/usr/include/seqan/translation/translation.h is in libseqan2-dev 2.3.2+dfsg2-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 | // ==========================================================================
// SeqAn - The Library for Sequence Analysis
// ==========================================================================
// Copyright (c) 2006-2016, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Knut Reinert or the FU Berlin nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Hannes Hauswedell <hauswedell@mi.fu-berlin.de>
// ==========================================================================
// Code for Dna(5) to AminoAcid Translation
// ==========================================================================
#ifndef INCLUDE_SEQAN_TRANSLATION_TRANSLATION_H_
#define INCLUDE_SEQAN_TRANSLATION_TRANSLATION_H_
namespace seqan {
// ============================================================================
// Forwards
// ============================================================================
// ============================================================================
// Tags, Classes, Enums
// ============================================================================
// -----------------------------------------------------------------------
// Enum TranslationFrames
// -----------------------------------------------------------------------
/*!
* @enum TranslationFrames
* @headerfile <seqan/translation.h>
* @brief Class Enum with frames for @link translate @endlink()
*
* @signature enum class TranslationFrames : uint8_t { ... };
*
* Please not that this is part of the translation module which requires C++11.
*
* @val TranslationFrames SINGLE_FRAME = 0;
* @brief Translate the sequence(s) "as is", n input sequences result in n output sequences.
*
* @val TranslationFrames WITH_REVERSE_COMPLEMENT = 1;
* @brief Translate the sequence(s) as well as their reverse complements (n -> * 2n).
*
* @val TranslationFrames WITH_FRAME_SHIFTS = 2;
* @brief Translate the sequence(s) as well as their shifted frames (n -> 3n).
*
* @val TranslationFrames SIX_FRAME = 3;
* @brief Equals (WITH_REVERSE_COMPLEMENT | WITH_FRAME_SHIFTS); shifted frames of original and reverse complement are
* translated (n -> 6n).
*/
enum TranslationFrames
{
SINGLE_FRAME = 0,
WITH_REVERSE_COMPLEMENT = 1,
WITH_FRAME_SHIFTS = 2,
SIX_FRAME = 3
};
// -----------------------------------------------------------------------
// Tag Frames_ (internal)
// -----------------------------------------------------------------------
template <uint8_t num>
struct Frames_
{};
// ============================================================================
// Metafunctions
// ============================================================================
// -----------------------------------------------------------------------
// Metafunction ReverseComplement_
// -----------------------------------------------------------------------
// type of the reverse complement of a string, also works with infixes and
// ModifiedStrings
template <typename T>
struct ReverseComplement_
{
typedef ModifiedString<
ModifiedString<T, ModView<
FunctorComplement<
typename Value<T>::Type > > >, ModReverse> Type;
};
// ============================================================================
// Functions
// ============================================================================
// --------------------------------------------------------------------------
// Function _ord()
// --------------------------------------------------------------------------
// returns ordValue of a DNA(5) or RNA(5) character
// for everything else (e.g. char) the character is converted to Dna5 first
template <typename T>
inline typename ValueSize<T>::Type
_ord(T const & c)
{
return ordValue(Dna5(c));
}
inline ValueSize<Dna>::Type
_ord(Dna const & c)
{
return ordValue(c);
}
inline ValueSize<Dna5>::Type
_ord(Dna5 const & c)
{
return ordValue(c);
}
inline ValueSize<Rna>::Type
_ord(Rna const & c)
{
return ordValue(c);
}
inline ValueSize<Rna5>::Type
_ord(Rna5 const & c)
{
return ordValue(c);
}
// --------------------------------------------------------------------------
// Function _translateTriplet()
// --------------------------------------------------------------------------
template <typename TOrd, GeneticCodeSpec CODE_SPEC>
inline AminoAcid
_translateTriplet(TOrd const & c1,
TOrd const & c2,
TOrd const & c3,
GeneticCode<CODE_SPEC> const & /**/)
{
return (( c1 > 3 ) || ( c2 > 3 ) || ( c3 > 3 ) )
? 'X'
: TranslateTableDnaToAminoAcid_<
GeneticCode<CODE_SPEC> >::VALUE[c1][c2][c3];
}
// --------------------------------------------------------------------------
// Function _translateString()
// --------------------------------------------------------------------------
template <typename TOutString, typename TInString, GeneticCodeSpec CODE_SPEC>
inline void
_translateString(TOutString & target,
TInString const & source,
GeneticCode<CODE_SPEC> const & /**/)
{
SEQAN_ASSERT_EQ(length(source)/3, length(target));
typedef typename Position<TInString>::Type TPos;
for (TPos i = 0; i+2 < length(source); i+=3)
{
target[i/3] = _translateTriplet(_ord(value(source, i )),
_ord(value(source, i+1)),
_ord(value(source, i+2)),
GeneticCode<CODE_SPEC>());
}
}
template <typename TOutString, typename TSpec, typename TInString, GeneticCodeSpec CODE_SPEC>
inline void
_translateString(Segment<TOutString, TSpec> && target,
TInString const & source,
GeneticCode<CODE_SPEC> const & /**/)
{
SEQAN_ASSERT_EQ(length(source)/3, length(target));
typedef typename Position<TInString>::Type TPos;
for (TPos i = 0; i+2 < length(source); i+=3)
{
target[i/3] = _translateTriplet(_ord(value(source, i )),
_ord(value(source, i+1)),
_ord(value(source, i+2)),
GeneticCode<CODE_SPEC>());
}
}
// --------------------------------------------------------------------------
// Function _translateImplLoop()
// --------------------------------------------------------------------------
// single frame
template <typename TSpec1, typename TSpec2, typename TSpec3, typename TInString,
GeneticCodeSpec CODE_SPEC>
inline void
_translateImplLoop(StringSet<String<AminoAcid, TSpec1>, TSpec2> & target,
unsigned const i,
StringSet<TInString, TSpec3> const & source,
GeneticCode<CODE_SPEC> const & /**/,
Frames_<1u> const & /**/)
{
typedef GeneticCode<CODE_SPEC> TCode;
_translateString(target[i], source[i], TCode());
}
// with reverse complement
template <typename TSpec1, typename TSpec2, typename TSpec3, typename TInString,
GeneticCodeSpec CODE_SPEC>
inline void
_translateImplLoop(StringSet<String<AminoAcid, TSpec1>, TSpec2> & target,
unsigned const i,
StringSet<TInString, TSpec3> const & source,
GeneticCode<CODE_SPEC> const & /**/,
Frames_<2u> const & /**/)
{
typedef typename Value<StringSet<TInString, TSpec3> const>::Type TVal;
typedef typename ReverseComplement_<TVal>::Type TRevComp;
typedef GeneticCode<CODE_SPEC> TCode;
if (i % 2)
{
TVal val(value(source, i/2));
_translateString(target[i], TRevComp(val), TCode());
}
else
{
_translateString(target[i], source[i/2], TCode());
}
}
// three frame
template <typename TSpec1, typename TSpec2, typename TSpec3, typename TInString,
GeneticCodeSpec CODE_SPEC>
inline void
_translateImplLoop(StringSet<String<AminoAcid, TSpec1>, TSpec2> & target,
unsigned const i,
StringSet<TInString, TSpec3> const & source,
GeneticCode<CODE_SPEC> const & /**/,
Frames_<3u> const & /**/)
{
typedef GeneticCode<CODE_SPEC> TCode;
_translateString(target[i], suffix(source[i/3], i % 3), TCode());
}
// six frame
template <typename TSpec1, typename TSpec2, typename TSpec3, typename TInString,
GeneticCodeSpec CODE_SPEC>
inline void
_translateImplLoop(StringSet<String<AminoAcid, TSpec1>, TSpec2> & target,
unsigned const i,
StringSet<TInString, TSpec3> const & source,
GeneticCode<CODE_SPEC> const & /**/,
Frames_<6u> const & /**/)
{
typedef typename Prefix<
typename Value<
StringSet<TInString, TSpec3> const>::Type>::Type TVal;
typedef typename ReverseComplement_<TVal>::Type TRevComp;
typedef GeneticCode<CODE_SPEC> TCode;
if ((i % 6) > 2)
{
TVal val(prefix(value(source, i/6), length(value(source,i/6)) - (i % 3)));
_translateString(target[i], TRevComp(val), TCode());
}
else
{
_translateString(target[i], suffix(source[i/6], i % 3), TCode());
}
}
// --------------------------------------------------------------------------
// Function _translateImplLoopOMPWrapper()
// --------------------------------------------------------------------------
template <typename TSource, typename TTarget, uint8_t frames,
GeneticCodeSpec CODE_SPEC>
inline void
_translateImplLoopOMPWrapper(TTarget & target,
TSource const & source,
GeneticCode<CODE_SPEC> const & /**/,
Frames_<frames> const & /**/,
Parallel const & /**/)
{
SEQAN_OMP_PRAGMA(parallel for schedule(dynamic))
for (int64_t i = 0; i < static_cast<int64_t>(length(target)); ++i)
_translateImplLoop(target, i, source, GeneticCode<CODE_SPEC>(),
Frames_<frames>());
}
template <typename TSource, typename TTarget, uint8_t frames,
GeneticCodeSpec CODE_SPEC>
inline void
_translateImplLoopOMPWrapper(TTarget & target,
TSource const & source,
GeneticCode<CODE_SPEC> const & /**/,
Frames_<frames> const & /**/,
Serial const & /**/)
{
typedef typename Size<TTarget>::Type TPos;
for (TPos i = 0; i < length(target); ++i)
_translateImplLoop(target, i, source, GeneticCode<CODE_SPEC>(),
Frames_<frames>());
}
// --------------------------------------------------------------------------
// Function _translateImpl()
// --------------------------------------------------------------------------
// general case
template <typename TSpec1, typename TSpec2, typename TSpec3, typename TInString,
typename TParallelism, GeneticCodeSpec CODE_SPEC, unsigned char n>
inline void
_translateImpl(StringSet<String<AminoAcid, TSpec1>, TSpec2> & target,
StringSet<TInString, TSpec3> const & source,
GeneticCode<CODE_SPEC> const & /**/,
Frames_<n> const & /**/,
TParallelism const & /**/)
{
typedef typename Position<StringSet<TInString, TSpec3> >::Type TPos;
resize(target, length(source) * n, Exact());
for (TPos i = 0; i < length(target); ++i)
{
// current dnastring's length / 3 (3DNA -> 1 AA)
TPos len = length(source[i/n]) / 3;
// shorten for shifted frames
if (( n > 2 ) && ( length(source[i/n]) % 3 ) < ( i%3 ))
--len;
resize(target[i], len, Exact());
}
_translateImplLoopOMPWrapper(target, source, GeneticCode<CODE_SPEC>(),
Frames_<n>(),
TParallelism());
}
// ConcatDirect specialization
template <typename TSpec1, typename TSpec3, typename TInString,
typename TParallelism, GeneticCodeSpec CODE_SPEC, unsigned char n>
inline void
_translateImpl(StringSet<String<AminoAcid,
TSpec1>, Owner<ConcatDirect<> > > & target,
StringSet<TInString, TSpec3> const & source,
GeneticCode<CODE_SPEC> const & /**/,
Frames_<n> const & /**/,
TParallelism const & /**/)
{
typedef typename Position<StringSet<TInString, TSpec3> >::Type TPos;
resize(target.limits, length(source) * n + 1, Exact());
target.limits[0] = 0;
for (TPos i = 0; i+1 < length(target.limits); ++i)
{
// current dnastring's length / 3 (3DNA -> 1 AA)
TPos len = length(source[i/n]) / 3;
// shorten for shifted frames
if (( n > 2 ) && ( length(source[i/n]) % 3 ) < ( i%3 ))
--len;
target.limits[i+1] = target.limits[i] + len;
}
resize(target.concat, back(target.limits), Exact());
_translateImplLoopOMPWrapper(target, source, GeneticCode<CODE_SPEC>(),
Frames_<n>(),
TParallelism());
}
// --------------------------------------------------------------------------
// Function _translateInputWrap()
// --------------------------------------------------------------------------
// stringset to stringset
template <typename TSpec1, typename TSpec2, typename TSpec3, typename TInString,
typename TParallelism, GeneticCodeSpec CODE_SPEC, unsigned char n>
inline void
_translateInputWrap(StringSet<String<AminoAcid, TSpec1>, TSpec2> & target,
StringSet<TInString, TSpec3> const & source,
GeneticCode<CODE_SPEC> const & /**/,
Frames_<n> const & /**/,
TParallelism const & /**/)
{
_translateImpl(target, source, GeneticCode<CODE_SPEC>(), Frames_<n>(),
TParallelism());
}
// single string to stringset conversion
template <typename TSpec1, typename TSpec2, typename TInString,
typename TParallelism, GeneticCodeSpec CODE_SPEC, unsigned char n>
inline void
_translateInputWrap(StringSet<String<AminoAcid, TSpec1>, TSpec2> & target,
TInString const & source,
GeneticCode<CODE_SPEC> const & /**/,
Frames_<n> const & /**/,
TParallelism const & /**/)
{
StringSet<TInString, Dependent<> > set;
appendValue(set, source);
_translateImpl(target, set, GeneticCode<CODE_SPEC>(), Frames_<n>(),
TParallelism());
}
//bail out because multiple frames don't fit in one string
template <typename TSpec1, typename TInString, typename TParallelism,
GeneticCodeSpec CODE_SPEC, unsigned char n>
inline void
_translateInputWrap(String<AminoAcid, TSpec1> & /**/,
TInString const & /**/,
GeneticCode<CODE_SPEC> const & /**/,
Frames_<n> const & /**/,
TParallelism const & /**/)
{
SEQAN_FAIL("Implementation error, multiple frames selected, but only a "
"singe target string.");
}
// single string to single string conversion
template <typename TSpec1, typename TInString, typename TParallelism,
GeneticCodeSpec CODE_SPEC>
inline void
_translateInputWrap(String<AminoAcid, TSpec1> & target,
TInString const & source,
GeneticCode<CODE_SPEC> const & /**/,
Frames_<1> const & /**/,
TParallelism const & /**/)
{
resize(target, length(source)/3, Exact());
_translateString(target, source, GeneticCode<CODE_SPEC>());
}
// --------------------------------------------------------------------------
// Function translate()
// --------------------------------------------------------------------------
/*!
* @fn translate
* @headerfile <seqan/translation.h>
* @brief translate sequences of Dna or Rna into amino acid alphabet, optionally with frames
* @signature int translate(target, source[, frames][, geneticCode][, TParallelism])
* @signature int translate(target, source[, frames][, geneticCodeSpec][, TParallelism])
*
* @param[out] target The amino acid sequence(s). @link StringSet @endlink of @link AminoAcid @endlink
* or @link String @endlink of @link AminoAcid @endlink if source is a single string
* and frames is <tt>SINGLE_FRAME</tt>.
* @param[in] source Source sequences @link String @endlink or @link StringSet @endlink.
* If the value type is not Dna, Dna5, Rna, Rna5 then it is converted
* to Dna5.
* @param[in] frame The @link TranslationFrames @endlink, defaults to SINGLE_FRAME.
* @param[in] geneticCode The @link GeneticCode @endlink to use, defaults
* to <tt>GeneticCode<CANONICAL></tt>
* (use to specify GeneticCode at compile-time)
* @param[in] geneticCodeSpec The @link GeneticCodeSpec @endlink to use
* (use to specify GenetiCode at run-time)
* @param[in] TParallelism Whether to use SMP or not, see @link ParallelismTags @endlink .
*
* @return int 0 on success, and -1 on incompatible parameters (e.g. multiple frames but target type not StringSet).
*
* If OpenMP is supported by platform and TParallelism is not specified as
* "Serial", translation will be parallelized. The only exception is when doing
* single-frame translation of a single string -- which is never parallelized.
*
* The translation process is fastest when using ConcatDirect-StringSets for
* both input and output StringSets and when not having to convert the alphabet
* of the source, i.e. feeding AminoAcid-Strings, not CharStrings (although
* the latter is possible).
*
* Please note that specifying the GeneticCode at compile time avoids having
* unrequired conversion tables in memory.
* @section Example
*
* @code{.cpp}
* StringSet<Dna5String> dnaSeqs;
*
* // do something that fills up dnaSeqs, e.g. read from file or assign
*
* StringSet<String<AminoAcid>, Owner<ConcatDirect<> > > aaSeqs;
*
* translate(aaSeqs, dnaSeqs, SIX_FRAME);
*
* // do something with the aaSeqs
* @endcode
*
* @see TranslationFrames
* @see GeneticCode
*/
template <typename TTarget, typename TSource, typename TParallelism,
GeneticCodeSpec CODE_SPEC>
inline void
translate(TTarget & target,
TSource const & source,
TranslationFrames const frames,
GeneticCode<CODE_SPEC> const & /**/,
TParallelism const & /**/)
{
typedef GeneticCode<CODE_SPEC> TCode;
switch (frames)
{
case SINGLE_FRAME:
return _translateInputWrap(target, source, TCode(), Frames_<1>(),
TParallelism());
case WITH_REVERSE_COMPLEMENT:
return _translateInputWrap(target, source, TCode(), Frames_<2>(),
TParallelism());
case WITH_FRAME_SHIFTS:
return _translateInputWrap(target, source, TCode(), Frames_<3>(),
TParallelism());
case SIX_FRAME:
return _translateInputWrap(target, source, TCode(), Frames_<6>(),
TParallelism());
}
}
template <typename TTarget, typename TSource, GeneticCodeSpec CODE_SPEC>
inline void
translate(TTarget & target,
TSource const & source,
TranslationFrames const frames,
GeneticCode<CODE_SPEC> const & /**/)
{
return translate(target, source, frames, GeneticCode<CODE_SPEC>(),
Parallel());
}
template <typename TTarget, typename TSource, GeneticCodeSpec CODE_SPEC>
inline void
translate(TTarget & target,
TSource const & source,
GeneticCode<CODE_SPEC> const & /**/)
{
return translate(target, source, SINGLE_FRAME,
GeneticCode<CODE_SPEC>(), Parallel());
}
template <typename TTarget, typename TSource>
inline void
translate(TTarget & target,
TSource const & source,
TranslationFrames const frames)
{
return translate(target, source, frames, GeneticCode<>(), Parallel());
}
template <typename TTarget, typename TSource>
inline void
translate(TTarget & target,
TSource const & source)
{
return translate(target, source, SINGLE_FRAME,
GeneticCode<>(), Parallel());
}
template <typename TTarget, typename TSource, typename TParallelism>
inline void
translate(TTarget & target,
TSource const & source,
TranslationFrames const frames,
TParallelism const & /**/)
{
return translate(target, source, frames, GeneticCode<>(), TParallelism());
}
// -----------------------------------------------------------------------
// Function translate() with run-time spec selection
// -----------------------------------------------------------------------
template <typename TTarget, typename TSource, typename TParallelism,
GeneticCodeSpec currentSpec, typename TRestList>
inline void
_translate(TTarget & /**/,
TSource const & /**/,
TranslationFrames const /**/,
GeneticCodeSpec const & /**/,
TagList<GeneticCode<currentSpec>, TRestList> const & /**/,
TParallelism const & /**/,
True const & /**/)
{
SEQAN_FAIL("Invalid genetic code translation table selected.\n");
}
// forward declare because of double-recursion
template <typename TTarget, typename TSource, typename TParallelism,
GeneticCodeSpec currentSpec, typename TRestList>
inline void
_translate(TTarget & target,
TSource const & source,
TranslationFrames const frames,
GeneticCodeSpec const & geneticCodeSpec,
TagList<GeneticCode<currentSpec>, TRestList> const & /**/,
TParallelism const & /**/);
template <typename TTarget, typename TSource, typename TParallelism,
GeneticCodeSpec currentSpec, typename TRestList>
inline void
_translate(TTarget & target,
TSource const & source,
TranslationFrames const frames,
GeneticCodeSpec const & geneticCodeSpec,
TagList<GeneticCode<currentSpec>, TRestList> const & /**/,
TParallelism const & /**/,
False const & /**/)
{
return _translate(target, source, frames, geneticCodeSpec, TRestList(),
TParallelism());
}
template <typename TTarget, typename TSource, typename TParallelism,
GeneticCodeSpec currentSpec, typename TRestList>
inline void
_translate(TTarget & target,
TSource const & source,
TranslationFrames const frames,
GeneticCodeSpec const & geneticCodeSpec,
TagList<GeneticCode<currentSpec>, TRestList> const & /**/,
TParallelism const & /**/)
{
typedef TagList<GeneticCode<currentSpec>, TRestList> TTagList;
if (geneticCodeSpec == currentSpec)
return translate(target, source, frames, GeneticCode<currentSpec>(),
TParallelism());
return _translate(target, source, frames, geneticCodeSpec,
TTagList(), TParallelism(),
typename IsSameType<TRestList, void>::Type());
}
template <typename TTarget, typename TSource, typename TParallelism>
inline void
translate(TTarget & target,
TSource const & source,
TranslationFrames const frames,
GeneticCodeSpec const & geneticCodeSpec,
TParallelism const & /**/)
{
return _translate(target, source, frames, geneticCodeSpec, GeneticCodes_(),
TParallelism());
}
// convenience
template <typename TTarget, typename TSource>
inline void
translate(TTarget & target,
TSource const & source,
TranslationFrames const frames,
GeneticCodeSpec const & geneticCode)
{
return translate(target, source, frames, geneticCode, Parallel());
}
}
#endif // INCLUDE_SEQAN_TRANSLATION_TRANSLATION_H_
|