This file is indexed.

/usr/share/maxima/5.41.0/src/schatc.lisp is in maxima-src 5.41.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     (c) Copyright 1980 Massachusetts Institute of Technology         ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(macsyma-module schatc)

;;;; I think this is described in Chapter 3 of J. Moses' thesis,
;;;; "Symbolic Integration", MIT-LCS-TR-047.  A scanned version of the
;;;; thesis is available at
;;;; http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-047.pdf.
;;;;
;;;; Unfortunately, some important pages in the scan are all black.
;;;;
;;;; A version with the missing pages is available (2008-12-14) from
;;;; http://www.softwarepreservation.org/projects/LISP/MIT
;;;;
;;;; Schatchen is Yiddish for "matchmaker" and Schatchen here is a
;;;; pattern matching routine.

(declare-top (special ans))

(defvar *schatfactor* nil)	 ;DETERMINES WHETHER FACTORING SHOULD BE USED.

(defmacro push-context ()
  '(push nil ans))

(defmacro push-loop-context ()
  '(rplacd ans (cons '*loop (cdr ans))))

(defmacro preserve (z)
  `(rplacd ans (cons (cons ,z (cdr ,z)) (cdr ans))))

(defmacro add-to (var val)
  `(rplacd ans (cons (cons ,var ,val) (cdr ans))))

(defmacro var-pat (x)
  `(atom (car ,x)))

;;VARIOUS SIMPLE PATTERNS

(defun free1 (a)
  (declare (special var))
  (and (null (pzerop a)) (free a var)))

(defun not-zero-free (a var)
  (declare (special var))
  (free1 a))

(defun linear* (e var)
  (declare(special var))
  (prog (a n)
     (setq n ($ratcoef e var))
     (when (null (free n var))
       (return nil))
     (setq a (simplus (list '(mplus) e (list '(mtimes) -1 n var)) 1 nil))
     (return (cond ((free a var) (cons a n))))))

(defun dvcoe (e pat args)
  (m1 ($ratsimp (list '(mtimes) e args)) pat))

;;; SCHATCHEN pattern matcher.
;;;
;;; Match the (maxima) expression in E with the pattern given by P.
;;;
;;; The pattern language is partially described in Moses thesis.  We
;;; summarize here some of the main ideas.  (This is mostly taken from
;;; his thesis.)
;;;
;;; A variable in the pattern is written in the form (VAR name pred
;;; arg1 arg2 ... argn)
;;;
;;; where
;;;
;;;   name  = name of variable
;;;   pred  = predicate associated with the variable
;;;   argi  = arguments 2 through n+1 for pred
;;;
;;; The first arg of pred is assumed to the expression that the match
;;; assigns to the variable.
;;;
;;; If the variable has a mode, it is written in prefix form.  Thus
;;; A*x, where A is a number and is a coefficient of plus or times
;;; becomes (coeffpt (var a number) x).
;;;
;;; Some modes:
;;;
;;; coefft - coefficient of TIMES (matches A in A*x) coeffp -
;;; coefficient of PLUS (matches B in x + B) coeffpt - coefficient of
;;; PLUS and TIMES (like coefft and coeffp and matches things like
;;; 2*x^2+sqrt(2)*x^2 so that the coefficient of x^2 is 2+sqrt(2).
;;;
;;; A brief description of the algorithm:
;;;
;;; If E equals P, the match succeeds.
;;;
;;; If P is of the form (VAR name pred arg1 ... argn), then (pred e
;;; arg1 arg2 ... argn) is evaluated.  If the value of the pred is
;;; true, the match succeeds and ((name . e) is appended to the
;;; answer.  Otherwise the match fails.
;;;
;;; If P is of the form (op p1 ... pn) and op is not PLUS, TIMES, or
;;; EXPT, then E must be of the form (op1 e1 ... en) and each pi must
;;; match i1 and op must match op1.  Otherwise the match fails.
;;;
;;; If the pattern is of the form (EXPT p1 p2) then
;;;   1) e is (EXPT e1 e2) and p1 matches e1 and p2 matches e2 or
;;;   2) e is 0 and p1 matches 0 or
;;;   3) e is 1 and
;;;      a) p2 matches 0 or
;;;      b) p1 matches 1
;;;   4) p2 matches 1 and p1 matches e
;;;
;;; Otherwise the match fails
;;;
;;; If the pattern is of the form (op p1 p2 ... pn) and op = PLUS or
;;; TIMES, then if E is not of the form (op e1 ... em), E is
;;; transformed to (op E).  In this case an attempt is made to match
;;; each pi with some ej.  The scan starts with p1 matched with e1.
;;; If that fails p1 is matched with e2.  If pi matches some ej, ej is
;;; deleted (destructively) from E and the scan continues with pi=1
;;; matched with he first subexpression remaining in E.  If for some
;;; pi no ej can be found to match it, then pi is matched with 0 if op
;;; = PLUS or 1 if op = TIMES.  If that also fails, the match fails.
;;; If all the pi have been matched, but some ej have not, the match
;;; fails.
;;;
;;; Exceptions to the above are due to modes.  If op = PLUS, and pi is
;;; of the form (coeffpt (var name pred arg1 ... argn) p1 ... pk),
;;; then the remaining expression is traversed with the pattern
;;; (coefft (var name pred arg1 ... argn) p1 ... pk).  Each
;;; subexpression that is thus matched is deleted from the expression.
;;; The simplified sum of the result of the scan becomes the value of
;;; the variable.  If no subexpression could thuse be matched, then
;;; (pred 0 arg1 ... argn) is attempted.  If this too fails, the match
;;; fails.
;;;
;;; If op = PLUS and pn is of the form (coeffp (var name pred arg1
;;; ... argn), then if e is currently of the form (PLUS ei ... en),
;;; then (pred e arg1 ... argn) is evaluated. If the value of pred is
;;; true, ((name . e)) is appended.  If no subexpressions remain in e,
;;; then pred 0 arg1 ... argn) is attempted.  If it succeeds, ((name
;;; . )) is appended.  Otherwise, the match fails.
;;;
;;; If op = PLUS and pi is of the form (coefft (var name pred arg1
;;; ... argn) p1 ... pk) then (times p1 .... pk) is matched with e.
;;; If the match succeeds and e remains of the form (times e1 ... en),
;;; then (pred e arg1 ... argn) is attempted.  If it fails, the match
;;; fails.  If no subexpressions remain in e, then (pred 1 arg1
;;; ... argn) is attempted.  If this succeeds, ((name . 1) is
;;; appended.

(defmfun schatchen (e p)
  (m2 e p))

;;THE RESTORE FUNCTIONS RESTORE THE SPEC-VAR ANS
;;AND RETURN TRUE OR FALSE AS FOLLOWS
;;RESTORE - FLASE
;;RESTORE1 - TRUE AND CLEARS UP ANS
;;RESTORE2 - TRUE AND CLEARS OFF *LOOP INDICATORS
;;	    DOES NOT FIX UP THE EXPRESSION AND
;;	    IS THUS TO BE USED ONLY INTERNALLY
;;
;;TO INSURE THAT THERE IS NO CONFLICT IN SPECIAL VARIABLES,
;;ESPECIALLY WITH THE VAR* (SET) MODE ALL SCHATCHEN VARIABLES
;;ARE TO BE PRECEDED BY A "%"

(defvar *splist*)

(defmfun m2 (e p)
  (let ((ans (list nil))
        (*splist* nil))
    (declare (special *splist*))
    (cond ((null (m1 (copy-tree e) p)) nil)
	  ((null (cdr ans)))
	  ((cdr ans)))))

(defun sav&del (x)
  (preserve x)
  (rplacd x (cddr x)))

(defmfun m1 (e p)
  (cond ((equal e p) t)
	((atom p) nil)
	((var-pat p)
	 (push-context)
	 (cond ((testa p e nil)
		(restore1))
	       ((restore))))
	((atom (caar p))
	 (cond ((member 'simp (cdar p) :test #'eq) (alike1 e p))
	       ((member (caar p) '(mplus mtimes) :test #'eq)
		(loopp e p))
	       ((member (caar p) '(mexpt zepow) :test #'eq) (zepow e p t))
	       ((and (not (atom e)) (eq (caar e) (caar p))) (eachp e p))
	       ((eq (caar p) 'coefft) (coefft e p t))
	       ((eq (caar p) 'coeffpt) (coeffpt e p t))
	       ((eq (caar p) 'coeffp) (coeffp e p t))
	       ((eq (caar p) 'coefftt)
		(coefftt e (cadr p) t 'mtimes))
	       ((eq (caar p) 'coeffpp)
		(coefftt e (cadr p) t 'mplus))))
	((var-pat (caar p))	       ;HAIRY OPERATOR MATCHING SCHEME
	 (cond ((atom e) nil)		;NO OPERATOR TO MATCH
	       ((prog2 (push-context)	;BIND THE CONTEXT
		    (testa (caar p) (car e) nil)) ;TRY IT
		(cond ((member (caar e) '(mplus mtimes) :test #'eq) ;CHECK FOR COMMUTIVITY
		       (cond ((loopp e (cons (car e) (cdr p)))
			      (restore1))
			     ((restore))))
		      ((eachp e p)
		       (restore1))
		      ((restore))))
	       ((restore))))))

(defun loopp (e p)
  (prog (x z)
     (setq e (cond  ((atom e) (list (car p) e))
		    ((null (eq (caar p) (caar e)))
		     (cond ((and *schatfactor*
				 (eq (caar e) 'mplus)
				 (mtimesp (setq x ($factor e))))
			    x)
			   ((list (car p) e))))
		    (e)))
     (push-context)
     (setq z p)
     loop (setq z (cdr z))
     (cond ((null z)
	    (return (cond ((null (cdr e)) (restore1))
			  ((restore))))))
     (setq x e)
     l5	(cond ((null (cdr x))
	       (let ((ident (opident (caar p))))
		 (cond ((and ident (m1 ident (car z)))
			(go loop))
		       ((return (restore))))))
	      ((or (atom (car z)) (var-pat (car z)))
	       (when (m1 (cadr x) (car z))
		 (sav&del x)
		 (go loop)))
	      ((eq (caaar z) 'coefft)
	       (cond ((coefft e (car z) nil)
		      (go loop))
		     ((return (restore)))))
	      ((eq (caaar z) 'coeffp)
	       (cond ((coeffp e (car z) nil)
		      (go loop))
		     ((return (restore)))))
	      ((eq (caaar z) 'coeffpt)
	       (cond ((coeffpt e (car z) nil) (go loop))
		     ((return (restore)))))
	      ((eq (caaar z) 'coefftt)
	       (cond ((coefftt e (cadar z) nil 'mtimes) (go loop))
		     ((return (restore)))))
	      ((eq (caaar z) 'coeffpp)
	       (cond ((coefftt e (cadar z) nil 'mplus) (go loop))
		     ((return (restore)))))
	      ((member (caaar z) '(mexpt zepow) :test #'eq)
	       (when (zepow (cadr x) (car z) t)
		 (sav&del x)
		 (go loop)))
	      ((eq (caaar z) 'loop)
	       (cond ((sch-loop e (cdar z)) (go loop))
		     ((return (restore)))))
	      ((m1 (cadr x) (car z))
	       (sav&del x)
	       (go loop)))
     (setq x (cdr x))
     (go l5)))

;;; IND = T MEANS AN INTERNAL CALL (USUALLY FROM LOOPP)

(defun coeffp (e p ind)
  (push-context)
  (cond ((or (and (null (mplusp e)) ;;;WITH IND SET, OR E = (PLUS <EXPR>)
		  (setq e (list '(mplus) e)))
	     ind (null (cddr e)))
	 (coeffport e p 0 ind))	;;; USE COEFFPORT
	((and (null (cddr p))  ;;; P = ((COEFFP) (<VAR> <PRED> . . .))
	      (var-pat (cadr p)))	;;; SO CALL TESTA
	 (cond ((testa (cadr p) e nil)
		(cond ((mplusp e)
		       (preserve e)
		       (rplacd e nil)
		       t)
		      ((merror "COEFFP: incorrect arguments; E=~M, P=~M, IND=~M" e p ind))))))
	((do ((x e (cdr x)))
	     ((null (cdr x))
	      (cond ((m1 0 p) (restore2))
		    ((restore))))
	   (cond ((coeffp (cadr x) p t)
		  (sav&del x)
		  (return (restore2))))))))

(defun coefft (e p ind)
  (push-context)
  (cond ((and (null ind) (null (atom e)) (member (caar e) '(mplus mtimes) :test #'eq))
	 (do ((x e (cdr x)))
	     ((null (cdr x))
	      (cond ((m1 1 p) (restore2))
		    ((restore))))
	   (cond ((coefft (cadr x) p t)
		  (sav&del x)
		  (return (restore2))))))
	((and (mplusp e) (cddr e))
	 (cond ((and *schatfactor* (mtimesp (setq e ($factor e))))
		(coeffport e p 1 ind))
	       ((restore))))
	(t (coeffport (if (mtimesp e) e (list '(mtimes) e)) p 1 ind))))

(defun coeffport (e p ident ind)
  (do ((z (cddr p) (cdr z))
       (x e e))
      ((null z)
       (coeffret e (cadr p) ident ind))
   l	;;; EACH TIME HERE WE HAVE CDR'D DOWN THE EXP.
    (cond ((null (cdr x))
	   (and (null (m1 ident (car z)))
		(return (restore))))
	  ((or (atom (car z))
	       (var-pat (car z))))
	  ((eq (caaar z) 'coefftt)
	   (and (null (coefftt e (cadar z) nil 'mtimes))
		(return (coeffret e p ident ind))))
	  ((eq (caaar z) 'coeffpp)
	   (and (null (coefftt e (cadar z) nil 'mplus))
		(return (coeffret e p ident ind)))))
    (cond ((null (cdr x)))
	  ((m1 (cadr x) (car z))
	   (sav&del x))
	  (t (setq x (cdr x))
	     (go l)))))

(defun coeffret (e p ident ind)
  (cond ((null (cdr e))
	 (cond ((testa p ident nil)
		(cond (ind (restore1))
		      ((restore2))))
	       ((restore))))
	((testa p (cond ((cddr e) (copy-list e ))
			((cadr e)))
		nil)
	 (cond (ind (restore1))
	       (t (preserve e)
		  (rplacd e nil)
		  (restore2))))
	((restore))))

(defun coeffpt (e p ind) ;THE PATTERN LIST (P) MUST BE OF VAR-PATTERNS
  (push-context)
  (do ((z (cond ((mplusp e) e) ((list '(mplus) e))))
       (zz (cons '(coefft) (cdr p)))) ;THIS ROUTINE IS THE ONE WHICH PUTS
					;MOST OF THE THE GARBAGE ON ANS IT
      ((null (cdr z))			;IT CANNOT USE THE *SPLIST* HACK
       (setq z (findit (cond ((eq (caadr p) 'var*) ;BECAUSE IT COULD BE USING
			      (car (cddadr p)))	;MANY DIFFERENT VARIABLES ALTHOUGH
			     ((caadr p))))) ;THOUGHT THE FIRST IS THE ONLY ONE
       (let ((q (cond ((null z) 0)
		      ((null (cdr z)) (car z))
		      ((simplus (cons '(mplus) z) 1 nil))))
	     (fl (if (and z (cdr z)) 'coeffpt))) ;WHICH BECOMES A SUM AND MIGHT BE RESET
	 (cond ((null (testa (cadr p) q fl))
		(restore))
	       (ind (restore1))
	       (t (restore2) q))))
    (cond ((null (m1 (cadr z) zz))	;THIS IS THE DO BODY
	   (setq z (cdr z)))
	  ((sav&del z)))))

(defun zepow (e p fl)		    ;FL=NIL INDICATES A RECURSIVE CALL
    (and fl (push-context))		;SO ANS SHOULD NOT BE MARKED
    (cond ((atom e)
	   (cond ((equal e 1)
		  (cond ((not (or (m1 0 (caddr p)) (m1 1 (cadr p))))
			 (restore))
			((restore1))))
		 ((equal e 0)
		  (cond ((null (m1 0 (cadr p))) (restore))
			((restore1))))
		 ((and (m1 e (cadr p)) (m1 1 (caddr p)))
		  (restore1))
		 ((restore))))
	  ((and *schatfactor*
		(mplusp e)
		(setq e ($factor e))
		nil))
	  ((and (eq (caar e) 'mtimes)
		(mexptp (cadr e)))
	   (do ((e (cddr e) (cdr e))
		(b (cadadr e))
		(x (caddr (cadr e)))
		(z))
	       ((null e)		;OK NOW LETS TRY AGAIN
		(zepow (list '(mexpt) (simplifya b t)
			     (simplifya x t)) p nil))
	     (cond ((mexptp (car e))
		    (cond ((alike1 (cadar e) b)
			   (setq x (simplus (list '(mplus) x (caddar e)) 1 nil)))
			  ((alike1 (caddar e) x)
			   (setq b (simptimes (list '(mtimes) b (cadar e)) 1 nil)))
			  ((signp e (caddr (setq z ($divide x (caddar e)))))
			   (setq b (simptimes (list '(mtimes) b
						    (list '(mexpt) (cadar e)
							  (list '(mtimes) (caddar e) (cadr z)))) 1 nil)))
			  ((return (restore)))))
		   ((alike1 b (car e))
		    (setq x (simplus (list '(mplus) 1 x) 1 t)))
		   ((return (restore))))))
	  ((or (and (eq (caar e) 'mexpt)
		    (m1 (cadr e) (cadr p))
		    (m1 (caddr e) (caddr p)))
	       (and (m1 e (cadr p))
		    (m1 1 (caddr p))))
	   (restore1))
	  ((restore))))

(defun eachp (e p)
  (cond ((= (length e) (length p))
	 (push-context)
	 (do ((e (cdr e) (cdr e)))
	     ((null e) (restore1))
	   (unless (m1 (car e) (cadr p)) (return (restore)))
	   (setq p (cdr p))))))

(defun sch-loop (e lp)
  (push-context) (push-loop-context)
  (do ((x lp) (z e) (y))		;Y A PSEUDO SAVE
      (nil)
    (cond ((null (m1 (cadr z) (car x)))	;DIDN'T MATCH
	   (setq z (cdr z))		;NEXT ARG FOR LOOP
	   (cond ((cdr z))
		 ((eq x lp) (return (restore)))
		 (t
		  (setq x (caar y)
			z (cdar y))
		  (setq y (cdr y)
			ans (cdr ans))
		  (pop-loop-context))))
	  (t
	   (push (cons x z) y)
	   (sav&del z)
	   (setq x (cdr x))
	   (cond ((null x) (return (restore2)))
		 (t (push-loop-context)
		    (setq z e)))))))

(defun coefftt (exp pat ind opind)	;OPIND IS MPLUS OR MTIMES
  (push-context)
  (when (or (atom exp) (and ind (not (eq (caar exp) opind))))
    (setq exp (list (list opind) exp)))
  (push (car pat) *splist*)		;SAVE VAR NAME HERE
  (do ((z exp) (res))
      ((null (cdr z))
       (setq *splist* (cdr *splist*))	;KILL NAME SAVED
       (cond (res (setq res (cond ((cdr res) (cons (list opind) res))
				  ((car res))))
		  (cond ((and (eq (car pat) 'var*)
			      (member 'set (cadr pat) :test #'eq))
			 (add-to (caddr pat) (setf (symbol-value (caddr pat)) (simplifya res nil))))
			((add-to (car pat) (simplifya res nil))))
		  (cond (ind (restore1))
			((restore2))))
	     ((null (testa pat (opident opind) nil))
	      (restore))
	     (ind (restore1))
	     ((restore2))))
    (cond ((testa pat (cadr z) nil)
	   (push (cadr z) res)
	   (sav&del z))
	  (t (setq z (cdr z))))))

(defun restore nil
  (do ((y (cdr ans) (cdr y)))
      ((null y) nil)
    (cond ((eq (car y) '*loop)
	   (rplaca y (cadr y))
	   (rplacd y (cddr y)))
	  ((null (car y))
	   (setq ans y)
	   (return nil))
	  ((null (atom (caar y)))
	   (rplacd (caar y) (cdar y))))))

(defun restore1 nil
  (do ((y ans) (l))			;L IS A LIST OF VAR'S NOTED
      ((null (cdr y)) t)
    (cond ((null (cadr y))		;END OF CONTEXT
	   (rplacd y (cddr y))		;SPLICE OUT THE CONTEXT MARKER
	   (return t))
	  ((not (atom (caadr y)))	;FIXUP NECESSARY
	   (rplacd (caadr y) (cdadr y))
	   (rplacd y (cddr y)))
	  ((member (car y) l :test #'eq)	       ;THIS VAR HAS ALREADY BEEN SEEN
	   (rplacd y (cddr y)))	   ;SO SPLICE IT OUT TO KEEP ANS CLEAN
	  ((setq y (cdr y)
		 l (cons (caar y) l))))))

(defun restore2 nil
  (do ((y (cdr ans) (cdr y)))
      ((null (cdr y)) t)
    (cond ((eq (cadr y) '*loop)
	   (rplacd y (cddr y)))
	  ((null (cadr y))
	   (rplacd y (cddr y))
	   (return t)))))

(defun pop-loop-context nil
  (do ((y ans))
      ((eq (cadr y) '*loop) nil)
    (or (atom (caadr y))
	(rplacd (caadr y) (cdadr y)))
    (rplacd y (cddr y))))

;;WHEN THE CAR OF ALA IS VAR* THE CADR IS A LIST OF
;;THE VARIOUS SWITCHES WHICH MAY BE SET.
;;UVAR- INDICATES THIS SHOULD MATCH SOMETHING WHICH IS ALREADY ON ANS.
;;SET - ACTUALLY SET THIS VARIABLE TO ITS VALUE IF IT MATCHES.
;;COEFFPT - SPECIAL ARGUMENT IF IN COEFFPT.

(defun testa (ala exp b)
  (cond ((eq (car ala) 'mvar*)
	 (testa* ala exp t))
	((eq (car ala) 'var*)
	 (do ((z (cadr ala) (cdr z))
	      (ala (cddr ala))
	      (y) (set) (uvar))
	     ((null z)
	      (setq y (cond (uvar (m1 exp y))
			    ((testa* ala exp nil))))
	      (cond ((null y) nil)
		    (set (setf (symbol-value (car ala)) exp))
		    (y)))
	   (cond ((eq (car z) 'set) (setq set t))
		 ((eq (car z) 'uvar)
		  (cond ((setq y (cdr (assoc (car ala) ans :test #'equal)))
			 (setq uvar t))))
		 ((eq (car z) 'coeffpt)
		  (and (eq b 'coeffpt)
		       (setq ala (cadr z)))
		  (setq z (cdr z)))
		 ((merror "TESTA: invalid switch ~M in pattern." (car z))))))
	((testa* ala exp nil))))

;; ALA IS THE PREDICATE LIST (VAR PREDFN ARG2 ARG3 ARG4 . . .)

(defun testa* (ala exp loc)
  (declare (special var))
  (cond ((cond ((eq (cadr ala) 'freevar)
		(cond ((eq var '*novar) (equal exp 1))
		      ((free exp var))))
	       ((eq (cadr ala) 'numberp) (mnump exp))
	       ((eq (cadr ala) 'true) t)
	       ((eq (cadr ala) 'linear*)
		(setq exp (linear* exp (caddr ala))))
	       ((null loc)
		(cond ((atom (cadr ala))
		       (cond ((fboundp (cadr ala))
			      (apply (cadr ala)
				     (findthem exp (cddr ala))))
			     ((mget (cadr ala) 'mexpr)
			      (mapply (cadr ala)
				      (findthem exp (cddr ala))
				      (cadr ala)))))
		      ((member (caadr ala) '(lambda function *function quote) :test #'eq)
			     ;;;THE LAMBDA IS HERE ONLY BECAUSE OF SIN!!!
		       (apply (cadr ala) (findthem exp (cddr ala))))
		      ((eval-pred (cadr ala) (car ala) exp)))))
	 (cond ((member (car ala) *splist* :test #'eq))
	       ((add-to (car ala) exp))))
	((cond ((and loc (atom (cadr ala))
		     (fboundp (cadr ala)))
		(mapc #'(lambda (q v) (and (null (member q *splist* :test #'eq))
					   (add-to q v)))
		      (car ala)
		      (apply (cadr ala) (findthem exp (cddr ala)))))))))

(defun eval-pred (exp %var value)
  (progv (list %var) (list value)
    (eval exp)))

(defun findthem (exp args)
  (cons exp
	(mapcar #'(lambda (q)
		    (cond ((atom q)
			   (or (cdr (assoc q ans :test #'eq))
			       ;; Evaluate a symbol which has a value.
			       (and (symbolp q) (boundp q) (symbol-value q))
			       ;; Otherwise return the symbol.
			       q))
			  (q)))
		args)))

(defun findit (a)
  (do ((y ans) (z))
      ((or (null (cdr y)) (null (cadr y))) z)
    (cond ((eq (caadr y) a)
	   (setq z (nconc z (list (cdadr y))))
	   (rplacd y (cddr y)))
	  ((setq y (cdr y))))))

(defun sch-replace (dict exp1)
  (declare (special dict))
  (replac exp1))

(defun replac (exp1)
  (declare (special dict))
  (let ((w1 nil))
    (cond ((null exp1) nil)
	  ((not (atom exp1))
	   (cond ((eq (car exp1) 'eval)
		  (simplifya (eval (replac (cadr exp1))) nil))
		 ((eq (car exp1) 'quote) (cadr exp1))
		 (t (setq w1 (mapcar #'replac (cdr exp1)))
		    (cond ((equal w1 (cdr exp1))
			   exp1)
			  ((simplifya (cons (list (caar exp1)) w1) t))))))
	  ((numberp exp1) exp1)
	  ((setq w1 (assoc exp1 dict :test #'eq))
	   (cdr w1))
	  (exp1))))

;; Execute BODY with the variables in VARS bound using ALIST. If any variable is
;; missing, it is set to NIL.
;;
;; Example usage:
;;   (alist-bind (a b c) some-alist (+ a b c))
(defmacro alist-bind (vars alist &body body)
  (let ((alist-sym (gensym)))
    `(let* ((,alist-sym ,alist)
            ,@(loop
                 for var in vars
                 collecting `(,var (cdr (assoc ',var ,alist-sym :test #'eq)))))
       ,@body)))

;; Factor out the common logic to write a COND statement that uses the Schatchen
;; pattern matcher.
;;
;; Each clause in CLAUSES should match (TEST VARIABLES &body BODY). This will be
;; transformed into a COND clause that first runs TEST and binds the result to
;; W. TEST is assumed to boil down to a call to M2, which returns an alist of
;; results for the matched variables. VARIABLES should be a list of symbols and
;; the clause only matches if each of these symbols is bound in the alist.
;;
;; As a special rule, if the CAR of TEST is of the form (AND F1 F2 .. FN) then
;; the result of evaluating F1 is bound to W and then the clause only matches if
;; F2 .. FN all evaluate to true as well as the test described above.
;;
;; If the clause matches then the result of the cond is that of evaluating BODY
;; (in an implicit PROGN) with each variable bound to the corresponding element
;; of the alist.
;;
;; To add an unconditional form at the bottom, use a clause of the form
;;
;;     (T NIL F1 .. FN).
;;
;; This will always match and doesn't try to bind any extra variables.

(defmacro schatchen-cond (w &body clauses)
  `(let ((,w))
     (cond
       ,@(loop
            for clause in clauses
            collecting
              (let ((test (car clause))
                    (variables (cadr clause))
                    (body (cddr clause)))
                ;; A clause matches in the cond if TEST returns non-nil and
                ;; binds all the expected variables in the alist. As a special
                ;; syntax, if the car of TEST is 'AND, then we bind W to the
                ;; result of the first argument and then check the following
                ;; arguments in an environment where W is bound (but the
                ;; variables aren't).
                (let ((cond-test
                       (if (and (not (atom test)) (eq 'and (car test)))
                           `(progn
                              (setf ,w ,(cadr test))
                              (and ,w ,@(loop for var in variables
                                           collecting `(cdras ',var ,w))
                                   ,@(cddr test)))
                           `(progn
                              (setf ,w ,test)
                              (and ,w ,@(loop for var in variables
                                           collecting `(cdras ',var ,w))))))
                      ;; If the clause matched, we explicitly bind all of those
                      ;; variables in a let form and then evaluate the
                      ;; associated body.
                      (cond-body `(alist-bind ,variables ,w ,@body)))
                  `(,cond-test ,cond-body)))))))

(declare-top (unspecial var ans))