/usr/share/perl5/Tie/Cache.pm is in libtie-cache-perl 0.21-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 | #!/usr/bin/perl -w
package Tie::Cache;
use strict;
use vars qw(
$VERSION $Debug $STRUCT_SIZE $REF_SIZE
$BEFORE $AFTER $KEY $VALUE $BYTES $DIRTY
);
$VERSION = .21;
$Debug = 0; # set to 1 for summary, 2 for debug output
$STRUCT_SIZE = 240; # per cached elem bytes overhead, approximate
$REF_SIZE = 16;
# NODE ARRAY STRUCT
$KEY = 0;
$VALUE = 1;
$BYTES = 2;
$BEFORE = 3;
$AFTER = 4;
$DIRTY = 5;
=pod
=head1 NAME
Tie::Cache - LRU Cache in Memory
=head1 SYNOPSIS
use Tie::Cache;
tie %cache, 'Tie::Cache', 100, { Debug => 1 };
tie %cache2, 'Tie::Cache', { MaxCount => 100, MaxBytes => 50000 };
tie %cache3, 'Tie::Cache', 100, { Debug => 1 , WriteSync => 0};
# Options ##################################################################
#
# Debug => 0 - DEFAULT, no debugging output
# 1 - prints cache statistics upon destroying
# 2 - prints detailed debugging info
#
# MaxCount => Maximum entries in cache.
#
# MaxBytes => Maximum bytes taken in memory for cache based on approximate
# size of total cache structure in memory
#
# There is approximately 240 bytes used per key/value pair in the cache for
# the cache data structures, so a cache of 5000 entries would take
# at approximately 1.2M plus the size of the data being cached.
#
# MaxSize => Maximum size of each cache entry. Larger entries are not cached.
# This helps prevent much of the cache being flushed when
# you set an exceptionally large entry. Defaults to MaxBytes/10
#
# WriteSync => 1 - DEFAULT, write() when data is dirtied for
# TRUE CACHE (see below)
# 0 - write() dirty data as late as possible, when leaving
# cache, or when cache is being DESTROY'd
#
############################################################################
# cache supports normal tied hash functions
$cache{1} = 2; # STORE
print "$cache{1}\n"; # FETCH
# FIRSTKEY, NEXTKEY
while(($k, $v) = each %cache) { print "$k: $v\n"; }
delete $cache{1}; # DELETE
%cache = (); # CLEAR
=head1 DESCRIPTION
This module implements a least recently used (LRU) cache in memory
through a tie interface. Any time data is stored in the tied hash,
that key/value pair has an entry time associated with it, and
as the cache fills up, those members of the cache that are
the oldest are removed to make room for new entries.
So, the cache only "remembers" the last written entries, up to the
size of the cache. This can be especially useful if you access
great amounts of data, but only access a minority of the data a
majority of the time.
The implementation is a hash, for quick lookups,
overlaying a doubly linked list for quick insertion and deletion.
On a WinNT PII 300, writes to the hash were done at a rate
3100 per second, and reads from the hash at 6300 per second.
Work has been done to optimize refreshing cache entries that are
frequently read from, code like $cache{entry}, which moves the
entry to the end of the linked list internally.
=cut
# Documentation continues at the end of the module.
sub TIEHASH {
my($class, $max_count, $options) = @_;
if(ref($max_count)) {
$options = $max_count;
$max_count = $options->{MaxCount};
}
unless($max_count || $options->{MaxBytes}) {
die('you must specify cache size with either MaxBytes or MaxCount');
}
my $sync = exists($options->{WriteSync}) ? $options->{WriteSync} : 1;
my $self = bless
{
# how many items to cache
max_count=> $max_count,
# max bytes to cache
max_bytes => $options->{MaxBytes},
# max size (in bytes) of an individual cache entry
max_size => $options->{MaxSize} || ($options->{MaxBytes} ? (int($options->{MaxBytes}/10) + 1) : 0),
# class track, so know if overridden subs should be used
'class' => $class,
'subclass' => $class ne 'Tie::Cache' ? 1 : 0,
# current sizes
count=>0,
bytes=>0,
# inner structures
head=>0,
tail=>0,
nodes=>{},
'keys'=>[],
# statistics
hit => 0,
miss => 0,
# config
sync => $sync,
dbg => $options->{Debug} || $Debug
}, $class;
if (($self->{max_bytes} && ! $self->{max_size})) {
die("MaxSize must be defined when MaxBytes is");
}
if($self->{max_bytes} and $self->{max_bytes} < 1000) {
die("cannot set MaxBytes to under 1000, each raw entry takes $STRUCT_SIZE bytes alone");
}
if($self->{max_size} && $self->{max_size} < 3) {
die("cannot set MaxSize to under 3 bytes, assuming error in config");
}
$self;
}
# override to write data leaving cache
sub write { undef; }
# commented this section out for speed
# my($self, $key, $value) = @_;
# 1;
#}
# override to get data if not in cache, should return $value
# associated with $key
sub read { undef; }
# commented this section out for speed
# my($self, $key) = @_;
# undef;
#}
sub FETCH {
my($self, $key) = @_;
my $node = $self->{nodes}{$key};
if($node) {
# refresh node's entry
$self->{hit}++; # if $self->{dbg};
# we used to call delete then insert, but we streamlined code
if(my $after = $node->[$AFTER]) {
$self->{dbg} > 1 and $self->print("update() node $node to tail of list");
# reconnect the nodes
my $before = $after->[$BEFORE] = $node->[$BEFORE];
if($before) {
$before->[$AFTER] = $after;
} else {
$self->{head} = $after;
}
# place at the end
$self->{tail}[$AFTER] = $node;
$node->[$BEFORE] = $self->{tail};
$node->[$AFTER] = undef;
$self->{tail} = $node; # always true after this
} else {
# if there is nothing after node, then we are at the end already
# so don't do anything to move the nodes around
die("this node is the tail, so something's wrong")
unless($self->{tail} eq $node);
}
$self->print("FETCH [$key, $node->[$VALUE]]") if ($self->{dbg} > 1);
$node->[$VALUE];
} else {
# we have a cache miss here
$self->{miss}++; # if $self->{dbg};
# its fine to always insert a node, even when we have an undef,
# because even if we aren't a sub-class, we should assume use
# that would then set the entry. This model works well with
# sub-classing and reads() that might want to return undef as
# a valid value.
my $value;
if ($self->{subclass}) {
$self->print("read() for key $key") if $self->{dbg} > 1;
$value = $self->read($key);
}
if(defined $value) {
my $length;
if($self->{max_size}) {
# check max size of entry, that it not exceed max size
$length = &_get_data_length(\$key, \$value);
if($length > $self->{max_size}) {
$self->print("direct read() [$key, $value]") if ($self->{dbg} > 1);
return $value;
}
}
# if we get here, we should insert the new node
$node = &create_node($self, \$key, \$value, $length);
&insert($self, $node);
$value;
} else {
undef;
}
}
}
sub STORE {
my($self, $key, $value) = @_;
my $node;
$self->print("STORE [$key,$value]") if ($self->{dbg} > 1);
# do not cache undefined values
defined($value) || return(undef);
# check max size of entry, that it not exceed max size
my $length;
if($self->{max_size}) {
$length = &_get_data_length(\$key, \$value);
if($length > $self->{max_size}) {
if ($self->{subclass}) {
$self->print("direct write() [$key, $value]") if ($self->{dbg} > 1);
$self->write($key, $value);
}
return $value;
}
}
# do we have node already ?
if($self->{nodes}{$key}) {
$node = &delete($self, $key);
# $node = &delete($self, $key);
# $node->[$VALUE] = $value;
# $node->[$BYTES] = $length || &_get_data_length(\$key, \$value);
}
# insert new node
$node = &create_node($self, \$key, \$value, $length);
# $node ||= &create_node($self, \$key, \$value, $length);
&insert($self, $node);
# if the data is sync'd call write now, otherwise defer the data
# writing, but mark it dirty so it can be cleanup up at the end
if ($self->{subclass}) {
if($self->{sync}) {
$self->print("sync write() [$key, $value]") if $self->{dbg} > 1;
$self->write($key, $value);
} else {
$node->[$DIRTY] = 1;
}
}
$value;
}
sub DELETE {
my($self, $key) = @_;
$self->print("DELETE $key") if ($self->{dbg} > 1);
my $node = $self->delete($key);
$node ? $node->[$VALUE] : undef;
}
sub CLEAR {
my($self) = @_;
$self->print("CLEAR CACHE") if ($self->{dbg} > 1);
if($self->{subclass}) {
my $flushed = $self->flush();
$self->print("FLUSH COUNT $flushed") if ($self->{dbg} > 1);
}
my $node;
while($node = $self->{head}) {
$self->delete($self->{head}[$KEY]);
}
1;
}
sub EXISTS {
my($self, $key) = @_;
exists $self->{nodes}{$key};
}
# firstkey / nextkey emulate keys() and each() behavior by
# taking a snapshot of all the nodes at firstkey, and
# iterating through the keys with nextkey
#
# this method therefore will only supports one each() / keys()
# happening during any given time.
#
sub FIRSTKEY {
my($self) = @_;
$self->{'keys'} = [];
my $node = $self->{head};
while($node) {
push(@{$self->{'keys'}}, $node->[$KEY]);
$node = $node->[$AFTER];
}
shift @{$self->{'keys'}};
}
sub NEXTKEY {
my($self, $lastkey) = @_;
shift @{$self->{'keys'}};
}
sub DESTROY {
my($self) = @_;
# if debugging, snapshot cache before clearing
if($self->{dbg}) {
if($self->{hit} || $self->{miss}) {
$self->{hit_ratio} =
sprintf("%4.3f", $self->{hit} / ($self->{hit} + $self->{miss}));
}
$self->print($self->pretty_self());
if($self->{dbg} > 1) {
$self->print($self->pretty_chains());
}
}
$self->print("DESTROYING") if $self->{dbg} > 1;
$self->CLEAR();
1;
}
####PERL##LRU##TIE##CACHE##PERL##LRU##TIE##CACHE##PERL##LRU##TIE##CACHE
## Helper Routines
####PERL##LRU##TIE##CACHE##PERL##LRU##TIE##CACHE##PERL##LRU##TIE##CACHE
# we use scalar_refs for the data for speed
sub create_node {
my($self, $key, $value, $length) = @_;
(defined($$key) && defined($$value))
|| die("need more localized data than $$key and $$value");
# max_size always defined when max_bytes is
if (($self->{max_size})) {
$length = defined $length ? $length : &_get_data_length($key, $value)
} else {
$length = 0;
}
# ORDER SPECIFIC, see top for NODE ARRAY STRUCT
my $node = [ $$key, $$value, $length ];
}
sub _get_data_length {
my($key, $value) = @_;
my $length = 0;
my %refs;
my @data = ($$key, $$value);
while(my $elem = shift @data) {
next if $refs{$elem};
$refs{$elem} = 1;
if(ref $elem && ref($elem) =~ /^(SCALAR|HASH|ARRAY)$/) {
my $type = $1;
$length += $REF_SIZE; # guess, 16 bytes per ref, probably more
if (($type eq 'SCALAR')) {
$length += length($$elem);
} elsif (($type eq 'HASH')) {
while (my($k,$v) = each %$elem) {
for my $kv($k,$v) {
if ((ref $kv)) {
push(@data, $kv);
} else {
$length += length($kv);
}
}
}
} elsif (($type eq 'ARRAY')) {
for my $val (@$elem){
if ((ref $val)) {
push(@data, $val);
} else {
$length += length($val);
}
}
}
} else {
$length += length($elem);
}
}
$length;
}
sub insert {
my($self, $new_node) = @_;
$new_node->[$AFTER] = 0;
$new_node->[$BEFORE] = $self->{tail};
$self->print("insert() [$new_node->[$KEY], $new_node->[$VALUE]]") if ($self->{dbg} > 1);
$self->{nodes}{$new_node->[$KEY]} = $new_node;
# current sizes
$self->{count}++;
$self->{bytes} += $new_node->[$BYTES] + $STRUCT_SIZE;
if($self->{tail}) {
$self->{tail}[$AFTER] = $new_node;
} else {
$self->{head} = $new_node;
}
$self->{tail} = $new_node;
## if we are too big now, remove head
while(($self->{max_count} && ($self->{count} > $self->{max_count})) ||
($self->{max_bytes} && ($self->{bytes} > $self->{max_bytes})))
{
if($self->{dbg} > 1) {
$self->print("current/max: ".
"bytes ($self->{bytes}/$self->{max_bytes}) ".
"count ($self->{count}/$self->{max_count}) "
);
}
my $old_node = $self->delete($self->{head}[$KEY]);
if ($self->{subclass}) {
if($old_node->[$DIRTY]) {
$self->print("dirty write() [$old_node->[$KEY], $old_node->[$VALUE]]")
if ($self->{dbg} > 1);
$self->write($old_node->[$KEY], $old_node->[$VALUE]);
}
}
# if($self->{dbg} > 1) {
# $self->print("after delete - bytes $self->{bytes}; count $self->{count}");
# }
}
1;
}
sub delete {
my($self, $key) = @_;
my $node = $self->{nodes}{$key} || return;
# return unless $node;
$self->print("delete() [$key, $node->[$VALUE]]") if ($self->{dbg} > 1);
my $before = $node->[$BEFORE];
my $after = $node->[$AFTER];
# my($before, $after) = $node->{before,after};
if($before) {
($before->[$AFTER] = $after);
} else {
$self->{head} = $after;
}
if($after) {
($after->[$BEFORE] = $before);
} else {
$self->{tail} = $before;
}
delete $self->{nodes}{$key};
$self->{bytes} -= ($node->[$BYTES] + $STRUCT_SIZE);
$self->{count}--;
$node;
}
sub flush {
my $self = shift;
$self->print("FLUSH CACHE") if ($self->{dbg} > 1);
my $node = $self->{head};
my $flush_count = 0;
while($node) {
if($node->[$DIRTY]) {
$self->print("flush dirty write() [$node->[$KEY], $node->[$VALUE]]")
if ($self->{dbg} > 1);
$self->write($node->[$KEY], $node->[$VALUE]);
$node->[$DIRTY] = 0;
$flush_count++;
}
$node = $node->[$AFTER];
}
$flush_count;
}
sub print {
my($self, $msg) = @_;
print "$self: $msg\n";
}
sub pretty_self {
my($self) = @_;
my(@prints);
for(sort keys %{$self}) {
next unless defined $self->{$_};
push(@prints, "$_=>$self->{$_}");
}
"{ " . join(", ", @prints) . " }";
}
sub pretty_chains {
my($self) = @_;
my($str);
my $k = $self->FIRSTKEY();
$str .= "[head]->";
my($curr_node) = $self->{head};
while($curr_node) {
$str .= "[$curr_node->[$KEY],$curr_node->[$VALUE]]->";
$curr_node = $curr_node->[$AFTER];
}
$str .= "[tail]->";
$curr_node = $self->{tail};
while($curr_node) {
$str .= "[$curr_node->[$KEY],$curr_node->[$VALUE]]->";
$curr_node = $curr_node->[$BEFORE];
}
$str .= "[head]";
$str;
}
1;
__END__
=head1 INSTALLATION
Tie::Cache installs easily using the make or nmake commands as
shown below. Otherwise, just copy Cache.pm to $PERLLIB/site/Tie
> perl Makefile.PL
> make
> make test
> make install
* use nmake for win32
** you can also just copy Cache.pm to $perllib/Tie
=head1 BENCMARKS
There is another simpler LRU cache implementation in CPAN,
Tie::Cache::LRU, which has the same basic size limiting
functionality, and for this functionality, the exact same
interface.
Through healthy competition, Michael G Schwern got
Tie::Cache::LRU mostly faster than Tie::Cache on reads & writes:
Cache Size 5000 Tie::Cache 0.17 Tie::Cache::LRU 20110205.00
10000 Writes 0.63 CPU sec 0.47 CPU sec
40000 Reads 0.79 CPU sec 0.71 CPU sec
10000 Deletes 0.23 CPU sec 0.26 CPU sec
Unless you are using TRUE CACHE or MaxBytes functionality,
using Tie::Cache::LRU could be an easy replacement for Tie::Cache.
OTOH one nice thing about this module is its lack of external module dependencies!
=head1 TRUE CACHE
To use class as a true cache, which acts as the sole interface
for some data set, subclass the real cache off Tie::Cache,
with @ISA = qw( 'Tie::Cache' ) notation. Then override
the read() method for behavior when there is a cache miss,
and the write() method for behavior when the cache's data
changes.
When WriteSync is 1 or TRUE (DEFAULT), write() is called immediately
when data in the cache is modified. If set to 0, data that has
been modified in the cache gets written out when the entries are deleted or
during the DESTROY phase of the cache object, usually at the end of
a script.
To have the dirty data write() periodically while WriteSync is set to 0,
there is a flush() cache API call that will flush the dirty writes
in this way. Just call the flush() API like:
my $write_flush_count = tied(%cache)->flush();
The flush() API was added in the .17 release thanks to Rob Bloodgood.
=head1 TRUE CACHE EXAMPLE
use Tie::Cache;
# personalize the Tie::Cache object, by inheriting from it
package My::Cache;
@ISA = qw(Tie::Cache);
# override the read() and write() member functions
# these tell the cache what to do with a cache miss or flush
sub read {
my($self, $key) = @_;
print "cache miss for $key, read() data\n";
rand() * $key;
}
sub write {
my($self, $key, $value) = @_;
print "flushing [$key, $value] from cache, write() data\n";
}
my $cache_size = $ARGV[0] || 2;
my $num_to_cache = $ARGV[1] || 4;
my $Debug = $ARGV[2] || 1;
tie %cache, 'My::Cache', $cache_size, {Debug => $Debug};
# load the cache with new data, each through its contents,
# and then reload in reverse order.
for(1..$num_to_cache) { print "read data $_: $cache{$_}\n" }
while(my($k, $v) = each %cache) { print "each data $k: $v\n"; }
for(my $i=$num_to_cache; $i>0; $i--) { print "read data $i: $cache{$i}\n"; }
# flush writes now, trivial use since will happen in DESTROY() anyway
tied(%cache)->flush();
# clear cache in 2 ways, write will flush out to disk
%cache = ();
undef %cache;
=head1 NOTES
Many thanks to all those who helped me make this module a reality,
including:
:) Tom Hukins who provided me insight and motivation for
finishing this module.
:) Jamie McCarthy, for trying to make Tie::Cache be all
that it can be.
:) Rob Fugina who knows how to "TRULY CACHE".
:) Rob Bloodgood, for the TRUE CACHE flush() API
=head1 AUTHOR
Please send any questions or comments to Joshua Chamas at chamas@alumni.stanford.org
=head1 COPYRIGHT
Copyright (c) 1999-2012 Joshua Chamas, Chamas Enterprises Inc.
Sponsored by development on NodeWorks http://nodeworks.com and Web Test.org http://web-test.org
All rights reserved. This program is free software; you can redistribute it and/or modify it under the same
terms as Perl itself.
=cut
|