/usr/share/maxima/5.41.0/src/schatc.lisp is in maxima-src 5.41.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module schatc)
;;;; I think this is described in Chapter 3 of J. Moses' thesis,
;;;; "Symbolic Integration", MIT-LCS-TR-047. A scanned version of the
;;;; thesis is available at
;;;; http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-047.pdf.
;;;;
;;;; Unfortunately, some important pages in the scan are all black.
;;;;
;;;; A version with the missing pages is available (2008-12-14) from
;;;; http://www.softwarepreservation.org/projects/LISP/MIT
;;;;
;;;; Schatchen is Yiddish for "matchmaker" and Schatchen here is a
;;;; pattern matching routine.
(declare-top (special ans))
(defvar *schatfactor* nil) ;DETERMINES WHETHER FACTORING SHOULD BE USED.
(defmacro push-context ()
'(push nil ans))
(defmacro push-loop-context ()
'(rplacd ans (cons '*loop (cdr ans))))
(defmacro preserve (z)
`(rplacd ans (cons (cons ,z (cdr ,z)) (cdr ans))))
(defmacro add-to (var val)
`(rplacd ans (cons (cons ,var ,val) (cdr ans))))
(defmacro var-pat (x)
`(atom (car ,x)))
;;VARIOUS SIMPLE PATTERNS
(defun free1 (a)
(declare (special var))
(and (null (pzerop a)) (free a var)))
(defun not-zero-free (a var)
(declare (special var))
(free1 a))
(defun linear* (e var)
(declare(special var))
(prog (a n)
(setq n ($ratcoef e var))
(when (null (free n var))
(return nil))
(setq a (simplus (list '(mplus) e (list '(mtimes) -1 n var)) 1 nil))
(return (cond ((free a var) (cons a n))))))
(defun dvcoe (e pat args)
(m1 ($ratsimp (list '(mtimes) e args)) pat))
;;; SCHATCHEN pattern matcher.
;;;
;;; Match the (maxima) expression in E with the pattern given by P.
;;;
;;; The pattern language is partially described in Moses thesis. We
;;; summarize here some of the main ideas. (This is mostly taken from
;;; his thesis.)
;;;
;;; A variable in the pattern is written in the form (VAR name pred
;;; arg1 arg2 ... argn)
;;;
;;; where
;;;
;;; name = name of variable
;;; pred = predicate associated with the variable
;;; argi = arguments 2 through n+1 for pred
;;;
;;; The first arg of pred is assumed to the expression that the match
;;; assigns to the variable.
;;;
;;; If the variable has a mode, it is written in prefix form. Thus
;;; A*x, where A is a number and is a coefficient of plus or times
;;; becomes (coeffpt (var a number) x).
;;;
;;; Some modes:
;;;
;;; coefft - coefficient of TIMES (matches A in A*x) coeffp -
;;; coefficient of PLUS (matches B in x + B) coeffpt - coefficient of
;;; PLUS and TIMES (like coefft and coeffp and matches things like
;;; 2*x^2+sqrt(2)*x^2 so that the coefficient of x^2 is 2+sqrt(2).
;;;
;;; A brief description of the algorithm:
;;;
;;; If E equals P, the match succeeds.
;;;
;;; If P is of the form (VAR name pred arg1 ... argn), then (pred e
;;; arg1 arg2 ... argn) is evaluated. If the value of the pred is
;;; true, the match succeeds and ((name . e) is appended to the
;;; answer. Otherwise the match fails.
;;;
;;; If P is of the form (op p1 ... pn) and op is not PLUS, TIMES, or
;;; EXPT, then E must be of the form (op1 e1 ... en) and each pi must
;;; match i1 and op must match op1. Otherwise the match fails.
;;;
;;; If the pattern is of the form (EXPT p1 p2) then
;;; 1) e is (EXPT e1 e2) and p1 matches e1 and p2 matches e2 or
;;; 2) e is 0 and p1 matches 0 or
;;; 3) e is 1 and
;;; a) p2 matches 0 or
;;; b) p1 matches 1
;;; 4) p2 matches 1 and p1 matches e
;;;
;;; Otherwise the match fails
;;;
;;; If the pattern is of the form (op p1 p2 ... pn) and op = PLUS or
;;; TIMES, then if E is not of the form (op e1 ... em), E is
;;; transformed to (op E). In this case an attempt is made to match
;;; each pi with some ej. The scan starts with p1 matched with e1.
;;; If that fails p1 is matched with e2. If pi matches some ej, ej is
;;; deleted (destructively) from E and the scan continues with pi=1
;;; matched with he first subexpression remaining in E. If for some
;;; pi no ej can be found to match it, then pi is matched with 0 if op
;;; = PLUS or 1 if op = TIMES. If that also fails, the match fails.
;;; If all the pi have been matched, but some ej have not, the match
;;; fails.
;;;
;;; Exceptions to the above are due to modes. If op = PLUS, and pi is
;;; of the form (coeffpt (var name pred arg1 ... argn) p1 ... pk),
;;; then the remaining expression is traversed with the pattern
;;; (coefft (var name pred arg1 ... argn) p1 ... pk). Each
;;; subexpression that is thus matched is deleted from the expression.
;;; The simplified sum of the result of the scan becomes the value of
;;; the variable. If no subexpression could thuse be matched, then
;;; (pred 0 arg1 ... argn) is attempted. If this too fails, the match
;;; fails.
;;;
;;; If op = PLUS and pn is of the form (coeffp (var name pred arg1
;;; ... argn), then if e is currently of the form (PLUS ei ... en),
;;; then (pred e arg1 ... argn) is evaluated. If the value of pred is
;;; true, ((name . e)) is appended. If no subexpressions remain in e,
;;; then pred 0 arg1 ... argn) is attempted. If it succeeds, ((name
;;; . )) is appended. Otherwise, the match fails.
;;;
;;; If op = PLUS and pi is of the form (coefft (var name pred arg1
;;; ... argn) p1 ... pk) then (times p1 .... pk) is matched with e.
;;; If the match succeeds and e remains of the form (times e1 ... en),
;;; then (pred e arg1 ... argn) is attempted. If it fails, the match
;;; fails. If no subexpressions remain in e, then (pred 1 arg1
;;; ... argn) is attempted. If this succeeds, ((name . 1) is
;;; appended.
(defmfun schatchen (e p)
(m2 e p))
;;THE RESTORE FUNCTIONS RESTORE THE SPEC-VAR ANS
;;AND RETURN TRUE OR FALSE AS FOLLOWS
;;RESTORE - FLASE
;;RESTORE1 - TRUE AND CLEARS UP ANS
;;RESTORE2 - TRUE AND CLEARS OFF *LOOP INDICATORS
;; DOES NOT FIX UP THE EXPRESSION AND
;; IS THUS TO BE USED ONLY INTERNALLY
;;
;;TO INSURE THAT THERE IS NO CONFLICT IN SPECIAL VARIABLES,
;;ESPECIALLY WITH THE VAR* (SET) MODE ALL SCHATCHEN VARIABLES
;;ARE TO BE PRECEDED BY A "%"
(defvar *splist*)
(defmfun m2 (e p)
(let ((ans (list nil))
(*splist* nil))
(declare (special *splist*))
(cond ((null (m1 (copy-tree e) p)) nil)
((null (cdr ans)))
((cdr ans)))))
(defun sav&del (x)
(preserve x)
(rplacd x (cddr x)))
(defmfun m1 (e p)
(cond ((equal e p) t)
((atom p) nil)
((var-pat p)
(push-context)
(cond ((testa p e nil)
(restore1))
((restore))))
((atom (caar p))
(cond ((member 'simp (cdar p) :test #'eq) (alike1 e p))
((member (caar p) '(mplus mtimes) :test #'eq)
(loopp e p))
((member (caar p) '(mexpt zepow) :test #'eq) (zepow e p t))
((and (not (atom e)) (eq (caar e) (caar p))) (eachp e p))
((eq (caar p) 'coefft) (coefft e p t))
((eq (caar p) 'coeffpt) (coeffpt e p t))
((eq (caar p) 'coeffp) (coeffp e p t))
((eq (caar p) 'coefftt)
(coefftt e (cadr p) t 'mtimes))
((eq (caar p) 'coeffpp)
(coefftt e (cadr p) t 'mplus))))
((var-pat (caar p)) ;HAIRY OPERATOR MATCHING SCHEME
(cond ((atom e) nil) ;NO OPERATOR TO MATCH
((prog2 (push-context) ;BIND THE CONTEXT
(testa (caar p) (car e) nil)) ;TRY IT
(cond ((member (caar e) '(mplus mtimes) :test #'eq) ;CHECK FOR COMMUTIVITY
(cond ((loopp e (cons (car e) (cdr p)))
(restore1))
((restore))))
((eachp e p)
(restore1))
((restore))))
((restore))))))
(defun loopp (e p)
(prog (x z)
(setq e (cond ((atom e) (list (car p) e))
((null (eq (caar p) (caar e)))
(cond ((and *schatfactor*
(eq (caar e) 'mplus)
(mtimesp (setq x ($factor e))))
x)
((list (car p) e))))
(e)))
(push-context)
(setq z p)
loop (setq z (cdr z))
(cond ((null z)
(return (cond ((null (cdr e)) (restore1))
((restore))))))
(setq x e)
l5 (cond ((null (cdr x))
(let ((ident (opident (caar p))))
(cond ((and ident (m1 ident (car z)))
(go loop))
((return (restore))))))
((or (atom (car z)) (var-pat (car z)))
(when (m1 (cadr x) (car z))
(sav&del x)
(go loop)))
((eq (caaar z) 'coefft)
(cond ((coefft e (car z) nil)
(go loop))
((return (restore)))))
((eq (caaar z) 'coeffp)
(cond ((coeffp e (car z) nil)
(go loop))
((return (restore)))))
((eq (caaar z) 'coeffpt)
(cond ((coeffpt e (car z) nil) (go loop))
((return (restore)))))
((eq (caaar z) 'coefftt)
(cond ((coefftt e (cadar z) nil 'mtimes) (go loop))
((return (restore)))))
((eq (caaar z) 'coeffpp)
(cond ((coefftt e (cadar z) nil 'mplus) (go loop))
((return (restore)))))
((member (caaar z) '(mexpt zepow) :test #'eq)
(when (zepow (cadr x) (car z) t)
(sav&del x)
(go loop)))
((eq (caaar z) 'loop)
(cond ((sch-loop e (cdar z)) (go loop))
((return (restore)))))
((m1 (cadr x) (car z))
(sav&del x)
(go loop)))
(setq x (cdr x))
(go l5)))
;;; IND = T MEANS AN INTERNAL CALL (USUALLY FROM LOOPP)
(defun coeffp (e p ind)
(push-context)
(cond ((or (and (null (mplusp e)) ;;;WITH IND SET, OR E = (PLUS <EXPR>)
(setq e (list '(mplus) e)))
ind (null (cddr e)))
(coeffport e p 0 ind)) ;;; USE COEFFPORT
((and (null (cddr p)) ;;; P = ((COEFFP) (<VAR> <PRED> . . .))
(var-pat (cadr p))) ;;; SO CALL TESTA
(cond ((testa (cadr p) e nil)
(cond ((mplusp e)
(preserve e)
(rplacd e nil)
t)
((merror "COEFFP: incorrect arguments; E=~M, P=~M, IND=~M" e p ind))))))
((do ((x e (cdr x)))
((null (cdr x))
(cond ((m1 0 p) (restore2))
((restore))))
(cond ((coeffp (cadr x) p t)
(sav&del x)
(return (restore2))))))))
(defun coefft (e p ind)
(push-context)
(cond ((and (null ind) (null (atom e)) (member (caar e) '(mplus mtimes) :test #'eq))
(do ((x e (cdr x)))
((null (cdr x))
(cond ((m1 1 p) (restore2))
((restore))))
(cond ((coefft (cadr x) p t)
(sav&del x)
(return (restore2))))))
((and (mplusp e) (cddr e))
(cond ((and *schatfactor* (mtimesp (setq e ($factor e))))
(coeffport e p 1 ind))
((restore))))
(t (coeffport (if (mtimesp e) e (list '(mtimes) e)) p 1 ind))))
(defun coeffport (e p ident ind)
(do ((z (cddr p) (cdr z))
(x e e))
((null z)
(coeffret e (cadr p) ident ind))
l ;;; EACH TIME HERE WE HAVE CDR'D DOWN THE EXP.
(cond ((null (cdr x))
(and (null (m1 ident (car z)))
(return (restore))))
((or (atom (car z))
(var-pat (car z))))
((eq (caaar z) 'coefftt)
(and (null (coefftt e (cadar z) nil 'mtimes))
(return (coeffret e p ident ind))))
((eq (caaar z) 'coeffpp)
(and (null (coefftt e (cadar z) nil 'mplus))
(return (coeffret e p ident ind)))))
(cond ((null (cdr x)))
((m1 (cadr x) (car z))
(sav&del x))
(t (setq x (cdr x))
(go l)))))
(defun coeffret (e p ident ind)
(cond ((null (cdr e))
(cond ((testa p ident nil)
(cond (ind (restore1))
((restore2))))
((restore))))
((testa p (cond ((cddr e) (copy-list e ))
((cadr e)))
nil)
(cond (ind (restore1))
(t (preserve e)
(rplacd e nil)
(restore2))))
((restore))))
(defun coeffpt (e p ind) ;THE PATTERN LIST (P) MUST BE OF VAR-PATTERNS
(push-context)
(do ((z (cond ((mplusp e) e) ((list '(mplus) e))))
(zz (cons '(coefft) (cdr p)))) ;THIS ROUTINE IS THE ONE WHICH PUTS
;MOST OF THE THE GARBAGE ON ANS IT
((null (cdr z)) ;IT CANNOT USE THE *SPLIST* HACK
(setq z (findit (cond ((eq (caadr p) 'var*) ;BECAUSE IT COULD BE USING
(car (cddadr p))) ;MANY DIFFERENT VARIABLES ALTHOUGH
((caadr p))))) ;THOUGHT THE FIRST IS THE ONLY ONE
(let ((q (cond ((null z) 0)
((null (cdr z)) (car z))
((simplus (cons '(mplus) z) 1 nil))))
(fl (if (and z (cdr z)) 'coeffpt))) ;WHICH BECOMES A SUM AND MIGHT BE RESET
(cond ((null (testa (cadr p) q fl))
(restore))
(ind (restore1))
(t (restore2) q))))
(cond ((null (m1 (cadr z) zz)) ;THIS IS THE DO BODY
(setq z (cdr z)))
((sav&del z)))))
(defun zepow (e p fl) ;FL=NIL INDICATES A RECURSIVE CALL
(and fl (push-context)) ;SO ANS SHOULD NOT BE MARKED
(cond ((atom e)
(cond ((equal e 1)
(cond ((not (or (m1 0 (caddr p)) (m1 1 (cadr p))))
(restore))
((restore1))))
((equal e 0)
(cond ((null (m1 0 (cadr p))) (restore))
((restore1))))
((and (m1 e (cadr p)) (m1 1 (caddr p)))
(restore1))
((restore))))
((and *schatfactor*
(mplusp e)
(setq e ($factor e))
nil))
((and (eq (caar e) 'mtimes)
(mexptp (cadr e)))
(do ((e (cddr e) (cdr e))
(b (cadadr e))
(x (caddr (cadr e)))
(z))
((null e) ;OK NOW LETS TRY AGAIN
(zepow (list '(mexpt) (simplifya b t)
(simplifya x t)) p nil))
(cond ((mexptp (car e))
(cond ((alike1 (cadar e) b)
(setq x (simplus (list '(mplus) x (caddar e)) 1 nil)))
((alike1 (caddar e) x)
(setq b (simptimes (list '(mtimes) b (cadar e)) 1 nil)))
((signp e (caddr (setq z ($divide x (caddar e)))))
(setq b (simptimes (list '(mtimes) b
(list '(mexpt) (cadar e)
(list '(mtimes) (caddar e) (cadr z)))) 1 nil)))
((return (restore)))))
((alike1 b (car e))
(setq x (simplus (list '(mplus) 1 x) 1 t)))
((return (restore))))))
((or (and (eq (caar e) 'mexpt)
(m1 (cadr e) (cadr p))
(m1 (caddr e) (caddr p)))
(and (m1 e (cadr p))
(m1 1 (caddr p))))
(restore1))
((restore))))
(defun eachp (e p)
(cond ((= (length e) (length p))
(push-context)
(do ((e (cdr e) (cdr e)))
((null e) (restore1))
(unless (m1 (car e) (cadr p)) (return (restore)))
(setq p (cdr p))))))
(defun sch-loop (e lp)
(push-context) (push-loop-context)
(do ((x lp) (z e) (y)) ;Y A PSEUDO SAVE
(nil)
(cond ((null (m1 (cadr z) (car x))) ;DIDN'T MATCH
(setq z (cdr z)) ;NEXT ARG FOR LOOP
(cond ((cdr z))
((eq x lp) (return (restore)))
(t
(setq x (caar y)
z (cdar y))
(setq y (cdr y)
ans (cdr ans))
(pop-loop-context))))
(t
(push (cons x z) y)
(sav&del z)
(setq x (cdr x))
(cond ((null x) (return (restore2)))
(t (push-loop-context)
(setq z e)))))))
(defun coefftt (exp pat ind opind) ;OPIND IS MPLUS OR MTIMES
(push-context)
(when (or (atom exp) (and ind (not (eq (caar exp) opind))))
(setq exp (list (list opind) exp)))
(push (car pat) *splist*) ;SAVE VAR NAME HERE
(do ((z exp) (res))
((null (cdr z))
(setq *splist* (cdr *splist*)) ;KILL NAME SAVED
(cond (res (setq res (cond ((cdr res) (cons (list opind) res))
((car res))))
(cond ((and (eq (car pat) 'var*)
(member 'set (cadr pat) :test #'eq))
(add-to (caddr pat) (setf (symbol-value (caddr pat)) (simplifya res nil))))
((add-to (car pat) (simplifya res nil))))
(cond (ind (restore1))
((restore2))))
((null (testa pat (opident opind) nil))
(restore))
(ind (restore1))
((restore2))))
(cond ((testa pat (cadr z) nil)
(push (cadr z) res)
(sav&del z))
(t (setq z (cdr z))))))
(defun restore nil
(do ((y (cdr ans) (cdr y)))
((null y) nil)
(cond ((eq (car y) '*loop)
(rplaca y (cadr y))
(rplacd y (cddr y)))
((null (car y))
(setq ans y)
(return nil))
((null (atom (caar y)))
(rplacd (caar y) (cdar y))))))
(defun restore1 nil
(do ((y ans) (l)) ;L IS A LIST OF VAR'S NOTED
((null (cdr y)) t)
(cond ((null (cadr y)) ;END OF CONTEXT
(rplacd y (cddr y)) ;SPLICE OUT THE CONTEXT MARKER
(return t))
((not (atom (caadr y))) ;FIXUP NECESSARY
(rplacd (caadr y) (cdadr y))
(rplacd y (cddr y)))
((member (car y) l :test #'eq) ;THIS VAR HAS ALREADY BEEN SEEN
(rplacd y (cddr y))) ;SO SPLICE IT OUT TO KEEP ANS CLEAN
((setq y (cdr y)
l (cons (caar y) l))))))
(defun restore2 nil
(do ((y (cdr ans) (cdr y)))
((null (cdr y)) t)
(cond ((eq (cadr y) '*loop)
(rplacd y (cddr y)))
((null (cadr y))
(rplacd y (cddr y))
(return t)))))
(defun pop-loop-context nil
(do ((y ans))
((eq (cadr y) '*loop) nil)
(or (atom (caadr y))
(rplacd (caadr y) (cdadr y)))
(rplacd y (cddr y))))
;;WHEN THE CAR OF ALA IS VAR* THE CADR IS A LIST OF
;;THE VARIOUS SWITCHES WHICH MAY BE SET.
;;UVAR- INDICATES THIS SHOULD MATCH SOMETHING WHICH IS ALREADY ON ANS.
;;SET - ACTUALLY SET THIS VARIABLE TO ITS VALUE IF IT MATCHES.
;;COEFFPT - SPECIAL ARGUMENT IF IN COEFFPT.
(defun testa (ala exp b)
(cond ((eq (car ala) 'mvar*)
(testa* ala exp t))
((eq (car ala) 'var*)
(do ((z (cadr ala) (cdr z))
(ala (cddr ala))
(y) (set) (uvar))
((null z)
(setq y (cond (uvar (m1 exp y))
((testa* ala exp nil))))
(cond ((null y) nil)
(set (setf (symbol-value (car ala)) exp))
(y)))
(cond ((eq (car z) 'set) (setq set t))
((eq (car z) 'uvar)
(cond ((setq y (cdr (assoc (car ala) ans :test #'equal)))
(setq uvar t))))
((eq (car z) 'coeffpt)
(and (eq b 'coeffpt)
(setq ala (cadr z)))
(setq z (cdr z)))
((merror "TESTA: invalid switch ~M in pattern." (car z))))))
((testa* ala exp nil))))
;; ALA IS THE PREDICATE LIST (VAR PREDFN ARG2 ARG3 ARG4 . . .)
(defun testa* (ala exp loc)
(declare (special var))
(cond ((cond ((eq (cadr ala) 'freevar)
(cond ((eq var '*novar) (equal exp 1))
((free exp var))))
((eq (cadr ala) 'numberp) (mnump exp))
((eq (cadr ala) 'true) t)
((eq (cadr ala) 'linear*)
(setq exp (linear* exp (caddr ala))))
((null loc)
(cond ((atom (cadr ala))
(cond ((fboundp (cadr ala))
(apply (cadr ala)
(findthem exp (cddr ala))))
((mget (cadr ala) 'mexpr)
(mapply (cadr ala)
(findthem exp (cddr ala))
(cadr ala)))))
((member (caadr ala) '(lambda function *function quote) :test #'eq)
;;;THE LAMBDA IS HERE ONLY BECAUSE OF SIN!!!
(apply (cadr ala) (findthem exp (cddr ala))))
((eval-pred (cadr ala) (car ala) exp)))))
(cond ((member (car ala) *splist* :test #'eq))
((add-to (car ala) exp))))
((cond ((and loc (atom (cadr ala))
(fboundp (cadr ala)))
(mapc #'(lambda (q v) (and (null (member q *splist* :test #'eq))
(add-to q v)))
(car ala)
(apply (cadr ala) (findthem exp (cddr ala)))))))))
(defun eval-pred (exp %var value)
(progv (list %var) (list value)
(eval exp)))
(defun findthem (exp args)
(cons exp
(mapcar #'(lambda (q)
(cond ((atom q)
(or (cdr (assoc q ans :test #'eq))
;; Evaluate a symbol which has a value.
(and (symbolp q) (boundp q) (symbol-value q))
;; Otherwise return the symbol.
q))
(q)))
args)))
(defun findit (a)
(do ((y ans) (z))
((or (null (cdr y)) (null (cadr y))) z)
(cond ((eq (caadr y) a)
(setq z (nconc z (list (cdadr y))))
(rplacd y (cddr y)))
((setq y (cdr y))))))
(defun sch-replace (dict exp1)
(declare (special dict))
(replac exp1))
(defun replac (exp1)
(declare (special dict))
(let ((w1 nil))
(cond ((null exp1) nil)
((not (atom exp1))
(cond ((eq (car exp1) 'eval)
(simplifya (eval (replac (cadr exp1))) nil))
((eq (car exp1) 'quote) (cadr exp1))
(t (setq w1 (mapcar #'replac (cdr exp1)))
(cond ((equal w1 (cdr exp1))
exp1)
((simplifya (cons (list (caar exp1)) w1) t))))))
((numberp exp1) exp1)
((setq w1 (assoc exp1 dict :test #'eq))
(cdr w1))
(exp1))))
;; Execute BODY with the variables in VARS bound using ALIST. If any variable is
;; missing, it is set to NIL.
;;
;; Example usage:
;; (alist-bind (a b c) some-alist (+ a b c))
(defmacro alist-bind (vars alist &body body)
(let ((alist-sym (gensym)))
`(let* ((,alist-sym ,alist)
,@(loop
for var in vars
collecting `(,var (cdr (assoc ',var ,alist-sym :test #'eq)))))
,@body)))
;; Factor out the common logic to write a COND statement that uses the Schatchen
;; pattern matcher.
;;
;; Each clause in CLAUSES should match (TEST VARIABLES &body BODY). This will be
;; transformed into a COND clause that first runs TEST and binds the result to
;; W. TEST is assumed to boil down to a call to M2, which returns an alist of
;; results for the matched variables. VARIABLES should be a list of symbols and
;; the clause only matches if each of these symbols is bound in the alist.
;;
;; As a special rule, if the CAR of TEST is of the form (AND F1 F2 .. FN) then
;; the result of evaluating F1 is bound to W and then the clause only matches if
;; F2 .. FN all evaluate to true as well as the test described above.
;;
;; If the clause matches then the result of the cond is that of evaluating BODY
;; (in an implicit PROGN) with each variable bound to the corresponding element
;; of the alist.
;;
;; To add an unconditional form at the bottom, use a clause of the form
;;
;; (T NIL F1 .. FN).
;;
;; This will always match and doesn't try to bind any extra variables.
(defmacro schatchen-cond (w &body clauses)
`(let ((,w))
(cond
,@(loop
for clause in clauses
collecting
(let ((test (car clause))
(variables (cadr clause))
(body (cddr clause)))
;; A clause matches in the cond if TEST returns non-nil and
;; binds all the expected variables in the alist. As a special
;; syntax, if the car of TEST is 'AND, then we bind W to the
;; result of the first argument and then check the following
;; arguments in an environment where W is bound (but the
;; variables aren't).
(let ((cond-test
(if (and (not (atom test)) (eq 'and (car test)))
`(progn
(setf ,w ,(cadr test))
(and ,w ,@(loop for var in variables
collecting `(cdras ',var ,w))
,@(cddr test)))
`(progn
(setf ,w ,test)
(and ,w ,@(loop for var in variables
collecting `(cdras ',var ,w))))))
;; If the clause matched, we explicitly bind all of those
;; variables in a let form and then evaluate the
;; associated body.
(cond-body `(alist-bind ,variables ,w ,@body)))
`(,cond-test ,cond-body)))))))
(declare-top (unspecial var ans))
|