This file is indexed.

/usr/share/maxima/5.41.0/src/comm.lisp is in maxima-src 5.41.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

;;	** (c) Copyright 1982 Massachusetts Institute of Technology **

(macsyma-module comm)

(declare-top (special $exptsubst $linechar $nolabels $inflag $piece $dispflag
		      $gradefs $props $dependencies derivflag derivlist
		      $linenum $partswitch *linelabel* nn* dn*
		      $powerdisp atvars $errexp $derivsubst $dotdistrib
		      $opsubst $subnumsimp $transrun in-p substp $sqrtdispflag
		      $pfeformat dummy-variable-operators))

(defvar *islinp* nil) ; When T, sdiff is called from the function islinear.
(defvar *atp* nil)    ; When T, prevents substitution from applying to vars 
                      ; bound by %sum, %product, %integrate, %limit

;; op and opr properties

(defvar *opr-table* (make-hash-table :test #'equal))

(defmfun getopr0 (x)
  (or
    (and (symbolp x) (get x 'opr))
    (and (stringp x) (gethash x *opr-table*))))

(defmfun getopr (x)
  (or (getopr0 x) x))

(defmfun putopr (x y)
  (or
    (and (symbolp x) (setf (get x 'opr) y))
    (and (stringp x) (setf (gethash x *opr-table*) y))))

(defmfun remopr (x)
  (or
    (and (symbolp x) (remprop x 'opr))
    (and (stringp x) (remhash x *opr-table*))))

;; Store built-in operators, which get additional properties.
;; These operators aren't killed by the function kill-operator.
(defvar *mopl* nil)

(mapc #'(lambda (x) (putprop (car x) (cadr x) 'op) (putopr (cadr x) (car x)) (push (cadr x) *mopl*))
      '((mplus "+") (mminus "-") (mtimes "*") (mexpt "**") (mexpt "^")
	(mnctimes ".") (rat "/") (mquotient "/") (mncexpt "^^")
	(mequal "=") (mgreaterp ">") (mlessp "<") (mleqp "<=") (mgeqp ">=")
	(mnotequal "#") (mand "and") (mor "or") (mnot "not") (msetq ":")
	(mdefine ":=") (mdefmacro "::=") (mquote "'") (mlist "[")
	(mset "::") (mfactorial "!") (marrow "-->") (mprogn "(")
	(mcond "if")))

(mapc #'(lambda (x) (putprop (car x) (cadr x) 'op))
      '((mqapply $subvar) (bigfloat $bfloat)))

(defmvar $exptsubst nil)
(defmvar $partswitch nil)
(defmvar $inflag nil)
(defmvar $derivsubst nil)
(defmvar $opsubst t)
(defvar $gradefs '((mlist simp)))
(defvar $dependencies '((mlist simp)))
(defvar atvars '($@1 $@2 $@3 $@4))
(defvar in-p nil)
(defvar substp nil)

(defmvar $vect_cross nil
  "If TRUE allows DIFF(X~Y,T) to work where ~ is defined in
	  SHARE;VECT where VECT_CROSS is set to TRUE.")

(defmfun $substitute (old new &optional (expr nil three-arg?))
  (cond (three-arg? (maxima-substitute old new expr))
	(t
	 (let ((l old) (z new))
	   (cond ((and ($listp l) ($listp (cadr l)) (null (cddr l)))
		  ($substitute (cadr l) z))
		 ((notloreq l) (improper-arg-err l '$substitute))
		 ((eq (caar l) 'mequal) (maxima-substitute (caddr l) (cadr l) z))
		 (t (do ((l (cdr l) (cdr l)))
			((null l) z)
		      (setq z ($substitute (car l) z)))))))))

;; Define an alias $psubst and a reversealias for $psubstitute
(defprop $psubst $psubstitute alias)
(defprop $psubstitute $psubst reversealias)

;; $psubstitute is similar to $substitute. In distinction from $substitute
;; the function $psubstitute does parallel substitution, if the first argument
;; is a list of equations.
(defun $psubstitute (old new &optional (expr nil three-arg?))
  (cond (three-arg? (maxima-substitute old new expr))
        (t
         (let ((l old) (z new))
           (cond ((and ($listp l)
                       ($listp (cadr l))
                       (null (cddr l)))
                  ;; A nested list.
                  ($psubstitute (cadr l) z))
                 ((and ($listp l)
                       (eq (caar (cadr l)) 'mequal)
                       (null (cddr l)))
                  ;; A list with one equation.
                  ($psubstitute (cadr l) z))
                 ((notloreq l) (improper-arg-err l '$psubstitute))
                 ((eq (caar l) 'mequal)
                  ;; Do a substitution for one equation.
                  (maxima-substitute (caddr l) (cadr l) z))
                 (t
                  ;; We have a list of equations. We do parallel substitution.
                  (let (gensymbol genlist eqn ($simp nil))
                    ;; At first substitute a gensym for the expressions of
                    ;; the left hand side of the equations.
                    (do ((l (cdr l) (cdr l)))
                        ((null l) z)
                      (setq eqn (car l))
                      (when (not (eq 'mequal (caar eqn)))
                        (improper-arg-err old '$substitute))
                      (setq gensymbol (gensym))
                      ;; Store the gensym and the new expression into a list.
                      (push (cons gensymbol (caddr eqn)) genlist)
                      ;; Substitute a gensym for the old expression.
                      (setq z (maxima-substitute gensymbol (cadr eqn) z)))
                      ;; Substitute the new expressions for the gensyms.
                      (do ((l genlist (cdr l)))
                          ((null l)
                           ;; Resimplify the result.
                           (let (($simp t)) (resimplify z)))
                        (setq z (maxima-substitute (cdar l) (caar l) z))))))))))

(defmfun maxima-substitute (x y z) ; The args to SUBSTITUTE are assumed to be simplified.
  (let ((in-p t) (substp t))
    (if (and (mnump y) (= (signum1 y) 1))
	(let ($sqrtdispflag ($pfeformat t)) (setq z (nformat-all z))))
    (simplifya
     (if (atom y)
	 (cond ((equal y -1)
		(setq y '((mminus) 1)) (subst2 x y (nformat-all z) nil nil)) ;; negxpty and timesp don't matter in this call since (caar y) != 'mexpt
	       (t
		(cond ((and (not (symbolp x))
			    (functionp x))
		       (let ((tem (gensym)))
			 (setf (get  tem  'operators) 'application-operator)
			 (setf (symbol-function tem) x)
			 (setq x tem))))
		(subst1 x y z)))
	 (let ((negxpty (if (and (eq (caar y) 'mexpt)
				 (= (signum1 (caddr y)) 1))
			    (mul2 -1 (caddr y))))
	       (timesp (if (eq (caar y) 'mtimes) (setq y (nformat y)))))
	   (subst2 x y z negxpty timesp)))
     nil)))

;;Remainder of page is update from F302 --gsb

;;Used in COMM2 (AT), limit, and below.
(defvar dummy-variable-operators '(%product %sum %laplace %integrate %limit %at))

(defun subst1 (x y z)			; Y is an atom
  (cond ((atom z) (if (equal y z) x z))
	((specrepp z) (subst1 x y (specdisrep z)))
	((eq (caar z) 'bigfloat) z)
	((and (eq (caar z) 'rat) (or (equal y (cadr z)) (equal y (caddr z))))
	 (div (subst1 x y (cadr z)) (subst1 x y (caddr z))))
	((at-substp z) (subst-except-second-arg x y z))
	((and (eq y t) (eq (caar z) 'mcond))
	 (list (cons (caar z) nil) (subst1 x y (cadr z)) (subst1 x y (caddr z))
	       (cadddr z) (subst1 x y (car (cddddr z)))))
	(t (let ((margs (mapcar #'(lambda (z1) (subst1 x y z1)) (cdr z)))
                 (oprx (getopr x)) (opry (getopr y)))
	     (if (and $opsubst
		      (or (eq opry (caar z))
			  (and (eq (caar z) 'rat) (eq opry 'mquotient))))
		 (if (or (numberp x)
			 (member x '(t nil $%e $%pi $%i) :test #'eq)
			 (and (not (atom x))
			      (not (or (eq (car x) 'lambda)
				       (eq (caar x) 'lambda)))))
		     (if (or (and (member 'array (cdar z) :test #'eq)
				  (or (and (mnump x) $subnumsimp)
				      (and (not (mnump x)) (not (atom x)))))
			     ($subvarp x))
			 (let ((substp 'mqapply))
			   (subst0 (list* '(mqapply) x margs) z))
			 (merror (intl:gettext "subst: cannot substitute ~M for operator ~M in expression ~M") x y z))
		     (subst0 (cons (cons oprx nil) margs) z))
		 (subst0 (cons (cons (caar z) nil) margs) z))))))

(defun subst2 (x y z negxpty timesp)
  (let (newexpt)
    (cond ((atom z) z)
	  ((specrepp z) (subst2 x y (specdisrep z) negxpty timesp))
	  ((at-substp z) z) ;; IS SUBST-EXCEPT-SECOND-ARG APPROPRIATE HERE ?? !!
	  ((alike1 y z) x)
	  ((and timesp (eq (caar z) 'mtimes) (alike1 y (setq z (nformat z)))) x)
	  ((and (eq (caar y) 'mexpt) (eq (caar z) 'mexpt) (alike1 (cadr y) (cadr z))
		(setq newexpt (cond ((alike1 negxpty (caddr z)) -1)
				    ($exptsubst (expthack (caddr y) (caddr z))))))
	   (list '(mexpt) x newexpt))
	  ((and $derivsubst (eq (caar y) '%derivative) (eq (caar z) '%derivative)
		(alike1 (cadr y) (cadr z)))
	   (let ((tail (subst-diff-match (cddr y) (cdr z))))
	     (cond ((null tail) z)
		   (t (cons (cons (caar z) nil) (cons x (cdr tail)))))))
	  (t (recur-apply #'(lambda (z1) (subst2 x y z1 negxpty timesp)) z)))))

;; replace y with x in z, but leave z's second arg unchanged.
;; This is for cases like at(integrate(x, x, a, b), [x=3])
;; where second arg of integrate binds a new variable x,
;; and we do not wish to subst 3 for x inside integrand.
(defun subst-except-second-arg (x y z)
  (cond 
    ((member (caar z) '(%integrate %sum %product %limit %laplace))
     (append 
       (list (remove 'simp (car z))   ; ensure resimplification after substitution
             (if (eq y (third z))     ; if (third z) is new var that shadows y
                 (second z)           ; leave (second z) unchanged
                 (subst1 x y (second z))) ; otherwise replace y with x in (second z)
             (third z))               ; never change integration var
       (mapcar (lambda (z) (subst1 x y z)); do subst in limits of integral
               (cdddr z))))
    ((eq (caar z) '%at)
     ;; similar considerations here, but different structure of expression.
     (let*
       ((at-eqn-or-eqns (third z))
        (at-eqns-list (if (eq (caar at-eqn-or-eqns) 'mlist) (rest at-eqn-or-eqns) (list at-eqn-or-eqns))))
       (list
         (remove 'simp (car z)) ;; ensure resimplification after substitution
         (if (member y (mapcar #'(lambda (e) (second e)) at-eqns-list))
           (second z)
           (subst1 x y (second z)))
         `((mlist) ,@(mapcar #'(lambda (e) (list (first e) (second e) (subst1 x y (third e)))) at-eqns-list)))))
    ((eq (caar z) '%derivative)
     ;; and again, with yet a different structure.
     (let*
       ((vars-and-degrees (rest (rest z)))
        (diff-vars (loop for v in vars-and-degrees by #'cddr collect v))
        (diff-degrees (loop for n in (rest vars-and-degrees) by #'cddr collect n)))
       (append
         (list
           (remove 'simp (car z)) ;; ensure resimplification after substitution
           (if (member y diff-vars)
             (second z)
             (subst1 x y (second z))))
         (apply #'append (loop for v in diff-vars for n in diff-degrees collect (list v (subst1 x y n)))))))
    (t z)))

(defmfun subst0 (new old)
  (cond ((atom new) new)
	((alike (cdr new) (cdr old))
	 (cond ((eq (caar new) (caar old)) old)
	       (t (simplifya (cons (cons (caar new) (member 'array (cdar old) :test #'eq)) (cdr old))
			     nil))))
	((member 'array (cdar old) :test #'eq)
	 (simplifya (cons (cons (caar new) '(array)) (cdr new)) nil))
	(t (simplifya new nil))))

(defun expthack (y z)
  (prog (nn* dn* yn yd zn zd qd)
     (cond ((and (mnump y) (mnump z))
	    (return (if (numberp (setq y (div* z y))) y)))
	   ((atom z) (if (not (mnump y)) (return nil)))
	   ((or (ratnump z) (eq (caar z) 'mplus)) (return nil)))
     (numden y)				; (CSIMP) sets NN* and DN*
     (setq yn nn* yd dn*)
     (numden z)
     (setq zn nn* zd dn*)
     (setq qd (cond ((and (equal zd 1) (equal yd 1)) 1)
		    ((prog2 (numden (div* zd yd))
			 (and (equal dn* 1) (equal nn* 1)))
		     1)
		    ((equal nn* 1) (div* 1 dn*))
		    ((equal dn* 1) nn*)
		    (t (return nil))))
     (numden (div* zn yn))
     (if (equal dn* 1) (return (div* nn* qd)))))

(defun subst-diff-match (l1 l2)
  (do ((l l1 (cddr l)) (l2 (copy-list l2)) (failed nil nil))
      ((null l) l2)
    (do ((l2 l2 (cddr l2)))
	((null (cdr l2)) (setq failed t))
      (if (alike1 (car l) (cadr l2))
	  (if (and (fixnump (cadr l)) (fixnump (caddr l2)))
	      (cond ((< (cadr l) (caddr l2))
		     (return (rplacd (cdr l2)
				     (cons (- (caddr l2) (cadr l))
					   (cdddr l2)))))
		    ((= (cadr l) (caddr l2))
		     (return (rplacd l2 (cdddr l2))))
		    (t (return (setq failed t))))
	      (return (setq failed t)))))
    (if failed (return nil))))

;;This probably should be a subst or macro.
(defun at-substp (z)
  (and *atp*
       (or (member (caar z) '(%derivative %del) :test #'eq)
           (member (caar z) dummy-variable-operators :test #'eq))))

(defmfun recur-apply (fun e)
  (cond ((eq (caar e) 'bigfloat) e)
	((specrepp e) (funcall fun (specdisrep e)))
	(t (let ((newargs (mapcar fun (cdr e))))
	     (if (alike newargs (cdr e))
		 e
		 (simplifya (cons (cons (caar e) (member 'array (cdar e) :test #'eq)) newargs)
			    nil))))))

(defmfun $depends (&rest args)
  (when (oddp (length args))
    (merror (intl:gettext "depends: number of arguments must be even.")))
  (do ((args args (cddr args))
       (l))
      ((null args) (i-$dependencies (nreverse l)))
    (if ($listp (first args))
	(mapc #'(lambda (e) (push (depends1 e (second args)) l))
	      (cdr (first args)))
	(push (depends1 (first args) (second args)) l))))

(defun depends1 (x y)
  (nonsymchk x '$depends)
  (cons (cons x nil) (if ($listp y) (cdr y) (cons y nil))))

(defmspec $dependencies (form)
  (i-$dependencies (cdr form)))

(defun i-$dependencies (l &aux res)
  (dolist (z l)
    (cond
      ((atom z)
       (merror
         (intl:gettext
           "depends: argument must be a non-atomic expression; found ~M") z))
      (t
       (do ((zz z (cdr zz))
            (y nil))
           ((null zz)
            (mputprop (caar z) (setq y (reverse y)) 'depends)
            (setq res (push (cons (ncons (caar z)) y) res))
            (unless (cdr $dependencies)
              (setq $dependencies (copy-list '((mlist simp)))))
            (add2lnc (cons (cons (caar z) nil) y) $dependencies))
         (cond ((and ($subvarp (cadr zz))
                     (not (member (caar (cadr zz)) y)))
                (setq y (push (cadr zz) y)))
               ((not (symbolp (cadr zz)))
                (merror
                  (intl:gettext "depends: argument must be a symbol; found ~M")
                  (cadr zz)))
               ((and (cadr zz)
                     (not (member (cadr zz) y)))
                (setq y (push (cadr zz) y))))))))
  (cons '(mlist simp) (reverse res)))

(defmspec $gradef (l)
  (setq l (cdr l))
  (let ((z (car l)) (n 0))
    (cond ((atom z)
	   (if (not (= (length l) 3)) (merror (intl:gettext "gradef: expected exactly three arguments.")))
	   (mputprop z
		     (cons (cons (cadr l) (meval (caddr l)))
			   (mget z '$atomgrad))
		     '$atomgrad)
	   (i-$dependencies (cons (cons (ncons z)
	                                ;; Append existing dependencies
	                                (cons (cadr l) (mget z 'depends)))
	                          nil))
	   (add2lnc z $props)
	   z)
	  ((or (mopp1 (caar z)) (member 'array (cdar z) :test #'eq))
	   (merror (intl:gettext "gradef: argument cannot be a built-in operator or subscripted expression; found ~M") z))
	  ((prog2 (setq n (- (length z) (length l))) (minusp n))
	   (wna-err '$gradef))
	  (t (do ((zl (cdr z) (cdr zl))) ((null zl))
	       (if (not (symbolp (car zl)))
		   (merror (intl:gettext "gradef: argument must be a symbol; found ~M") (car zl))))
	     (setq l (nconc (mapcar #'(lambda (x) (remsimp (meval x)))
				    (cdr l))
			    (mapcar #'(lambda (x) (list '(%derivative) z x 1))
				    (nthcdr (- (length z) n) z))))
	     (putprop (caar z)
		      (sublis (mapcar #'cons (cdr z) (mapcar #'stripdollar (cdr z)))
			      (cons (cdr z) l))
		      'grad)
	     (or (cdr $gradefs) (setq $gradefs (copy-list '((mlist simp)))))
	     (add2lnc (cons (cons (caar z) nil) (cdr z)) $gradefs) z))))

(defmfun $diff (&rest args)
  #-gcl
  (declare (dynamic-extent args))
  (let (derivlist)
    (deriv args)))

(defmfun $del (e)
  (stotaldiff e))

(defun deriv (e)
  (prog (exp z count)
     (cond ((null e) (wna-err '$diff))
	   ((null (cdr e)) (return (stotaldiff (car e))))
	   ((null (cddr e)) (nconc e '(1))))
     (setq exp (car e) z (setq e (copy-list e)))
     loop (if (or (null derivlist) (member (cadr z) derivlist :test #'equal)) (go doit))
					; DERIVLIST is set by $EV
     (setq z (cdr z))
     loop2(cond ((cdr z) (go loop))
		((null (cdr e)) (return exp))
		(t (go noun)))
     doit (cond ((nonvarcheck (cadr z) '$diff))
		((null (cddr z)) (wna-err '$diff))
		((not (fixnump (caddr z))) (go noun))
		((minusp (setq count (caddr z)))
		 (merror (intl:gettext "diff: order of derivative must be a nonnegative integer; found ~M") count)))
     loop1(cond ((zerop count) (rplacd z (cdddr z)) (go loop2))
		((equal (setq exp (sdiff exp (cadr z))) 0) (return 0)))
     (setq count (1- count))
     (go loop1)
     noun (return (diff%deriv (cons exp (cdr e))))))

(defun chainrule (e x)
  (let (w)
    (cond (*islinp*
           ;; sdiff is called from the function islinear.
           (if (and (not (atom e))
                    (eq (caar e) '%derivative)
                    (not (freel (cdr e) x)))
               (diff%deriv (list e x 1))
               0))
	  ((atomgrad e x))
	  ((not (setq w (mget (cond ((atom e) e)
				    ((member 'array (cdar e) :test #'eq) (caar e))
				    ((atom (cadr e)) (cadr e))
				    (t (caaadr e)))
			      'depends)))
	   0)
	  (t (let (derivflag)
	       (addn (mapcar
		      #'(lambda (u)
			  (let ((y (sdiff u x)))
			    (if (equal y 0)
				0
				(list '(mtimes)
				      (or (atomgrad e u)
					  (list '(%derivative) e u 1))
				      y))))
		      w)
		     nil))))))

(defun atomgrad (e x)
  (let (y)
    (and (atom e) (setq y (mget e '$atomgrad)) (assolike x y))))

(defun depends (e x &aux l)
  (setq e (specrepcheck e))
  (cond ((alike1 e x) t)
        ((mnump e) nil)
        ((and (symbolp e) (setq l (mget e 'depends)))
         ;; Go recursively through the list of dependencies.
         ;; This code detects indirect dependencies like a(x) and x(t).
         (dependsl l x))
        ((atom e) nil)
        (t (or (depends (caar e) x)
               (dependsl (cdr e) x)))))

(defun dependsl (l x)
  (dolist (u l)
    (if (depends u x) (return t))))

(defmfun sdiff (e x) ; The args to SDIFF are assumed to be simplified.
  ;; Remove a special representation from the variable of differentiation
  (setq x (specrepcheck x))
  (cond ((alike1 e x) 1)
	((mnump e) 0)
	((or (atom e) (member 'array (cdar e) :test #'eq)) (chainrule e x))
	((eq (caar e) 'mrat) (ratdx e x))
        ((eq (caar e) 'mpois) ($poisdiff e x)) ; Poisson series
	((eq (caar e) 'mplus) (addn (sdiffmap (cdr e) x) t))
	((mbagp e) (cons (car e) (sdiffmap (cdr e) x)))
	((member (caar e) '(%sum %product) :test #'eq) (diffsumprod e x))
	((eq (caar e) '%at) (diff-%at e x))
	((not (depends e x)) 0)
	((eq (caar e) 'mtimes) (addn (sdifftimes (cdr e) x) t))
	((eq (caar e) 'mexpt) (diffexpt e x))
	((eq (caar e) 'mnctimes)
	 (let (($dotdistrib t))
	   (add2 (ncmuln (cons (sdiff (cadr e) x) (cddr e)) t)
		 (ncmul2 (cadr e) (sdiff (cons '(mnctimes) (cddr e)) x)))))
	((and $vect_cross (eq (caar e) '|$~|))
	 (add2* `((|$~|) ,(cadr e) ,(sdiff (caddr e) x))
		`((|$~|) ,(sdiff (cadr e) x) ,(caddr e))))
	((eq (caar e) 'mncexpt) (diffncexpt e x))
	((member (caar e) '(%log %plog) :test #'eq)
	 (sdiffgrad (cond ((and (not (atom (cadr e))) (eq (caaadr e) 'mabs))
			   (cons (car e) (cdadr e)))
			  (t e))
		    x))
	((eq (caar e) '%derivative)
	 (cond ((or (atom (cadr e)) (member 'array (cdaadr e) :test #'eq)) (chainrule e x))
	       ((freel (cddr e) x) (diff%deriv (cons (sdiff (cadr e) x) (cddr e))))
	       (t (diff%deriv (list e x 1)))))
	((member (caar e) '(%binomial $beta) :test #'eq)
	 (let ((efact ($makefact e)))
	   (mul2 (factor (sdiff efact x)) (div e efact))))
	((eq (caar e) '%integrate) (diffint e x))
	((eq (caar e) '%laplace) (difflaplace e x))
	((eq (caar e) '%at) (diff-%at e x))
; This rule is not correct. We cut it out.
;	((member (caar e) '(%realpart %imagpart) :test #'eq)
;	 (list (cons (caar e) nil) (sdiff (cadr e) x)))
	((and (eq (caar e) 'mqapply)
	      (eq (caaadr e) '$%f))
	 ;; Handle %f, hypergeometric function
	 ;;
	 ;; The derivative of %f[p,q]([a1,...,ap],[b1,...,bq],z) is
	 ;;
	 ;; a1*a2*...*ap/(b1*b2*...*bq)
	 ;;   *%f[p,q]([a1+1,a2+1,...,ap+1],[b1+1,b2+1,...,bq+1],z)
	 (let* ((arg1 (cdr (third e)))
		(arg2 (cdr (fourth e)))
		(v (fifth e)))
	   (mul (sdiff v x)
		(div (mull arg1) (mull arg2))
		`((mqapply) (($%f array) ,(length arg1) ,(length arg2))
		  ((mlist) ,@(incr1 arg1))
		  ((mlist) ,@(incr1 arg2))
		  ,v))))
	(t (sdiffgrad e x))))

(defun sdiffgrad (e x)
  (let ((fun (caar e)) grad args result)
    (cond ((and (eq fun 'mqapply) (zl-get (caaadr e) 'grad))
           ;; Change the array function f[n](x) to f(n,x), call sdiffgrad again.
           (setq result
	         (sdiffgrad (cons (cons (caaadr e) nil) 
	                          (append (cdadr e) (cddr e)))
		            x))
           ;; If noun form for f(n,x), adjust the noun form for f[n](x)
           (if (isinop result '%derivative)
               (if (not (depends e x))
                   0
                   (diff%deriv (list e x 1)))
               result))

	  ;; extension for pdiff.
	  ((and (get '$pderivop 'operators) (funcall 'sdiffgrad-pdiff e x)))

	  ;; two line extension for hypergeometric.
	  ((and (equal fun '$hypergeometric) (get '$hypergeometric 'operators))
	   (funcall 'diff-hypergeometric (second e) (third e) (fourth e) x))

	  ((or (eq fun 'mqapply) (null (setq grad (zl-get fun 'grad))))
	   (if (not (depends e x)) 0 (diff%deriv (list e x 1))))
	  ((not (= (length (cdr e)) (length (car grad))))
	   (merror (intl:gettext "~:M: expected exactly ~M arguments.") 
	           fun 
	           (length (car grad))))
	  (t
           (setq args (sdiffmap (cdr e) x))
           (setq result
                 (addn
                   (mapcar 
                     #'mul2
                     (cdr 
                       (substitutel
                         (cdr e) 
                         (car grad)
                         (do ((l1 (cdr grad) (cdr l1))
                              (args args (cdr args)) 
                              (l2))
                             ((null l1) (cons '(mlist) (nreverse l2)))
                           (setq l2
                                 (cons (cond ((equal (car args) 0) 0)
                                             ((functionp (car l1))
                                              ;; Evaluate a lambda expression
                                              ;; given as a derivative.
                                              (apply (car l1) (cdr e)))
                                             (t (car l1)))
                                       l2)))))
                     args)
                   t))
           (if (or (null result) (not (freeof nil result)))
               ;; A derivative has returned NIL. Return a noun form.
               (if (not (depends e x))
                   0 
                   (diff%deriv (list e x 1)))
               result)))))

(defun sdiffmap (e x)
  (mapcar #'(lambda (term) (sdiff term x)) e))

(defun sdifftimes (l x)
  (prog (term left out)
   loop (setq term (car l) l (cdr l))
   (setq out (cons (muln (cons (sdiff term x) (append left l)) t) out))
   (if (null l) (return out))
   (setq left (cons term left))
   (go loop)))

(defun diffexpt (e x)
  (if (mnump (caddr e))
      (mul3 (caddr e) (power (cadr e) (addk (caddr e) -1)) (sdiff (cadr e) x))
      (mul2 e (add2 (mul3 (power (cadr e) -1) (caddr e) (sdiff (cadr e) x))
		    (mul2 (simplifya (list '(%log) (cadr e)) t)
			  (sdiff (caddr e) x))))))

(defun diff%deriv (e)
  (let (derivflag)
    (simplifya (cons '(%derivative) e) t)))


;; grad properties

(let ((header '(x)))
  (mapc #'(lambda (z) (putprop (car z) (cons header (cdr z)) 'grad))
	;; All these GRAD templates have been simplified and then the SIMP flags
	;;	 (which are unnecessary) have been removed to save core space.
	'((%log ((mexpt) x -1)) (%plog ((mexpt) x -1))
	  (%gamma ((mtimes) ((mqapply) (($psi array) 0) x) ((%gamma) x)))
	  (mfactorial ((mtimes) ((mqapply) (($psi array) 0) ((mplus) 1 x)) ((mfactorial) x)))
	  (%sin ((%cos) x))
	  (%cos ((mtimes) -1 ((%sin) x)))
	  (%tan ((mexpt) ((%sec) x) 2))
	  (%cot ((mtimes) -1 ((mexpt) ((%csc) x) 2)))
	  (%sec ((mtimes) ((%sec) x) ((%tan) x)))
	  (%csc ((mtimes) -1 ((%cot) x) ((%csc) x)))
	  (%asin ((mexpt) ((mplus) 1 ((mtimes) -1 ((mexpt) x 2))) ((rat) -1 2)))
	  (%acos ((mtimes) -1 ((mexpt) ((mplus) 1 ((mtimes) -1 ((mexpt) x 2)))
			       ((rat) -1 2))))
	  (%atan ((mexpt) ((mplus) 1 ((mexpt) x 2)) -1))
	  (%acot ((mtimes) -1 ((mexpt) ((mplus) 1 ((mexpt) x 2)) -1)))
	  (%acsc ((mtimes) -1
		  ((mexpt) ((mplus) 1 ((mtimes) -1 ((mexpt) x -2)))
		   ((rat) -1 2))
		  ((mexpt) x -2)))
	  (%asec ((mtimes)
		  ((mexpt) ((mplus) 1 ((mtimes) -1 ((mexpt) x -2)))
		   ((rat) -1 2))
		  ((mexpt) x -2)))
	  (%sinh ((%cosh) x))
	  (%cosh ((%sinh) x))
	  (%tanh ((mexpt) ((%sech) x) 2))
	  (%coth ((mtimes) -1 ((mexpt) ((%csch) x) 2)))
	  (%sech ((mtimes) -1 ((%sech) x) ((%tanh) x)))
	  (%csch ((mtimes) -1 ((%coth) x) ((%csch) x)))
	  (%asinh ((mexpt) ((mplus) 1 ((mexpt) x 2)) ((rat) -1 2)))
	  (%acosh ((mexpt) ((mplus) -1 ((mexpt) x 2)) ((rat) -1 2)))
	  (%atanh ((mexpt) ((mplus) 1 ((mtimes) -1 ((mexpt) x 2))) -1))
	  (%acoth ((mtimes) -1 ((mexpt) ((mplus) -1 ((mexpt) x 2)) -1)))
	  (%asech ((mtimes) -1
		   ((mexpt) ((mplus) -1 ((mexpt) x -2)) ((rat) -1 2))
		   ((mexpt) x -2)))
	  (%acsch ((mtimes) -1
		   ((mexpt) ((mplus) 1 ((mexpt) x -2)) ((rat) -1 2))
		   ((mexpt) x -2)))
	  (mabs ((mtimes) x ((mexpt) ((mabs) x) -1)))
	  (%erf ((mtimes) 2 ((mexpt) $%pi ((rat) -1 2))
		 ((mexpt) $%e ((mtimes) -1 ((mexpt) x 2)))))
	  )))

(defprop $atan2 ((x y) ((mtimes) y ((mexpt) ((mplus) ((mexpt) x 2) ((mexpt) y 2)) -1))
		 ((mtimes) -1 x ((mexpt) ((mplus) ((mexpt) x 2) ((mexpt) y 2)) -1)))
  grad)

(defprop $li 
  ((n x)
; Do not put a noun form on the property list, but NIL.
; SDIFFGRAD generates the noun form.
;   ((%derivative) ((mqapply) (($li array) n) x) n 1)
   nil
   ((mtimes) ((mqapply) (($li array) ((mplus) -1 n)) x) ((mexpt) x -1)))
  grad)

(defprop $psi 
  ((n x)
; Do not put a noun form on the property list, but NIL.
; SDIFFGRAD generates the noun form.
   nil
   ((mqapply) (($psi array) ((mplus) 1 n)) x))
  grad)

(defmfun atvarschk (argl)
  (do ((largl (length argl) (1- largl))
       (latvrs (length atvars))
       (l))
      ((not (< latvrs largl)) (nconc atvars l))
    (setq l (cons (implode (cons '$ (cons '@ (mexploden largl)))) l))))

(defmfun notloreq (x)
  (or (atom x)
      (not (member (caar x) '(mlist mequal) :test #'eq))
      (and (eq (caar x) 'mlist)
	   (dolist (u (cdr x))
	     (if (not (mequalp u)) (return t))))))

(defmfun substitutel (l1 l2 e)
  "l1 is a list of expressions.  l2 is a list of variables. For each 
   element in list l2, substitute corresponding element of l1 into e"
  (do ((l1 l1 (cdr l1))
       (l2 l2 (cdr l2)))
      ((null l1) e)
    (setq e (maxima-substitute (car l1) (car l2) e))))

(defmfun union* (a b)
  (do ((a a (cdr a))
       (x b))
      ((null a) x)
    (if (not (memalike (car a) b)) (setq x (cons (car a) x)))))

(defmfun intersect* (a b)
  (do ((a a (cdr a))
       (x))
      ((null a) x)
    (if (memalike (car a) b) (setq x (cons (car a) x)))))

(defmfun nthelem (n e)
  (car (nthcdr (1- n) e)))

(defmfun delsimp (e)
  (delete 'simp (copy-list e) :count 1 :test #'eq))

(defmfun remsimp (e)
  (if (atom e) e (cons (delsimp (car e)) (mapcar #'remsimp (cdr e)))))

(defmfun $trunc (e)
  (cond ((atom e) e)
	((eq (caar e) 'mplus) (cons (append (car e) '(trunc)) (cdr e)))
	((mbagp e) (cons (car e) (mapcar #'$trunc (cdr e))))
	((specrepp e) ($trunc (specdisrep e)))
	(t e)))

(defmfun nonvarcheck (e fn)
  (if (or (mnump e)
	  (maxima-integerp e)
	  ($constantp e)
	  (and (not (atom e)) (not (eq (caar e) 'mqapply)) (mopp1 (caar e))))
      (merror (intl:gettext "~:M: second argument must be a variable; found ~M") fn e)))

(defmspec $ldisplay (form)
  (disp1 (cdr form) t t))

(defmfun $ldisp (&rest args)
  #-gcl
  (declare (dynamic-extent args))
  (disp1 args t nil))

(defmspec $display (form)
  (disp1 (cdr form) nil t))

(defmfun $disp (&rest args)
  #-gcl
  (declare (dynamic-extent args))
  (disp1 args nil nil))

(defun disp1 (ll lablist eqnsp)
  (if lablist (setq lablist (cons '(mlist simp) nil)))
  (do ((ll ll (cdr ll))
       (l)
       (ans)
       ($dispflag t)
       (tim 0))
      ((null ll) (or lablist '$done))
    (setq l (car ll) ans (if eqnsp (meval l) l))
    (if (and eqnsp (not (mequalp ans)))
	(setq ans (list '(mequal simp) (disp2 l) ans)))
    (if lablist (nconc lablist (cons (elabel ans) nil)))
    (setq tim (get-internal-run-time))
    (let ((*display-labels-p* (not (null lablist))))
      (declare (special *display-labels-p*))
      (displa (list '(mlabel) (if lablist *linelabel*) ans)))
    (mterpri)
    (timeorg tim)))

(defun disp2 (e)
  (cond ((atom e) e)
	((eq (caar e) 'mqapply)
	 (cons '(mqapply) (cons (cons (caadr e) (mapcar #'meval (cdadr e)))
				(mapcar #'meval (cddr e)))))
	((eq (caar e) 'msetq) (disp2 (cadr e)))
	((eq (caar e) 'mset) (disp2 (meval (cadr e))))
	((eq (caar e) 'mlist) (cons (car e) (mapcar #'disp2 (cdr e))))
	((mspecfunp (caar e)) e)
	(t (cons (car e) (mapcar #'meval (cdr e))))))

; Construct a new intermediate result label,
; and bind it to the expression e.
; The global flag $NOLABELS is ignored; the label is always bound.
; Otherwise (if ELABEL were to observe $NOLABELS) it would be
; impossible to programmatically refer to intermediate result expression.

(defmfun elabel (e)
  (if (not (checklabel $linechar)) (setq $linenum (1+ $linenum)))
  (let (($nolabels nil)) ; <-- This is pretty ugly. MAKELABEL should take another argument.
    (makelabel $linechar))
  (setf (symbol-value *linelabel*) e)
  *linelabel*)

(defmfun $dispterms (e)
  (cond ((or (atom e) (eq (caar e) 'bigfloat)) (displa e))
	((specrepp e) ($dispterms (specdisrep e)))
	(t (let (($dispflag t))
	     (mterpri)
	     (displa (getop (mop e)))
	     (do ((e (if (and (eq (caar e) 'mplus) (not $powerdisp))
			 (reverse (cdr e))
			 (margs e))
		     (cdr e))) ((null e)) (mterpri) (displa (car e)) (mterpri)))
	   (mterpri)))
  '$done)

(defmfun $dispform (e &optional (flag nil flag?))
  (when (and flag? (not (eq flag '$all)))
    (merror (intl:gettext "dispform: second argument, if present, must be 'all'; found ~M") flag))
  (if (or (atom e)
	  (atom (setq e (if flag? (nformat-all e) (nformat e))))
	  (member 'simp (cdar e) :test #'eq))
      e
      (cons (cons (caar e) (cons 'simp (cdar e)))
	    (if (and (eq (caar e) 'mplus) (not $powerdisp))
		(reverse (cdr e))
		(cdr e)))))

;;; These functions implement the Macsyma functions $op and $operatorp.
;;; Dan Stanger
(defmfun $op (expr)
  ($part expr 0))

(defmfun $operatorp (expr oplist)
  (if ($listp oplist)
      ($member ($op expr) oplist)
      (equal ($op expr) oplist)))

(defmfun $part (&rest args)
  #-gcl
  (declare (dynamic-extent args))
  (mpart args nil nil $inflag '$part))

(defmfun $inpart (&rest args)
  #-gcl
  (declare (dynamic-extent args))
  (mpart args nil nil t '$inpart))

(defmspec $substpart (l)
  (let ((substp t))
    (mpart (cdr l) t nil $inflag '$substpart)))

(defmspec $substinpart (l)
  (let ((substp t))
    (mpart (cdr l) t nil t '$substinpart)))

(defmfun part1 (arglist substflag dispflag inflag) ; called only by TRANSLATE
  (let ((substp t))
    (mpart arglist substflag dispflag inflag '$substpart)))

(defmfun mpart (arglist substflag dispflag inflag fn)
  (prog (substitem arg arg1 exp exp1 exp* sevlist count prevcount n specp
	 lastelem lastcount)
     (setq specp (or substflag dispflag))
     (if substflag (setq substitem (car arglist) arglist (cdr arglist)))
     (if (null arglist) (wna-err '$part))
     (setq exp (if substflag (meval (car arglist)) (car arglist)))
     (when (null (setq arglist (cdr arglist)))
       (setq $piece exp)
       (return (cond (substflag (meval substitem))
		     (dispflag (box exp dispflag))
		     (t exp))))
     (cond ((not inflag)
	    (cond ((or (and ($listp exp) (null (cdr arglist)))
		       (and ($matrixp exp)
			    (or (null (cdr arglist)) (null (cddr arglist)))))
		   (setq inflag t))
		  ((not specp) (setq exp (nformat exp)))
		  (t (setq exp (nformat-all exp)))))
	   ((specrepp exp) (setq exp (specdisrep exp))))
     (when (and (atom exp) (null $partswitch))
       (merror (intl:gettext "~:M: argument must be a non-atomic expression; found ~:M") fn exp))
     (when (and inflag specp)
       (setq exp (copy-tree exp)))
     (when substflag
       ;; Replace all occurrences of 'rat with 'mquotient when in subst.
       (setq exp (let (($simp nil)) (maxima-substitute 'mquotient 'rat exp))))
     (setq exp* exp)
     start (cond ((or (atom exp) (eq (caar exp) 'bigfloat)) (go err))
		 ((equal (setq arg (if substflag (meval (car arglist)) (car arglist)))
			 0)
		  (setq arglist (cdr arglist))
		  (cond ((mnump substitem)
			 (merror (intl:gettext "~:M: argument cannot be a number; found ~M") fn substitem))
			((and specp arglist)
			 (if (eq (caar exp) 'mqapply)
			     (prog2 (setq exp (cadr exp)) (go start))
                 ;; NOT CLEAR WHAT IS INVALID HERE. OH WELL.
			     (merror (intl:gettext "~:M: invalid operator.") fn)))
			(t (setq $piece (getop (mop exp)))
			   (return
			     (cond (substflag
				    (setq substitem (getopr (meval substitem)))
				    (cond ((mnump substitem)
					   (merror (intl:gettext "~:M: argument cannot be a number; found ~M") fn substitem))
					  ((not (atom substitem))
					   (if (not (eq (caar exp) 'mqapply))
					       (rplaca (rplacd exp (cons (car exp)
									 (cdr exp)))
						       '(mqapply)))
					   (rplaca (cdr exp) substitem)
					   (return (resimplify exp*)))
					  ((eq (caar exp) 'mqapply)
					   (rplacd exp (cddr exp))))
				    (rplaca exp (cons substitem
						      (if (and (member 'array (cdar exp) :test #'eq)
							       (not (mopp substitem)))
							  '(array))))
				    (resimplify exp*))
				   (dispflag
				    (rplacd exp (cdr (box (copy-tree exp) dispflag)))
				    (rplaca exp (if (eq dispflag t)
						    '(mbox)
						    '(mlabox)))
				    (resimplify exp*))
				   (t (when arglist (setq exp $piece) (go a))
				      $piece))))))
		 ((not (atom arg)) (go several))
		 ((not (fixnump arg))
		  (merror (intl:gettext "~:M: argument must be an integer; found ~M") fn arg))
		 ((< arg 0) (go bad)))
     (if (eq (caar exp) 'mqapply) (setq exp (cdr exp)))
     loop (cond ((not (zerop arg)) (setq arg (1- arg) exp (cdr exp))
		 (if (null exp) (go err))
		 (go loop))
		((null (setq arglist (cdr arglist)))
		 (return (cond (substflag (setq $piece (resimplify (car exp)))
					  (rplaca exp (meval substitem))
					  (resimplify exp*))
			       (dispflag (setq $piece (resimplify (car exp)))
					 (rplaca exp (box (car exp) dispflag))
					 (resimplify exp*))
			       (inflag (setq $piece (car exp)))
			       (t (setq $piece (simplify (car exp))))))))
     (setq exp (car exp))
     a    (cond ((and (not inflag) (not specp)) (setq exp (nformat exp)))
		((specrepp exp) (setq exp (specdisrep exp))))
     (go start)
     err  (cond ((eq $partswitch 'mapply)
		 (merror (intl:gettext "part: invalid index of list or matrix.")))
		($partswitch (return (setq $piece '$end)))
		(t (merror (intl:gettext "~:M: fell off the end.") fn)))
     bad  (improper-arg-err arg fn)
     several
     (if (or (not (member (caar arg) '(mlist $allbut) :test #'eq)) (cdr arglist))
	 (go bad))
     (setq exp1 (cons (caar exp) (if (member 'array (cdar exp) :test #'eq) '(array))))
     (if (eq (caar exp) 'mqapply)
	 (setq sevlist (list (cadr exp) exp1) exp (cddr exp))
	 (setq sevlist (ncons exp1) exp (cdr exp)))
     (setq arg1 (cdr arg) prevcount 0 exp1 exp)
     (dolist (arg* arg1)
       (if (not (fixnump arg*))
	   (merror (intl:gettext "~:M: argument must be an integer; found ~M") fn arg*)))
     (when (and specp (eq (caar arg) 'mlist))
       (if substflag (setq lastelem (car (last arg1))))
       (setq arg1 (sort (copy-list arg1) #'<)))
     (when (eq (caar arg) '$allbut)
       (setq n (length exp))
       (dolist (i arg1)
	 (if (or (< i 1) (> i n))
	     (merror (intl:gettext "~:M: index must be in range 1 to ~M, inclusive; found ~M") fn n i)))
       (do ((i n (1- i)) (arg2))
	   ((= i 0) (setq arg1 arg2))
	 (if (not (member i arg1 :test #'equal)) (setq arg2 (cons i arg2))))
       (if substflag (setq lastelem (car (last arg1)))))
     (if (null arg1) (if specp (go bad) (go end)))
     (if substflag (setq lastcount lastelem))
     sevloop
     (if specp
	 (setq count (- (car arg1) prevcount) prevcount (car arg1))
	 (setq count (car arg1)))
     (if (< count 1) (go bad))
     (if (and substflag (< (car arg1) lastelem))
	 (setq lastcount (1- lastcount)))
     count(cond ((null exp) (go err))
		((not (= count 1)) (setq count (1- count) exp (cdr exp)) (go count)))
     (setq sevlist (cons (car exp) sevlist))
     (setq arg1 (cdr arg1))
     end  (cond ((null arg1)
		 (setq sevlist (nreverse sevlist))
		 (setq $piece (if (or inflag (not specp))
				  (simplify sevlist)
				  (resimplify sevlist)))
		 (return (cond (substflag (rplaca (nthcdr (1- lastcount) exp1)
						  (meval substitem))
					  (resimplify exp*))
			       (dispflag (rplaca exp (box (car exp) dispflag))
					 (resimplify exp*))
			       (t $piece))))
		(substflag (if (null (cdr exp)) (go err))
			   (rplaca exp (cadr exp)) (rplacd exp (cddr exp)))
		(dispflag (rplaca exp (box (car exp) dispflag))
			  (setq exp (cdr exp)))
		(t (setq exp exp1)))
     (go sevloop)))

(defmfun getop (x)
  (or (and (symbolp x) (get x 'op)) x))

(defmfun $listp (x)
  (and (not (atom x))
       (not (atom (car x)))
       (eq (caar x) 'mlist)))

(defmfun $cons (x e)
  (atomchk (setq e (format1 e)) '$cons t)
  (mcons-exp-args e (cons x (margs e))))

(defmfun $endcons (x e)
  (atomchk (setq e (format1 e)) '$endcons t)
  (mcons-exp-args e (append (margs e) (ncons x))))

(defmfun $reverse (e)
  (atomchk (setq e (format1 e)) '$reverse nil)
  (mcons-exp-args e (reverse (margs e))))

(defmfun $append (&rest args)
  (if (null args)
      '((mlist simp))
      (let ((arg1 (specrepcheck (first args))) op arrp)
	(atomchk arg1 '$append nil)
	(setq op (mop arg1)
	      arrp (if (member 'array (cdar arg1) :test #'eq) t))
	(mcons-exp-args
	 arg1
	 (apply #'append
		(mapcar #'(lambda (u)
			    (atomchk (setq u (specrepcheck u)) '$append nil)
			    (unless (and (alike1 op (mop u))
					 (eq arrp (if (member 'array (cdar u) :test #'eq) t)))
			      (merror (intl:gettext "append: operators of arguments must all be the same.")))
			    (margs u))
			args))))))

(defun mcons-exp-args (e args)
  (if (eq (caar e) 'mqapply)
      (list* (delsimp (car e)) (cadr e) args)
      (cons (delsimp (car e)) args)))

(defmfun $member (x e)
  (atomchk (setq e ($totaldisrep e)) '$member t)
  (if (memalike ($totaldisrep x) (margs e)) t))

(defmfun atomchk (e fun 2ndp)
  (if (or (atom e) (eq (caar e) 'bigfloat))
      (merror (intl:gettext "~:M: ~Margument must be a non-atomic expression; found ~M") fun (if 2ndp "2nd " "") e)))

(defmfun format1 (e)
  (cond (($listp e) e)
	($inflag (specrepcheck e))
	(t (nformat e))))

(defmfun $first (e)
  (atomchk (setq e (format1 e)) '$first nil)
  (if (null (cdr e)) (merror (intl:gettext "first: empty argument.")))
  (car (margs e)))

;; This macro is used to create functions second thru tenth.
;; Rather than try to modify mformat for ~:R, use the quoted symbol

(macrolet ((make-nth (si i)
	     (let ((sim (intern (concatenate 'string "$" (symbol-name si)))))
	       `(defmfun ,sim (e)
		  (atomchk (setq e (format1 e)) ',sim nil)
		  (if (< (length (margs e)) ,i)
		      (merror (intl:gettext "~:M: no such element in ~M") ',sim e))
		  (,si (margs e))))))

  (make-nth second  2)
  (make-nth third   3)
  (make-nth fourth  4)
  (make-nth fifth   5)
  (make-nth sixth   6)
  (make-nth seventh 7)
  (make-nth eighth  8)
  (make-nth ninth   9)
  (make-nth tenth  10))

(defmfun $rest (e &optional (n 1 n?))
  (prog (m fun fun1 revp)
     (when (and n? (equal n 0))
       (return e))
     (atomchk (setq m (format1 e)) '$rest nil)
     (cond ((and n? (not (fixnump n)))
	    (merror (intl:gettext "rest: second argument, if present, must be an integer; found ~M") n))
	   ((minusp n)
	    (setq n (- n) revp t)))
     (if (< (length (margs m)) n)
	 (if $partswitch
	     (return '$end)
	     (merror (intl:gettext "rest: fell off the end."))))
     (setq fun (car m))
     (when (eq (car fun) 'mqapply)
       (setq fun1 (cadr m)
	     m (cdr m)))
     (setq m (cdr m))
     (when revp (setq m (reverse m)))
     (setq m (nthcdr n m))
     (setq m (cons (if (eq (car fun) 'mlist) fun (delsimp fun))
		   (if revp (nreverse m) m)))
     (when (eq (car fun) 'mqapply)
       (return (cons (car m) (cons fun1 (cdr m)))))
     (return m)))

(defmfun $last (e)
  (atomchk (setq e (format1 e)) '$last nil)
  (when (null (cdr e))
    (merror (intl:gettext "last: empty argument.")))
  (car (last e)))

(defmfun $firstn (e n)
  (atomchk (setq e (format1 e)) '$firstn nil)
  (if (or (not (fixnump n)) (minusp n))
    (merror (intl:gettext "firstn: second argument must be a nonnegative integer; found: ~M") n))
  (let ((m ($length e)))
    (if (> n m)
      ($rest e 0)
      ($rest e (- n m)))))

(defmfun $lastn (e n)
  (atomchk (setq e (format1 e)) '$lastn nil)
  (if (or (not (fixnump n)) (minusp n))
    (merror (intl:gettext "lastn: second argument must be a nonnegative integer; found: ~M") n))
  (let ((m ($length e)))
    (if (> n m)
      ($rest e 0)
      ($rest e (- m n)))))

(defmfun $args (e)
  (atomchk (setq e (format1 e)) '$args nil)
	 (cons '(mlist) (margs e)))

(defmfun $delete (x l &optional (n -1 n?))
  (when (and n? (or (not (fixnump n)) (minusp n))) ; if n is set, it must be a nonneg fixnum
    (merror (intl:gettext "delete: third argument, if present, must be a nonnegative integer; found ~M") n))
  (atomchk (setq l (specrepcheck l)) '$delete t)
  (setq x (specrepcheck x)
	l (cons (delsimp (car l)) (copy-list (cdr l))))
  (do ((l1 (if (eq (caar l) 'mqapply) (cdr l) l)))
      ((or (null (cdr l1)) (zerop n)) l)
    (if (alike1 x (specrepcheck (cadr l1)))
	(progn
	  (decf n)
	  (rplacd l1 (cddr l1)))
	(setq l1 (cdr l1)))))

(defmfun $length (e)
  (setq e (cond (($listp e) e)
		((or $inflag (not ($ratp e))) (specrepcheck e))
		(t ($ratdisrep e))))
  (cond ((symbolp e) (merror (intl:gettext "length: argument cannot be a symbol; found ~:M") e))
	((or (numberp e) (eq (caar e) 'bigfloat))
	 (if (and (not $inflag) (mnegp e))
	     1
	     (merror (intl:gettext "length: argument cannot be a number; found ~:M") e)))
	((or $inflag (not (member (caar e) '(mtimes mexpt) :test #'eq))) (length (margs e)))
	((eq (caar e) 'mexpt)
	 (if (and (alike1 (caddr e) '((rat simp) 1 2)) $sqrtdispflag) 1 2))
	(t (length (cdr (nformat e))))))

(defmfun $atom (x)
  (setq x (specrepcheck x)) (or (atom x) (eq (caar x) 'bigfloat)))

(defmfun $symbolp (x)
  (setq x (specrepcheck x)) (symbolp x))

(defmfun $num (e)
  (let (x)
    (cond ((atom e) e)
	  ((eq (caar e) 'mrat) ($ratnumer e))
	  ((eq (caar e) 'rat) (cadr e))
	  ((eq (caar (setq x (nformat e))) 'mquotient) (simplify (cadr x)))
	  ((and (eq (caar x) 'mminus) (not (atom (setq x (cadr x))))
		(eq (caar x) 'mquotient))
	   (simplify (list '(mtimes) -1 (cadr x))))
	  (t e))))

(defmfun $denom (e)
  (cond ((atom e) 1)
	((eq (caar e) 'mrat) ($ratdenom e))
	((eq (caar e) 'rat) (caddr e))
	((or (eq (caar (setq e (nformat e))) 'mquotient)
	     (and (eq (caar e) 'mminus) (not (atom (setq e (cadr e))))
		  (eq (caar e) 'mquotient)))
	 (simplify (caddr e)))
	(t 1)))

(defmfun $entier (e) (take '($floor) e))

(defmfun $fix (e) (take '($floor) e))

;; Evaluate THUNK ignoring any error that might occur.  If the THUNK
;; returns a good number (not infinity or NaN), then return the
;; number.  Otherwise, return NIL to indicate that we the computation
;; failed.  This is a pretty brute-force approach.
(defun try-float-computation (thunk)
  (let ((errcatch (cons bindlist loclist))
	(*mdebug* nil))
    (declare (special errcatch))
    (let ((result (errset (funcall thunk))))
      (labels ((bad-number-p (num)
		 (if (complexp num)
		     (or (bad-number-p (realpart num))
			 (bad-number-p (imagpart num)))
		     (or (float-inf-p num)
			 (float-nan-p num)))))
	(if (and result (bad-number-p (car result)))
	    nil
	    (car result))))))
	    
(defmfun $float (e)
  (cond ((numberp e)
	 (let ((e1 (float e))) (if (float-inf-p e1) (signal 'floating-point-overflow) e1)))
	((and (symbolp e) (mget e '$numer)))
	((or (atom e) (member 'array (cdar e) :test #'eq)) e)
	((eq (caar e) 'rat) (fpcofrat e))
	((eq (caar e) 'bigfloat) (fp2flo e))
	((member (caar e) '(mexpt mncexpt) :test #'eq)
	 ;; avoid x^2 -> x^2.0, allow %e^%pi -> 23.14
	 (let ((res (recur-apply #'$float e)))
	   (if (floatp res)
	       res
	       (list (ncons (caar e)) ($float (cadr e)) (caddr e)))))
	((and (eq (caar e) '%log)
	      (complex-number-p (second e) '$ratnump))
	 ;; Basically we try to compute float(log(x)) as directly as
	 ;; possible, expecting Lisp to return some error if it can't.
	 ;; Then we do a more complicated approach to compute the
	 ;; result.  However, gcl and ecl don't signal errors in these
	 ;; cases, so we always use the complicated approach for these lisps.
	 (let ((n (second e)))
	   (cond ((integerp n)
		  ;; float(log(int)).  First try to compute (log
		  ;; (float n)).  If that works, we're done.
		  ;; Otherwise we need to do more.  
		  (to (or (try-float-computation #'(lambda ()
						     (log (float n))))
			  (let ((m (integer-length n)))
			    ;; Write n as (n/2^m)*2^m where m is the number of
			    ;; bits in n.  Then log(n) = log(2^m) + log(n/2^m).
			    ;; n/2^m is approximately 1, so converting that to a
			    ;; float is no problem.  log(2^m) = m * log(2).
			    (+ (* m (log 2e0))
			       (log (float (/ n (ash 1 m)))))))))
		 (($ratnump n)
		  ;; float(log(n/m)) where n and m are integers.  Try computing
		  ;; it first.  If it fails, compute as log(n) - log(m).
		  (let ((try (try-float-computation #'(lambda() 
							(log (fpcofrat n))))))
		    (if try
			(to try)
			(sub  ($float `((%log) ,(second n)))
			      ($float `((%log) ,(third n)))))))
		 ((complex-number-p n 'integerp)
		  ;; float(log(n+m*%i)).
		  (let ((re ($realpart n))
			(im ($imagpart n)))
		    (to (or (try-float-computation #'(lambda ()
						       (log (complex (float re)
								     (float im)))))
			    (let* ((size (max (integer-length re)
					      (integer-length im)))
				   (scale (ash 1 size)))
			      (+ (* size (log 2e0))
				 (log (complex (float (/ re scale))
					       (float (/ im scale))))))))))
		 (t
		  ;; log(n1/d1 + n2/d2*%i) =
		  ;;   log(s*(n+m*%i)) = log(s) + log(n+m*%i)
		  ;;
		  ;; where s = lcm(d1, d2), n and m are integers
		  ;;
		  (let* ((s (lcm ($denom ($realpart n))
				 ($denom ($imagpart n))))
			 (p ($expand (mul s n))))
		    (add ($float `((%log) ,s))
			 ($float `((%log) ,p))))))))
	((and (eq (caar e) '%erf)
	      (eq (second e) '$%i))
	 ;; Handle like erf(%i).  float(%i) (via recur-apply below)
	 ;; just returns %i, so we never numerically evaluate it.
	 (complexify (complex-erf (complex 0 1d0))))
	((or (eq (caar e) '%derivative) (eq (caar e) '$diff))
	 (append (list (remove 'simp (first e)) ($float (second e))) (rest (rest e))))
	(t (recur-apply #'$float e))))

(defmfun $coeff (e x &optional (n 1))
  (if (equal n 0)
      (coeff e x 0)
      (coeff e (power x n) 1)))

(defun coeff (e var pow)
  (simplify
   (cond ((alike1 e var) (if (equal pow 1) 1 0))
	 ((atom e) (if (equal pow 0) e 0))
	 ((eq (caar e) 'mexpt)
	  (cond ((alike1 (cadr e) var)
		 (if (or (equal pow 0) (not (alike1 (caddr e) pow))) 0 1))
		((equal pow 0) e)
		(t 0)))
	 ((or (eq (caar e) 'mplus) (mbagp e))
	  (cons (if (eq (caar e) 'mplus) '(mplus) (car e))
		(mapcar #'(lambda (e) (coeff e var pow)) (cdr e))))
	 ((eq (caar e) 'mrat) (ratcoeff e var pow))
         ((equal pow 0) (if (coeff-contains-powers e var) 0 e))
	 ((eq (caar e) 'mtimes)
	  (let ((term (if (equal pow 1) var (power var pow))))
	    (if (memalike term (cdr e)) ($delete term e 1) 0)))
	 (t 0))))

(defun coeff-contains-powers (e var)
  (cond ((alike1 e var) t)
        ((atom e) nil)
        ((eq (caar e) 'mexpt)
         (alike1 (cadr e) var))
        ((eq (caar e) 'mtimes)
         (member t (mapcar #'(lambda (e)
                               (coeff-contains-powers e var)) (cdr e))))
        (t nil)))

(let (my-powers my-num my-flag)
  (declare (special my-powers my-num my-flag))

  (defmfun $hipow (e var)
    (findpowers e t var))
  
  ;; These work best on expanded "simple" expressions.
  
  (defmfun $lopow (e var)
    (findpowers e nil var))
  
  (defun findpowers (e hiflg var)
    (let (my-powers my-num my-flag)
      (declare (special my-powers my-num my-flag))
      (findpowers1 e hiflg var)
      (cond ((null my-powers) (if (null my-num) 0 my-num))
  	  (t (when my-num (setq my-powers (cons my-num my-powers)))
  	     (maximin my-powers (if hiflg '$max '$min))))))
  
  (defun findpowers1 (e hiflg var)
    (cond ((alike1 e var) (checkpow 1 hiflg))
  	((atom e))
  	((eq (caar e) 'mplus)
  	 (cond ((not (freel (cdr e) var))
  		(do ((e (cdr e) (cdr e))) ((null e))
  		  (setq my-flag nil) (findpowers1 (car e) hiflg var)
  		  (if (null my-flag) (checkpow 0 hiflg))))))
  	((and (eq (caar e) 'mexpt) (alike1 (cadr e) var)) (checkpow (caddr e) hiflg))
  	((specrepp e) (findpowers1 (specdisrep e) hiflg var))
  	(t (mapc #'(lambda (x) (findpowers1 x hiflg var)) (cdr e)))))
  
  (defun checkpow (pow hiflg)
    (setq my-flag t)
    (cond ((not (numberp pow)) (setq my-powers (cons pow my-powers)))
  	((null my-num) (setq my-num pow))
  	(hiflg (if (> pow my-num) (setq my-num pow)))
  	((< pow my-num) (setq my-num pow)))))

;; push(x,l): The argument l must be a mapatom that is bound to a list. Prepend x to 
;; the value of l and return this list. The arguments to push are evaluated from left to right.
 
;; We assume that if each member of a list is simplified, the list members are still simplified 
;; after pushing onto (or popping) the list. Just before returning, the code calls simplifya 
;; with second argument true. Without this call to simplifya, the general simplifier would simplify 
;; every list member after returning. (Barton Willis, author of $push and $pop)

(defmspec $push (z)
  (let* ((o (car (pop z)))
	 (x (if z (pop z) (wna-err o)))
	 (l (if z (pop z) (wna-err o)))
	 (ll) (lo))

    (if z (wna-err o))
    (setq x (meval x))
    (cond (($subvarp l)
	   (setq lo (simplifya (cons (list (meval (mop l)) 'array) (mevalargs (margs l))) t))
	   (setq ll (let ((noevalargs t)) (meval lo))))
	  (t
	   (setq lo l)
	   (setq ll (meval l))))
    (if (and ($mapatom lo) ($listp ll))
	(progn
	  (setq ll (cons x (cdr ll)))
	  (mset lo (simplifya (cons '(mlist) ll) t)))
      (merror "Second argument to push must be a mapatom that is bound to a list"))))

;; pop(l): The argument l must be a mapatom that is bound to a list. Remove the 
;; first member of the value of l and return it. 

;; We assume that if each member of a list is simplified, the list members are still simplified 
;; after popping (or pushing onto) the list. Just before returning, the code calls simplifya 
;; with second argument true. Without this call to simplifya, the general simplifier would simplify 
;; every list member after returning.

(defmspec $pop (z)
  (let* ((o (car (pop z)))
	 (l (if z (pop z) (wna-err o)))
	 (ll) (lo))
    (if z (wna-err o))
    (cond (($subvarp l)
	   (setq lo (simplifya (cons (list (meval (mop l)) 'array) (mevalargs (margs l))) t))
	   (setq ll (let ((noevalargs t)) (meval lo))))
	  (t
	   (setq lo l)
	   (setq ll (meval lo))))
    (setq ll (meval l))
    (cond ((and ($mapatom lo) ($listp ll))
	   (if ($emptyp ll) (merror "Pop called on an empty list")
	     (prog2
		 (setq ll (cdr ll))
		 (pop ll)
	       (mset lo (simplifya (cons '(mlist) ll) t)))))
	  (t (merror "Argument to pop must be a mapatom that is bound to a list")))))