(%pi)*%i*%e^-%k1*erf(%i*sqrt(a*log(y)+%k1*a)/sqrt(a))/(sqrt(2)*sqrt(a))
= x+%k2];
ic2(%,x=0,y=b,diff(y,x)=0);
[];
/* Bug report ID: 2997443 - ic2 fails
* Maxima no longer gives an error, but does not find the solution.
* The solution of ic2 could be: y=1/20*(sqrt(160*x+1)-1)
*/
ode2('diff(x,t,2)+5*'diff(x,t)^3, x, t);
[x = %k2-2*1/sqrt(1/(t+%k1))/sqrt(10),x = 2*1/sqrt(1/(t+%k1))/sqrt(10)+%k2];
ic2(%,t=0,x=0,'diff(x,t)=4);
[];
/* Bug report ID: 1789213 - ic1 for solution containing indefinite integral
* More general implementation of ic1, which handles a noun form of an
* integral correctly. The result simplifies correctly, if we define
* a function and reevaluate the result.
*/
sol: ode2(kappa(p) = -'diff(V, p) / V, V, p);
V = %c*%e^-'integrate(kappa(p),p);
ic1(sol, p = p0, V = V0);
V = V0*%e^('at('integrate(kappa(p),p),[p = p0,V = V0])
-'integrate(kappa(p),p));
(kappa(x):=x, ev(%,nouns));
V = %e^(p0^2/2-p^2/2)*V0;
/* Bug report ID: 1621 Wrong solution to ode2
*
* 'diff(y,t,2)-a*'diff(y,t)=-t with a=0
*
* Test case is a 2nd order non-homogeneous linear ode with constant
* coefficients. When solving homogeneous ode, cc2 asked if a=0, then
* returned a solution involving a.
*/
assume(equal(a,0));
[equal(a,0)];
ode2('diff(y,t,2)-a*'diff(y,t)=0,y,t);
y=%k2*t+%k1;
ode2('diff(y,t,2)-a*'diff(y,t)=-t,y,t);
y=(-t^3/6)+%k2*t+%k1;
forget(equal(a,0));
[equal(a,0)];
|