/usr/share/maxima/5.41.0/src/sqrtdenest.lisp is in maxima-src 5.41.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; sqrtdenest - denest an expression containing square roots of square roots
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; This library is free software; you can redistribute it and/or modify it
;;; under the terms of the GNU General Public License as published by the
;;; Free Software Foundation; either version 2 of the License, or (at
;;; your option) any later version.
;;;
;;; This library is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Library General Public License for more details.
;;;
;;; You should have received a copy of the GNU General Public License along
;;; with this library; if not, write to the Free Software
;;; Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
;;;
;;; Copyright (C) 2016 David Billinghurst
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; SQRTDENEST simplifies square roots of square roots.
;;;
;;; This implementation uses the same algorithm as the maxima language
;;; SQRTDENEST in share package sqdnst.mac. It only handles simple cases.
;;;
;;; Reference:
;;;
;;; Jeffrey, David J. and Rich, Albert D. (1999)
;;; Simplifying Square Roots of Square Roots by Denesting,
;;; in Computer Algebra Systems (Ed. M. J. Wester)
;;; <http://www.cybertester.com/data/denest.pdf>
;;;
;;; Further reading:
;;;
;;; A. Borodin and R. Fagin and J. Hopcroft and M. Tompa. (1985)
;;; Decreasing the Nesting Depth of expressions Involving Square Roots.
;;; J. Symbolic Computation, 1:169-188
;;; <http://www.almaden.ibm.com/cs/people/fagin/symb85.pdf>
;;;
;;; Landau, Susan (1992) A Note on Zippel Denesting.
;;; Journal of Symbolic Computation 13:41-45
;;;
;;; Landau, Susan (1992) Simplification of Nested Radicals.
;;; SIAM Journal on Computing, 21: 85-110.
;;;
;;; Landau, Susan (1994). How to Tangle with a Nested Radical.
;;; Math. Intell. 16:49-55
;;;
;;; Zippel, Richard (1985) Simplification of Expressions involving Radicals.
;;; Journal of Symbolic Computation, 1:189-210.
;;;
;;; Python sympy sqrtdenest function
;;; http://docs.sympy.org/latest/_modules/sympy/simplify/sqrtdenest.html
;;; which references Borodin et al (1985), Jeffrey and Rich (2009)
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun sqrtdenest (e)
"Denest square roots in expression e"
(sqrtdenest1 e))
(defun sqrtdenest1 (e)
"Denest square roots in expression e"
(cond
((mapatom e) e)
((eq (mop e) 'mexpt) (sqrtdenest2 e))
(t `((,(mop e)) ,@(mapcar #'sqrtdenest1 (rest e))))))
;;; Simple denesting of square roots. Uses algorithm in maxima share package
;;; sqdnst.mac. Should give identical results.
;;;
;;; Ref: Jeffrey and Rich (1999), Section 4.5.2
;;;
;;; Let X,Y real with X > Y > 0
;;;
;;; Consider
;;; sqrt(X+Y) = sqrt(A) + sqrt(B) (4.9)
;;;
;;; Squaring both sides
;;; X + Y = A + B + 2 sqrt(A+B) (4.10)
;;;
;;; One way to satify this is to set X=A+B and Y^2=4AB
;;;
;;; Also have
;;; sqrt(X-Y) = sqrt(A) - sqrt(B) (4.11)
;;;
;;; Solve for A and B in terms of X and Y to derive:
;;;
;;; Theorem 4.12: Let X,Y real with X > Y > 0
;;; sqrt(X +/- Y) = sqrt(X/2+sqrt(X^2-Y^2)/2) +/- sqrt(X/2-sqrt(X^2-Y^2)/2)
;;;
;;; Apply this below by testing discriminant D = sqrt(1-(Y/X)^2)
;;; If $numberp(D) then theorem 4.12 denests the square-root as
;;; sqrt(X +/- Y) = sqrt(X*(1+D)/2) +/- *sqrt(X*(1-D)/2)
;;; Note: X>0 and D<1 so both sqrt terms on RHS are real.
(defun sqrtdenest2 (e)
"Denest square roots in maxima expression e of form a^b"
(let ((a (simplify (sqrtdenest1 (second e))))
(b (simplify (sqrtdenest1 (third e))))
x y D)
(cond ((and ($evenp ($denom b))
(not (mapatom a))
(eq (mop a) 'mplus)
(progn
(setq x ; maximum of args(a)
(simplify `(($max) ,@(rest a))))
(setq y (sub a x)) ; a-x
(setq D ; sqrt(1-(y/x)^2)
(root (sub 1 (power (div y x) 2)) 2))
($numberp D)))
;; (sqrt(x*(1+D)/2)+signum(y)*sqrt(x*(1-D)/2))^(2*b)
(power (add (root (mul 1//2 x (add 1 D)) 2)
(mul (take '(%signum) y)
(root (mul 1//2 x (sub 1 D)) 2)))
(mul 2 b)))
;; Didn't denest at this level, but may have at a lower level.
(t (power a b)))))
|