This file is indexed.

/usr/include/relion-1.4/src/projector.h is in librelion-dev-common 1.4+dfsg-3ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/***************************************************************************
 *
 * Author: "Sjors H.W. Scheres"
 * MRC Laboratory of Molecular Biology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * This complete copyright notice must be included in any revised version of the
 * source code. Additional authorship citations may be added, but existing
 * author citations must be preserved.
 ***************************************************************************/
#ifndef __PROJECTOR_H
#define __PROJECTOR_H

#include "src/fftw.h"
#include "src/multidim_array.h"
#include "src/image.h"

#define NEAREST_NEIGHBOUR 0
#define TRILINEAR 1
#define CONVOLUTE_BLOB 2

#define FORWARD_PROJECTION 0
#define BACKWARD_PROJECTION 1

#define ACT_ON_DATA 0
#define ACT_ON_WEIGHT 1

class Projector
{
public:
	// The Fourier-space image data array
    MultidimArray<Complex > data;

    // Only points within this many pixels from the origin (in the original size) will be interpolated
    int r_max;

    // Radius of sphere within TRILINEAR interpolation will be used in NEAREST_NEIGHBOUR interpolator
    int r_min_nn;

    // Original size of the real-space map
    int ori_size;

    // Padded size of the map in Fourier-space
    int pad_size;

    // Interpolation scheme (TRILINEAR or NEAREST_NEIGHBOUR, for BackProjector also CONVOLUTE_BLOB)
    int interpolator;

    // Oversample FT by padding in real space
    int padding_factor;

    // Dimension of the reference (currently allowed 2 or 3)
    int ref_dim;

    // Dimension of the projections (2 or 3)
    int data_dim;

public:

    /** Empty constructor
     *
     * A default Projector is created.
     *
     * @code
     * Projector PPref;
     * @endcode
     */
    Projector()
    {
    	clear();
    }

   /** Constructor with parameters
     *
     * A default Projector is created.
     *
     * @code
     * Projector PPref(ori_size, NEAREST_NEIGHBOUR);
     * @endcode
     */
    Projector(int _ori_size, int _interpolator = TRILINEAR, int _padding_factor_3d = 2, int _r_min_nn = 10, int _data_dim = 2)
    {

    	// Store original dimension
    	ori_size = _ori_size;

    	// Padding factor for the map
    	padding_factor = _padding_factor_3d;

    	// Interpolation scheme
    	interpolator = _interpolator;

    	// Minimum radius for NN interpolation
    	r_min_nn = _r_min_nn;

    	// Dimension of the projections
    	data_dim = _data_dim;
    }

    /** Copy constructor
     *
     * The created Projector is a perfect copy of the input array but with a
     * different memory assignment.
     *
     * @code
     * Projector V2(V1);
     * @endcode
     */
	Projector(const Projector& op)
    {
		clear();
        *this = op;
    }

	/** Assignment.
     *
     * You can build as complex assignment expressions as you like. Multiple
     * assignment is allowed.
     */
	Projector& operator=(const Projector& op)
    {
        if (&op != this)
        {
        	data = op.data;
        	ori_size = op.ori_size;
        	pad_size = op.pad_size;
        	r_max = op.r_max;
        	r_min_nn = op.r_min_nn;
        	interpolator = op.interpolator;
        	padding_factor = op.padding_factor;
        	ref_dim = op.ref_dim;
        	data_dim  = op.data_dim;
        }
        return *this;
    }

	/** Destructor
      *
      * Clears everything
      *
      * @code
      * FourierInterpolator fourint;
      * @endcode
      */
     ~Projector()
     {
         clear();
     }

   /** Clear.
     * Initialize everything to back to default and empty arrays
     */
    void clear()
    {
    	data.clear();
    	r_max = r_min_nn = interpolator = padding_factor = ref_dim = data_dim = pad_size = 0;
    }

    /*
     * Resize data array to the given size
     */
    void initialiseData(int current_size = -1);

    /*
     * Initialise data array to all zeros
     */
    void initZeros(int current_size = -1);

    /*
     *  Only get the size of the data array
     */
    long int getSize();

    /* ** Prepares a 3D map for taking slices in its 3D Fourier Transform
    *
    * This routine does the following:
    * 1. It pads the input map with zeros to obtain oversampling in the Fourier transform
    * 2. It does the Fourier transform
    * 3. It sets values beyond Nyquist for images of current_size to zero in the transform and windows the transform at max_r+1
    * Depending on whether 2D or 3D Fourier Transforms will be extracted, the map is normalized internally in a different manner
    *
    */
   void computeFourierTransformMap(MultidimArray<DOUBLE> &vol_in, MultidimArray<DOUBLE> &power_spectrum, int current_size = -1, int nr_threads = 1, bool do_gridding = true);

   /* Because we interpolate in Fourier space to make projections and/or reconstructions, we have to correct
    * the real-space maps by dividing them by the Fourier Transform of the interpolator
    * Note these corrections are made on the not-oversampled, i.e. originally sized real-space map
    */
   void griddingCorrect(MultidimArray<DOUBLE> &vol_in);

   /*
	* Get a 2D Fourier Transform from the 2D or 3D data array
	* Depending on the dimension of the map, this will be a projection or a rotation operation
	*/
	void get2DFourierTransform(MultidimArray<Complex > &img_out, Matrix2D<DOUBLE> &A, bool inv)
	{
		// Rotation of a 3D Fourier Transform
		if (data_dim == 3)
		{
			if (ref_dim != 3)
				REPORT_ERROR("Projector::get3DFourierTransform%%ERROR: Dimension of the data array should be 3");
			rotate3D(img_out, A, inv);
		}
		else
		{
			switch (ref_dim)
			{
			case 2:
			   rotate2D(img_out, A, inv);
			   break;
			case 3:
			   project(img_out, A, inv);
			   break;
			default:
			   REPORT_ERROR("Projector::get2DSlice%%ERROR: Dimension of the data array should be 2 or 3");
			}
		}
	}

	/*
	* Get a 2D slice from the 3D map (forward projection)
	*/
	void project(MultidimArray<Complex > &img_out, Matrix2D<DOUBLE> &A, bool inv);

	/*
	* Get an in-plane rotated version of the 2D map (mere interpolation)
	*/
	void rotate2D(MultidimArray<Complex > &img_out, Matrix2D<DOUBLE> &A, bool inv);

	/*
	* Get a rotated version of the 3D map (mere interpolation)
	*/
	void rotate3D(MultidimArray<Complex > &img_out, Matrix2D<DOUBLE> &A, bool inv);


};




#endif