/usr/share/perl5/Text/Ngrams.pm is in libtext-ngrams-perl 2.006-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 | # (c) 2003-2017 Vlado Keselj http://web.cs.dal.ca/~vlado
#
# Text::Ngrams - A Perl module for N-grams processing
package Text::Ngrams;
use strict;
require Exporter;
use Carp;
use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);
@ISA = qw(Exporter);
%EXPORT_TAGS = ( 'all' => [ qw(new encode_S decode_S) ] );
@EXPORT_OK = ( @{ $EXPORT_TAGS{'all'} } );
@EXPORT = qw(new);
$VERSION = '2.006';
use vars qw($Version);
$Version = $VERSION;
use vars @EXPORT_OK;
use vars qw(); # non-exported package globals go here
sub new {
my $package = shift;
$package = ref($package) || $package;
my $self = {};
my (%params) = @_;
$self->{windowsize} = exists($params{windowsize}) ?
$params{windowsize} : 3;
die "nonpositive window size: $self->{windowsize}" unless $self->{windowsize} > 0;
delete($params{windowsize});
if (! exists($params{type}) or $params{type} eq 'character') {
$self->{skiprex} = '';
$self->{tokenrex} = qr/([a-zA-Z]|[^a-zA-Z]+)/;
$self->{processtoken} = sub { s/[^a-zA-Z]+/ /; $_ = uc $_ };
$self->{allow_iproc} = 1;
}
elsif ($params{type} eq 'utf8') {
$self->{skiprex} = '';
$self->{tokenrex} = qr/([\xF0-\xF4][\x80-\xBF][\x80-\xBF][\x80-\xBF]
|[\xE0-\xEF][\x80-\xBF][\x80-\xBF]
|[\xC2-\xDF][\x80-\xBF]
|[\x00-\xFF])/x;
$self->{processtoken} = '';
}
#MJ ->
#this type is analogous to the "character" type but defined for utf8 characters
elsif ($params{type} eq 'utf8_character') {
# $self->{inputlayer}
# input layer to be put on the input stream by the function binmode
# before reading from a given stream and to be removed by
# ***binmode HANDLE,":pop"*** after the reading from the particular
# stream is done has to be a real layer (like ":encoding(utf8)"), not a
# pseudo layer (like ":utf8") so that the pseudo layer ":pop" is able to
# remove this input layer
$self->{inputlayer} = ':encoding(utf8)';
# this will automatically decode input text from utf8 into Perl internal
# reporesentation of Unicode strings and so the regular expressions for
# Unicode as well as the uc function can be performed on them
$self->{skiprex} = '';
$self->{tokenrex} = qr/(\p{IsAlpha}|\P{IsAlpha}+)/;
$self->{processtoken} = sub { s/\P{IsAlpha}+/ /; $_ = uc $_ ;
$_ = Encode::encode_utf8( $_ ); };
# the last operation ***$_=Encode::encode_utf8( $_ )*** is necessary
# to go back to utf8 encoding from the internal Perl representation
# so that for the output the n-grams are in utf8 (encoded by encode_S though)
$self->{allow_iproc} = 0;
# allow_iproc has to be 0. Otherwise the last token in the read block will
# be preprocessed and encoded in utf8,
# and then attached at the beginning of the next block read from input,
# which will be in the internal Perl representation
}
#MJ <-
elsif ($params{type} eq 'byte') {
$self->{skiprex} = '';
$self->{tokenrex} = '';
$self->{processtoken} = '';
}
elsif ($params{type} eq 'word') {
$self->{skiprex} = qr/[^a-zA-Z0-9]+/;
$self->{skipinsert} = ' ';
$self->{tokenrex} = qr/([a-zA-Z]+|(\d+(\.\d+)?|\d*\.\d+)([eE][-+]?\d+)?)/;
$self->{processtoken} = sub { s/(\d+(\.\d+)?|\d*\.\d+)([eE][-+]?\d+)?/<NUMBER>/ }
}
else { die "unknown type: $params{type}" }
delete($params{type});
$self->{'table'} = [ ];
$self->{'total'} = [ ];
$self->{'total_distinct_count'} = 0;
$self->{'lastngram'} = [ ];
$self->{'next_token_id'} = 0;
$self->{'token_dict'} = { };
$self->{'token_S'} = [ ];
$self->{'token'} = [ ];
foreach my $i ( 1 .. $self->{windowsize} ) {
$self->{table}[$i] = { };
$self->{total}[$i] = 0;
$self->{firstngram}[$i] = '';
$self->{lastngram}[$i] = '';
}
if (exists($params{'limit'})) {
die "limit=$params{'limit'}" if $params{'limit'} < 1;
$self->{'limit'} = $params{'limit'};
}
delete($params{'limit'});
die "unknown parameters:".join(' ', %params) if %params;
bless($self, $package);
return $self;
}
sub feed_tokens {
my $self = shift;
# count all n-grams sizes starting from max to 1
foreach my $t1 (@_) {
my $t = $t1;
if (defined($self->{token_dict}->{$t})) {
$t = $self->{token_dict}->{$t};
} else {
my $id = $self->{next_token_id}++;
$self->{token_S}->[$id] = &encode_S($t);
$self->{token}->[$id] = $t;
$t = $self->{token_dict}->{$t} = $id;
}
for (my $n=$self->{windowsize}; $n > 0; $n--) {
if ($n > 1) {
next unless $self->{lastngram}[$n-1] ne '';
$self->{lastngram}[$n] = $self->{lastngram}[$n-1] .
' ' . $t;
} else { $self->{lastngram}[$n] = $t }
if ( ($self->{table}[$n]{$self->{lastngram}[$n]} += 1)==1)
{ $self->{'total_distinct_count'} += 1 }
$self->{'total'}[$n] += 1;
if ($self->{'firstngram'}[$n] eq '')
{ $self->{'firstngram'}[$n] = $self->{lastngram}[$n] }
}
}
if (exists($self->{'limit'}) and
$self->{'total_distinct_count'} > 2 * $self->{'limit'})
{ $self->_reduce_to_limit }
}
sub process_text {
my $self = shift;
$self->_process_text(0, @_);
if (exists($self->{'limit'})) { $self->_reduce_to_limit }
}
sub _process_text {
my $self = shift;
my $cont = shift; # the minimal number of chars left for
# continuation (the new-line problem, and the
# problem with too long lines)
# The remainder of unprocessed string is
# returned.
if ($cont < 0) { $cont = 0 }
if ( # type is byte
$self->{skiprex} eq '' and
$self->{tokenrex} eq '' and
$self->{processtoken} eq '' and
$cont == 0
)
{ return $self->_process_text_byte(@_) }
my (@tokens);
my $text;
while (@_) {
$text .= shift @_;
while (length($text) > 0) {
my $textl = $text;
my $skip = '';
if ($self->{skiprex} ne '' && $textl =~ /^$self->{skiprex}/)
{ $skip = $&; $textl = $'; }
if (defined($self->{skipinsert})) {
$skip = $self->{skipinsert};
$text = $skip.$textl;
}
if (length($textl) < $cont) { last }
if (length($textl)==0) { $text=$textl; last; }
local $_;
if ($self->{tokenrex} ne '') {
if ($textl =~ /^$self->{tokenrex}/)
{ $_ = $&; $textl = $'; }
}
else
{ $_ = substr($textl, 0, 1); $textl = substr($textl, 1) }
last if $_ eq '';
if (length($textl) < $cont) {
if (defined($self->{allow_iproc}) && $self->{allow_iproc}
&& ref($self->{processtoken}) eq 'CODE')
{ &{$self->{processtoken}} }
$text = $skip.$_.$textl;
last;
}
if (ref($self->{processtoken}) eq 'CODE')
{ &{$self->{processtoken}} }
push @tokens, $_;
$text = $textl;
}
}
$self->feed_tokens(@tokens);
return $text;
}
sub _process_text_byte {
my $self = shift;
for (my $i=0; $i<=$#_; ++$i) {
my @a = split('', $_[$i]);
next if $#a==-1;
$self->feed_tokens( @a );
}
return '';
}
sub process_files {
my $self = shift;
#MJ ->
my $input_layer='';
if (defined($self->{inputlayer})) {$input_layer=$self->{inputlayer};}
#MJ <-
foreach my $f (@_) {
my $f1;
local *F;
if (not ref($f))
{ open(F, "$f") or die "cannot open $f:$!"; $f1 = *F }
else { $f1 = $f }
binmode $f1; # avoid text mode
#MJ ->
#put the encoding layer on the input when requested
if ($input_layer ne '') {
binmode $f1, $input_layer;
}
#MJ <-
my ($text, $text_l, $cont) = ('', 0, 1);
if ( # type is byte
$self->{skiprex} eq '' and
$self->{tokenrex} eq '' and
$self->{processtoken} eq ''
)
{ $cont = 0 }
while (1) {
$text_l = length($text);
read($f1, $text, 1024, length($text));
last if length($text) <= $text_l;
$text = $self->_process_text($cont, $text);
}
$text = $self->_process_text(0, $text);
#MJ ->
#remove the encoding layer from the input stream if it was added
#Caution: here is what the Perl documentation says about the pseudo layer ":pop"
#"Should be considered as experimental. (...) A more elegant (and safer) interface is needed."
if ($input_layer ne '') {
binmode $f1,":pop";
}
#MJ <-
close($f1) if not ref($f);
if (exists($self->{'limit'})) { $self->_reduce_to_limit }
}
}
sub _reduce_to_limit {
my $self = shift;
return unless exists($self->{'limit'}) and
$self->{'limit'} > 0;
while ($self->{'total_distinct_count'} > $self->{'limit'}) {
my $nextprunefrequency = 0;
for (my $prunefrequency=1;; $prunefrequency = $nextprunefrequency) {
$nextprunefrequency = $self->{'total'}[1];
foreach my $n (1 .. $self->{'windowsize'}) {
my @keys = keys(%{$self->{table}[$n]});
foreach my $ngram (@keys) {
my $f = $self->{table}[$n]{$ngram};
if ($f <= $prunefrequency) {
delete $self->{'table'}[$n]{$ngram};
$self->{'total'}[$n] -= $prunefrequency;
$self->{'total_distinct_count'} -= 1;
}
elsif ($nextprunefrequency > $f)
{ $nextprunefrequency = $f }
}
return if $self->{'total_distinct_count'} <= $self->{'limit'};
die if $nextprunefrequency <= $prunefrequency;
} } } }
# Sorts keys according to the lexicographic order.
sub _keys_sorted {
my $self = shift;
my $n = shift;
my @k = keys(%{$self->{table}[$n]});
my %k1 = ();
foreach my $k (@k) {
$k1{
join (' ', map { $self->{token}->[$_] } split(/ /, $k) )
} = $k;
}
@k = ();
foreach my $k (sort(keys(%k1))) {
push @k, $k1{$k};
}
return @k;
}
sub get_ngrams {
my $self = shift;
my (%params) = @_;
my $n = exists($params{'n'})? $params{'n'} : $self->{windowsize};
my $onlyfirst = exists($params{'onlyfirst'}) ? $params{'onlyfirst'} : '';
my $opt_normalize = exists($params{'normalize'}) ?$params{'normalize'} : '';
my $total = $self->{total}[$n]; my @keys = ();
if (!exists($params{'orderby'}) or $params{'orderby'} eq 'ngram') {
@keys = $self->_keys_sorted($n);
} elsif ($params{'orderby'} eq 'none') {
die "onlyfirst requires order" if $onlyfirst;
@keys = keys(%{$self->{table}[$n]})
}
elsif ($params{'orderby'} eq 'frequency') {
@keys = $self->_keys_sorted($n);
my %keysord = ();
for (my $i=0; $i<=$#keys; ++$i) { $keysord{$keys[$i]} = $i }
@keys = sort { $self->{table}[$n]{$b} <=> $self->{table}[$n]{$a}
or $keysord{$a} <=> $keysord{$b} }
keys(%{$self->{table}[$n]});
}
else { die }
@keys = splice(@keys,0,$onlyfirst) if $onlyfirst;
my @ret;
foreach my $ngram (@keys) {
my $count = $self->{table}[$n]{$ngram};
$count = ($opt_normalize ? ($count / $total ) : $count);
push @ret, $self->_encode_S($ngram), $count;
}
return @ret;
}
sub to_string {
my $self = shift;
my (%params) = @_;
my $n = exists($params{'n'})? $params{'n'} : $self->{windowsize};
my $onlyfirst = exists($params{'onlyfirst'}) ? $params{'onlyfirst'} : '';
my $opt_normalize = exists($params{'normalize'}) ?$params{'normalize'} : '';
#my $onlyfirst = exists($params{'onlyfirst'}) ?
#$params{'onlyfirst'} : '';
#delete $params{'onlyfirst'};
my $out = exists($params{'out'}) ? $params{'out'} : '';
delete $params{'out'};
my $outh = $out;
if ($out and (not ref($out))) {
local *FH; open(FH, ">$out") or die "cannot open $out:$!";
$outh = *FH;
}
#my $opt_normalize = $params{'normalize'};
#delete $params{'normalize'};
my $spartan = $params{'spartan'};
delete $params{'spartan'};
my $ret='';
$ret = "BEGIN OUTPUT BY Text::Ngrams version $VERSION\n\n" unless $spartan;
foreach my $n (1 .. $self->{windowsize}) {
if ($spartan and $n < $self->{windowsize}) { next }
if (! $spartan ) {
my $tmp = "$n-GRAMS (total count: $self->{total}[$n])";
$ret .= "$tmp\n" .
"FIRST N-GRAM: ". $self->_encode_S($self->{firstngram}[$n]).
"\n LAST N-GRAM: ".$self->_encode_S($self->{lastngram}[$n])."\n".
('-' x length($tmp)) . "\n";
}
my $total = $self->{total}[$n];
my @keys;
if (!exists($params{'orderby'}) or $params{'orderby'} eq 'ngram')
{ @keys = $self->_keys_sorted($n) }
elsif ($params{'orderby'} eq 'none') {
die "onlyfirst requires order" if $onlyfirst;
@keys = keys(%{$self->{table}[$n]})
}
elsif ($params{'orderby'} eq 'frequency') {
@keys = sort { $self->{table}[$n]{$b} <=>
$self->{table}[$n]{$a} }
keys(%{$self->{table}[$n]});
}
else { die }
@keys = splice(@keys,0,$onlyfirst) if $onlyfirst;
my %params1=%params; $params1{n}=$n;
my @a = $self->get_ngrams(%params1);
for (my $i=0; $i<=$#a; $i+=2) {
my $ng = $a[$i]; my $f = $a[$i+1];
$ret.="$ng\t$f\n";
}
if ($out) { print $outh $ret; $ret = '' }
$ret .= "\n" unless $spartan;
}
$ret .= "END OUTPUT BY Text::Ngrams\n" unless $spartan;
if ($out) {
print $outh $ret; $ret = '';
close($outh) if not ref($out);
}
return $ret;
}
# http://web.cs.dal.ca/~vlado/srcperl/snip/decode_S
sub decode_S ( $ ) {
local $_ = shift;
my $out;
while (length($_) > 0) {
if (/^\\(\S)/) {
$_ = $'; my $tmp = $1;
$tmp =~ tr/0-5Aabtnvfroil6-9NSTcEseFGRUd/\x00-\x1F\x7F/;
$out .= $tmp;
}
elsif (/^\^_/) { $_ = $'; $out .= "\240" }
elsif (/^\^(\S)/) { $_ = $'; $out .= pack('C',ord($1)+128); }
elsif (/^\`(\S)/) {
$_ = $'; my $tmp = $1;
$tmp =~ tr/0-5Aabtnvfroil6-9NSTcEseFGRUd/\x00-\x1F\x7F/;
$out .= pack('C', ord($tmp)+128);
}
elsif (/^_+/) { $_ = $'; my $tmp = $&; $tmp =~ tr/_/ /; $out .= $tmp; }
elsif (/^[^\\^\`\s_]+/) { $_ = $'; $out .= $&; }
else { die "decode_S unexpected:$_" }
}
return $out;
}
sub _encode_S {
my $self = shift;
my @r = ();
while (@_) {
push @r,
map { $self->{token_S}->[$_] } split(/ /, shift @_);
}
return join(' ', @r);
}
# http://www.cs.dal.ca/~vlado/srcperl/snip/encode_S
sub encode_S( $ ) {
local $_ = shift;
s/=/=0/g; # first hide a special character (=)
s/\\/=b/g; # encode backslashes
s/([\x80-\xFF])/=x$1/g; # replace >127 with 127
tr/\x80-\xFF/\x00-\x7F/;
s/=x=/=X/g; # hide again =
s/([\x00-\x1F\x5C\x5E-\x60\x7F])/=B$1/g;
tr/\x20\x00-\x1F\x7F/_0-5Aabtnvfroil6-9NSTcEseFGRUd/;
s/=x=B(\S)/`$1/g; # hex backslash
s/=x(\S)/^$1/g; # hex other
s/=B(\S)/\\$1/g; # backslashed
s/=b/\\\\/g; # original backslashes
s/=X/^=0/g;
s/=0/=/g; # put back =
return $_;
}
1;
__END__
=head1 NAME
Text::Ngrams - Flexible Ngram analysis (for characters, words, and more)
=head1 SYNOPSIS
For default character n-gram analysis of string:
use Text::Ngrams;
my $ng = Text::Ngrams->new;
$ng->process_text('abcdefg1235678hijklmnop');
print $ng3->to_string;
my @ngramsarray = $ng->get_ngrams;
# or put ngrams and frequencies into a hash
my %ngrams = $ng3->get_ngrams( n => 3, normalize => 1 );
One can also feed tokens manually:
use Text::Ngrams;
my $ng3 = Text::Ngrams->new;
$ng3->feed_tokens('a');
$ng3->feed_tokens('b');
$ng3->feed_tokens('c', 'd');
$ng3->feed_tokens(qw(e f g h));
We can choose n-grams of various sizes, e.g.:
my $ng = Text::Ngrams->new( windowsize => 6 );
or different types of n-grams, e.g.:
my $ng = Text::Ngrams->new( type => byte );
my $ng = Text::Ngrams->new( type => word );
my $ng = Text::Ngrams->new( type => utf8 );
To process a list of files:
$ng->process_files('somefile.txt', 'otherfile.txt');
To read the standard input or another file handle:
$ng->process_files(\*STDIN);
To read a file named file.txt and create a profile file file.profile
of 100 most frequent, normalized byte tri-grams:
use Text::Ngrams;
my $ng = Text::Ngrams->new( windowsize => 3, type => byte );
$ng->process_files("file.txt");
$ng->to_string( orderby=>'frequency', onlyfirst=>100,
out => "file.profile", normalize=>1,
spartan=>1);
=head1 DESCRIPTION
This module implement text n-gram analysis, supporting several types of
analysis, including character and word n-grams.
The module Text::Ngrams is very flexible. For example, it allows a user
to manually feed a sequence of any tokens. It handles several types of tokens
(character, word), and also allows a lot of flexibility in automatic
recognition and feed of tokens and the way they are combined in an n-gram.
It counts all n-gram frequencies up to the maximal specified length.
The output format is meant to be pretty much human-readable, while also
loadable by the module.
The module can be used from the command line through the script
C<ngrams.pl> provided with the package.
=head1 OUTPUT FORMAT
The output looks like this (version number may be different):
BEGIN OUTPUT BY Text::Ngrams version 2.004
1-GRAMS (total count: 8)
------------------------
a 1
b 1
c 1
d 1
e 1
f 1
g 1
h 1
2-GRAMS (total count: 7)
------------------------
ab 1
bc 1
cd 1
de 1
ef 1
fg 1
gh 1
3-GRAMS (total count: 6)
------------------------
abc 1
bcd 1
cde 1
def 1
efg 1
fgh 1
END OUTPUT BY Text::Ngrams
N-grams are encoded using encode_S
(F<web.cs.dal.ca/~vlado/srcperl/snip/encode_S>), so that they can
always be recognized as \S+. This encoding does not change strings
"too much", e.g., letters, digits, and most punctuation characters
will remail unchanged, and space is replaced by underscore (_).
However, all bytes (even with code greater than 127) are encoded in
unambiguous and relatively compact way. Two functions, encode_S and
decode_S, are provided for translating arbitrary string into this form
and vice versa.
An example of word n-grams containing space:
BEGIN OUTPUT BY Text::Ngrams version 2.004
1-GRAMS (total count: 8)
------------------------
The 1
brown 3
fox 3
quick 1
2-GRAMS (total count: 7)
------------------------
The_brown 1
brown_fox 2
brown_quick 1
fox_brown 2
quick_fox 1
END OUTPUT BY Text::Ngrams
Or, in case of byte type of processing:
BEGIN OUTPUT BY Text::Ngrams version 2.004
1-GRAMS (total count: 55)
-------------------------
\t 3
\n 3
_ 12
, 2
. 3
T 1
b 3
c 1
... etc
2-GRAMS (total count: 54)
-------------------------
\t_ 1
\tT 1
\tb 1
\n\t 2
__ 5
_. 1
_b 2
_f 3
_q 1
,\n 2
.\n 1
.. 2
Th 1
br 3
ck 1
e_ 1
... etc
END OUTPUT BY Text::Ngrams
=head1 METHODS
=head2 new ( windowsize => POS_INTEGER, type => 'character' | 'byte' | 'word' | 'utf8' | 'utf8_character', limit => POS_INTEGER )
my $ng = Text::Ngrams->new;
my $ng = Text::Ngrams->new( windowsize=>10 );
my $ng = Text::Ngrams->new( type=>'word' );
my $ng = Text::Ngrams->new( limit=>10000 );
and similar.
Creates a new C<Text::Ngrams> object and returns it.
Parameters:
=over 4
=item limit
Limit the number of distinct n-grams collected during processing. Processing large files may be
slow, so you can limit the total number of distinct n-grams which are
counted to speed up processing. The speed-up is implemented by periodically prunning the
collected n-gram. Due to this process, the final n-gram counts may not be correct, and
the list of final most frequen n-grams may not be correct either.
B<BEWARE:> If a limit is set, the n-gram counts at the end may not be
correct due to periodical pruning of n-grams.
=item windowsize
n-gram size (i.e., `n' itself). Default is 3
if not given. It is stored in $object->{windowsize}.
=item type
Specifies a predefined type of n-grams:
=over 4
=item character (default)
Default character n-grams:
Read letters, sequences of all other characters are replaced
by a space, letters are turned uppercase.
=item byte
Raw character n-grams:
Don't ignore any bytes and don't pre-process them.
=item utf8
UTF8 characters: Variable length encoding.
=item word
Default word n-grams:
One token is a word consisting of letters, digits and decimal digit
are replaced by <NUMBER>, and everything else is ignored. A space is inserted
when n-grams are formed.
=item utf8_character
UTF8 analogue of the "character" type: from a UTF8 encoded text reads letters,
sequences of all other characters are replaced by a space, letters are turned uppercase
=back
One can also modify type, creating its own type, by fine-tuning several parameters
(they can be undefined):
$o->{skiprex} - regular expression for ignoring stuff between tokens.
$o->{skipinsert} - string to replace a skiprex match that makes
string too short (efficiency issue)
$o->{tokenrex} - regular expression for recognizing a token. If it is
empty, it means chopping off one character.
$o->{processtoken} - routine for token preprocessing. Token is given and returned in $_.
$o->{allow_iproc} - boolean, if set to true (1) allows for incomplete
tokens to be preprocessed and put back (efficiency motivation)
$o->{inputlayer} - input layer to be put on the input stream by the function binmode
before reading from a given stream and to be removed by ***binmode HANDLE,":pop"***
after the reading from the particular stream is done.
Has to be a real layer (like ":encoding(utf8)"), not a pseudo layer (like ":utf8")
so that the pseudo layer ":pop" is able to remove this input layer
For example, the types character, byte, and word are defined in the
foolowing way:
if ($params{type} eq 'character') {
$self->{skiprex} = '';
$self->{tokenrex} = qr/([a-zA-Z]|[^a-zA-Z]+)/;
$self->{processtoken} = sub { s/[^a-zA-Z]+/ /; $_ = uc $_ }
$self->{allow_iproc} = 1;
}
elsif ($params{type} eq 'byte') {
$self->{skiprex} = '';
$self->{tokenrex} = '';
$self->{processtoken} = '';
}
elsif ($params{type} eq 'utf8') {
$self->{skiprex} = '';
$self->{tokenrex} =
qr/([\xF0-\xF4][\x80-\xBF][\x80-\xBF][\x80-\xBF]
|[\xE0-\xEF][\x80-\xBF][\x80-\xBF]
|[\xC2-\xDF][\x80-\xBF]
|[\x00-\xFF])/x;
$self->{processtoken} = '';
}
elsif ($params{type} eq 'word') {
$self->{skiprex} = qr/[^a-zA-Z0-9]+/;
$self->{skipinsert} = ' ';
$self->{tokenrex} =
qr/([a-zA-Z]+|(\d+(\.\d+)?|\d*\.\d+)([eE][-+]?\d+)?)/;
$self->{processtoken} = sub
{ s/(\d+(\.\d+)?|\d*\.\d+)([eE][-+]?\d+)?/<NUMBER>/ }
}
=back
=head2 feed_tokens ( list of tokens )
$ng3->feed_tokens('a');
$ng3->feed_tokens('b', 'c');
This function supplies tokens directly.
=head2 process_text ( list of strings )
$ng3->process_text('abcdefg1235678hijklmnop');
$ng->process_text('The brown quick fox, brown fox, brown fox ...');
Process text, i.e., break each string into tokens and feed them.
=head2 process_files ( file_names or file_handle_references)
A usage example:
$ng->process_files('somefile.txt');
This method is used to process one or more files, similarly to processing text.
The files are processed line by line, so there should be no multi-line tokens.
Instead of filenames we can also give as arguments file handle references
when a file is already open. In this way, we can use the standard input handle as in:
$ng->process_files(\*STDIN);
=head2 get_ngrams ( n => NUMBER, orderby => 'ngram|frequency|none', onlyfirst => NUMBER, out => filename|handle,normalize=>1)
Returns an array of requested n-grams and their friequencies in order
(ngram1, f1, ngram2, f2, ...). The use of parameters is identical to
the function C<to_string>, except that the option 'spartan' is not applicable to C<get_ngrams> function.
Parameters:
=over 4
=item C<n>
The parameter C<n> specifies the size of n-grams being retrieved. The default value
is the C<windowsize> field. It should be less or equal than C<windowsize>.
=back
=head2 to_string ( orderby => 'ngram|frequency|none', onlyfirst => NUMBER, out => filename|handle, normalize => 1, spartan => 1 )
Some examples:
print $ng3->to_string;
print $ng->to_string( orderby=>'frequency' );
print $ng->to_string( orderby=>'frequency', onlyfirst=>10000 );
print $ng->to_string( orderby=>'frequency', onlyfirst=>10000,
normalize=>1 );
Produce string representation of the n-gram tables.
Parameters:
=over 4
=item C<orderby>
The parameter C<orderby> specifies the order of n-grams. The default
value is 'ngram'.
=item C<onlyfirst>
The parameter C<onlyfirst> causes printing only this many first n-grams
for each n. It is incompatible with C<orderby=>'none'>.
=item C<out>
The method C<to_string> produces n-gram tables. However, if those
tables are large and we know that we will write them to a file
right after processing, it may save memory and time to provide the
parameter C<out>, which is a filename or reference to a file handle.
(Experiments on my machine do not show significant improvement nor degradation.)
Filename will be opened and closed, while the file handle will not.
=item C<normalize>
This is a boolean parameter. By default, it is false (''), in which
case n-gram counts are produced. If it is true (e.g., 1), the output
will contain normalized frequencies; i.e., n-gram counts divided by
the total number of n-grams of the same size.
=item C<spartan>
This is a boolean parameter. By default, it is false (''), in which
case n-grams for n=1 up to the maximal value are printed. If it is
true, only a list of the most frequent n-grams with the maximal length
is printed.
=back
=head2 encode_S ( string )
This function translates any string in a /^\S*$/ compliant representation.
It is primarely used in n-grams string representation to prevent white-space
characters to invalidate the output format. A usage example is:
$e = Text::Ngrams::encode_S( $s );
or simply
$e = encode_S($s);
if encode_S is imported. Encodes arbitrary string into an \S* form.
See F<http://web.cs.dal.ca/~vlado/srcperl/snip/encode_S> for detailed
explanation.
=head2 decode_S ( string )
This is the inverse funcation of C<encode_S>. A usage example is:
$e = Text::Ngrams::decode_S( $s );
or simply
$e = decode_S($s);
if decode_S is imported. Decodes a string encoded in the \S* form.
See F<http://www.cs.dal.ca/~vlado/srcperl/snip/encode_S> for detailed
explanation.
=head1 PERFORMANCE
The performance can vary a lot depending on the type of file, in
particular on the content entropy. For example a file in English is
processed faster than a file in Chinese, due to a larger number of
distinct n-grams.
The following tests are preformed on a Pentium-III 550MHz, 512MB
memory, Linux Red Hat 6 platform. (See C<ngrams.pl> - the script is
included in this package.)
ngrams.pl --n=10 --type=byte 1Mfile
The 1Mfile is a 1MB file of Chinese text. The program spent
consistently 20 sec per 100KB, giving 200 seconds (3min and 20sec) for
the whole file. However, after 4 minutes I gave up on waiting for
n-grams to be printed. The bottleneck seems to be encode_S function,
so after:
ngrams.pl -n=10 --type=byte --orderby=frequency --onlyfirst=5000
1Mfile
it took about 3:24 + 5 =~ 9 minutes to print. After changing
C<ngrams.pl> so that it provides parameter C<out> to C<to_string> in
module C<Ngrams.pm> (see Text::Ngrams), it still took:
3:09+1:28+4:40=9.17.
=head1 LIMITATIONS
The method C<process_file> does not handle multi-line tokens by default.
This can be fixed, but it does not seem to be worth the code
complication. There are various ways around this if one really needs
such tokens: One way is to preprocess them. Another way is to read
as much text as necessary at a time then to use C<process_text>, which
does handle multi-line tokens.
=head1 THANKS
I would like to thank cpan-testers, Jost Kriege, Shlomo Yona, David
Allen (for localizing and reporting and efficiency issue with ngram
prunning), Andrija, Roger Zhang, Jeremy Moses, Kevin J. Ziese, Hassen
Bouzgou, Michael Ricie, and Jingyi Yang for bug reports and comments.
Thanks to Chris Jordan for providing initial implementation of the
function get_strings (2005).
Thanks to Magdalenda Jankowska for implementing a new ngrams type
utf8_character, which is very useful in processing non-English text;
and for a bug fix.
I will be grateful for comments, bug reports, or just letting me know
that you used the module.
=head1 AUTHOR
Author:
2003-2017 Vlado Keselj http://web.cs.dal.ca/~vlado
Contributors:
2005 Chris Jordan (contributed initial get_ngrams method)
2012 Magdalena Jankowska (utf8_character ngrams type)
This module is provided "as is" without expressed or implied warranty.
This is free software; you can redistribute it and/or modify it under
the same terms as Perl itself.
To acknowledge the use of this module in academic publications, please use
a reference to the following paper:
N-gram-based Author Profiles for Authorship Attribution.
Vlado Keselj, Fuchun Peng, Nick Cercone, and Calvin Thomas. In Proceedings of
the Conference Pacific Association for Computational Linguistics, PACLING'03,
Dalhousie University, Halifax, Nova Scotia, Canada, pp. 255-264, August 2003.
http://web.cs.dal.ca/~vlado/papers/meta/Kes03.html
The latest version can be found at F<http://web.cs.dal.ca/~vlado/srcperl/>.
=head1 HISTORY
This code originated in my "monkeys and rhinos" project in 2000, and
is related to authorship attribution project. After our papers on authorship
attribution it was reformatted as a Perl module in 2003.
=head1 SEE ALSO
Some of the similar projects and related resources are the following:
=over 4
=item Ngram Statistics Package in Perl, by T. Pedersen at al.
This is a package that includes a script for word n-grams.
=item Text::Ngram Perl Package by Simon Cozens
This is another CPAN package similar to Text::Ngrams for character n-grams.
As an XS implementation it is supposed to be very efficient.
=item Perl script ngram.pl by Jarkko Hietaniemi
This is a script for analyzing character n-grams.
=item Waterloo Statistical N-Gram Language Modeling Toolkit, in C++ by Fuchun Peng
A n-gram language modeling package written in C++.
=item CPAN N-gram module comparison article by Ben Bullock.
The page is available
at F<http://www.lemoda.net/perl/cpan-n-gram-modules/> gives an interesting list of
modules, although the review seem to be superficial and only partially correct.
The following modules are listed in this review:
Algorithm::NGram, IDS::Algorithm::Ngram, Lingua::EN::Bigram, Linuga::EN::Ngram,
Lingua::Gram, Lingua::Identify, Text::Mining::Algorithm::Ngram,
Text::Ngram, Text::Ngram::LanguageDetermine, Text::Ngramize, Ntext::Ngrams, and
Text::Positional::Ngram.
=back
Some links to these resources should be available at F<http://web.cs.dal.ca/~vlado/nlp>.
=cut
# $Id: $
|