/usr/share/perl5/Regexp/Grammars.pm is in libregexp-grammars-perl 1.048-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 | =encoding ISO8859-1
=cut
package Regexp::Grammars;
use re 'eval';
use warnings;
use strict;
use 5.010;
use vars ();
use Scalar::Util qw< blessed reftype >;
use Data::Dumper qw< Dumper >;
our $VERSION = '1.048';
my $anon_scalar_ref = \do{my $var};
my $MAGIC_VARS = q{my ($CAPTURE, $CONTEXT, $DEBUG, $INDEX, $MATCH, %ARG, %MATCH);};
my $PROBLEM_WITH_5_18 = <<'END_ERROR_MSG';
Warning: Regexp::Grammars is unsupported
under Perl 5.18.0 through 5.18.3 due to a bug
in regex parsing under those versions.
Please upgrade to Perl 5.18.4 or later, or revert to
Perl 5.16 or earlier.
END_ERROR_MSG
# Load the module...
sub import {
# Signal lexical scoping (active, unless something was exported)...
$^H{'Regexp::Grammars::active'} = 1;
# Process any regexes in module's active lexical scope...
use overload;
overload::constant(
qr => sub {
my ($raw, $cooked, $type) = @_;
# In active scope and really a regex...
if (_module_is_active() && $type =~ /qq?/) {
return bless \$cooked, 'Regexp::Grammars::Precursor';
}
# Ignore everything else...
else {
return $cooked;
}
}
);
# Deal with 5.18 issues...
if ($] >= 5.018) {
# Issue warning...
if ($] < 5.018004) {
require Carp;
Carp::croak($PROBLEM_WITH_5_18);
}
# Deal with cases where Perl 5.18+ complains about
# the injection of (??{...}) and (?{...})
require re;
re->import('eval');
# Sanctify the standard Regexp::Grammars pseudo-variables from
# Perl 5.18's early enforcement of strictures...
my $caller = caller;
warnings->unimport('once');
@_ = ( 'vars', '$CAPTURE', '$CONTEXT', '$DEBUG', '$INDEX', '$MATCH', '%ARG', '%MATCH' );
goto &vars::import;
}
}
# Deactivate module's regex effect when it is "anti-imported" with 'no'...
sub unimport {
# Signal lexical (non-)scoping...
$^H{'Regexp::Grammars::active'} = 0;
require re;
re->unimport('eval');
}
# Encapsulate the hoopy user-defined pragma interface...
sub _module_is_active {
return (caller 1)[10]->{'Regexp::Grammars::active'};
}
my $RULE_HANDLER;
sub clear_rule_handler { undef $RULE_HANDLER; }
sub Regexp::with_actions {
my ($self, $handler) = @_;
$RULE_HANDLER = $handler;
return $self;
}
#=====[ COMPILE-TIME INTERIM REPRESENTATION OF GRAMMARS ]===================
{
package Regexp::Grammars::Precursor;
# Only translate precursors once...
state %grammar_cache;
use overload (
# Concatenation/interpolation just concatenates to the precursor...
q{.} => sub {
my ($x, $y, $reversed) = @_;
if (ref $x) { $x = ${$x} }
if (ref $y) { $y = ${$y} }
if ($reversed) { ($y,$x) = ($x,$y); }
$x .= $y//q{};
return bless \$x, 'Regexp::Grammars::Precursor';
},
# Using as a string (i.e. matching) preprocesses the precursor...
q{""} => sub {
my ($obj) = @_;
return $grammar_cache{ overload::StrVal($$obj) }
//= Regexp::Grammars::_build_grammar( ${$obj} );
},
# Everything else, as usual...
fallback => 1,
);
}
#=====[ SUPPORT FOR THE INTEGRATED DEBUGGER ]=========================
# All messages go to STDERR by default...
*Regexp::Grammars::LOGFILE = *STDERR{IO};
# Debugging levels indicate where to stop...
our %DEBUG_LEVEL = (
same => undef, # No change in debugging mode
off => 0, # No more debugging
run => 1, continue => 1, # Run to completion of regex match
match => 2, on => 2, # Run to next successful submatch
step => 3, try => 3, # Run to next reportable event
);
# Debugging levels can be abbreviated to one character during interactions...
@DEBUG_LEVEL{ map {substr($_,0,1)} keys %DEBUG_LEVEL } = values %DEBUG_LEVEL;
$DEBUG_LEVEL{o} = $DEBUG_LEVEL{off}; # Not "on"
$DEBUG_LEVEL{s} = $DEBUG_LEVEL{step}; # Not "same"
# Width of leading context field in debugging messages is constrained...
my $MAX_CONTEXT_WIDTH = 20;
my $MIN_CONTEXT_WIDTH = 6;
sub set_context_width {
{ package Regexp::Grammars::ContextRestorer;
sub new {
my ($class, $old_context_width) = @_;
bless \$old_context_width, $class;
}
sub DESTROY {
my ($old_context_width_ref) = @_;
$MAX_CONTEXT_WIDTH = ${$old_context_width_ref};
}
}
my ($new_context_width) = @_;
my $old_context_width = $MAX_CONTEXT_WIDTH;
$MAX_CONTEXT_WIDTH = $new_context_width;
if (defined wantarray) {
return Regexp::Grammars::ContextRestorer->new($old_context_width);
}
}
# Rewrite a string currently being matched, to make \n and \t visible
sub _show_metas {
my $context_str = shift // q{};
# Quote newlines (\n -> \\n, without using a regex)...
my $index = index($context_str,"\n");
while ($index >= 0) {
substr($context_str, $index, 1, '\\n');
$index = index($context_str,"\n",$index+2);
}
# Quote tabs (\t -> \\t, without using a regex)...
$index = index($context_str,"\t");
while ($index >= 0) {
substr($context_str, $index, 1, '\\t');
$index = index($context_str,"\t",$index+2);
}
return $context_str;
}
# Minimize whitespace in a string...
sub _squeeze_ws {
my ($str) = @_;
$str =~ tr/\n\t/ /;
my $index = index($str,q{ });
while ($index >= 0) {
substr($str, $index, 2, q{ });
$index = index($str,q{ },$index);
}
return $str;
}
# Prepare for debugging...
sub _init_try_stack {
our (@try_stack, $last_try_pos, $last_context_str);
# Start with a representation of the entire grammar match...
@try_stack = ({
subrule => '<grammar>',
height => 0,
errmsg => ' \\FAIL <grammar>',
});
# Initialize tracking of location and context...
$last_try_pos = -1;
$last_context_str = q{};
# Report...
say {*Regexp::Grammars::LOGFILE} _debug_context('=>')
. 'Trying <grammar> from position ' . pos();
}
# Create a "context string" showing where the regex is currently matching...
sub _debug_context {
my ($fill_chars) = @_;
# Determine minimal sufficient width for context field...
my $field_width = length(_show_metas($_//q{}));
if ($field_width > $MAX_CONTEXT_WIDTH) {
$field_width = $MAX_CONTEXT_WIDTH;
}
elsif ($field_width < $MIN_CONTEXT_WIDTH) {
$field_width = $MIN_CONTEXT_WIDTH;
}
# Get current matching position (and some additional trailing context)...
my $context_str
= substr(_show_metas(substr(($_//q{}).q{},pos()//0,$field_width)),0,$field_width);
# Build the context string, handling special cases...
our $last_context_str;
if ($fill_chars) {
# If caller supplied a 1- or 2-char fill sequence, use that instead...
my $last_fill_char = length($fill_chars) > 1
? substr($fill_chars,-1,1,q{})
: $fill_chars
;
$context_str = $fill_chars x ($field_width-1) . $last_fill_char;
}
else {
# Make end-of-string visible in empty context string...
if ($context_str eq q{}) {
$context_str = '[eos]';
}
# Don't repeat consecutive identical context strings...
if ($context_str eq $last_context_str) {
$context_str = q{ } x $field_width;
}
else {
# If not repeating, remember for next time...
$last_context_str = $context_str;
}
}
# Left justify and return context string...
return sprintf("%-*s ",$field_width,$context_str);
}
# Show a debugging message (mainly used for compile-time errors and info)...
sub _debug_notify {
# Single arg is a line to be printed with a null severity...
my ($severity, @lines) = @_==1 ? (q{},@_) : @_;
chomp @lines;
# Formatting string for all lines...
my $format = qq{%*s | %s\n};
# Track previous severity and avoid repeating the same level...
state $prev_severity = q{};
if ($severity !~ /\S/) {
# Do nothing
}
elsif ($severity eq 'info' && $prev_severity eq 'info' ) {
$severity = q{};
}
else {
$prev_severity = $severity;
}
# Display first line with severity indicator (unless same as previous)...
printf {*Regexp::Grammars::LOGFILE} $format, $MIN_CONTEXT_WIDTH, $severity, shift @lines;
# Display first line without severity indicator
for my $next_line (@lines) {
printf {*Regexp::Grammars::LOGFILE} $format, $MIN_CONTEXT_WIDTH, q{}, $next_line;
}
}
# Handle user interactions during runtime debugging...
sub _debug_interact {
my ($stack_height, $leader, $curr_frame_ref, $min_debug_level) = @_;
our $DEBUG; # ...stores current debug level within regex
# Only interact with terminals, and if debug level is appropriate...
if (-t *Regexp::Grammars::LOGFILE
&& defined $DEBUG
&& ($DEBUG_LEVEL{$DEBUG}//0) >= $DEBUG_LEVEL{$min_debug_level}
) {
local $/ = "\n"; # ...in case some caller is being clever
INPUT:
while (1) {
my $cmd = readline // q{};
chomp $cmd;
# Input of 'd' means 'display current result frame'...
if ($cmd eq 'd') {
print {*Regexp::Grammars::LOGFILE} join "\n",
map { $leader . ($stack_height?'| ':q{})
. ' : ' . $_
}
split "\n", q{ }x8 . substr(Dumper($curr_frame_ref),8);
print "\t";
}
# Any other (valid) input changes debugging level and continues...
else {
if (defined $DEBUG_LEVEL{$cmd}) { $DEBUG = $cmd; }
last INPUT;
}
}
}
# When interaction not indicated, just complete the debugging line...
else {
print {*Regexp::Grammars::LOGFILE} "\n";
}
}
# Handle reporting of unsuccessful match attempts...
sub _debug_handle_failures {
my ($stack_height, $subrule, $in_match) = @_;
our @try_stack;
# Unsuccessful match attempts leave "leftovers" on the attempt stack...
CLEANUP:
while (@try_stack && $try_stack[-1]{height} >= $stack_height) {
# Grab record of (potentially) unsuccessful attempt...
my $error_ref = pop @try_stack;
# If attempt was the one whose match is being reported, go and report...
last CLEANUP if $in_match
&& $error_ref->{height} == $stack_height
&& $error_ref->{subrule} eq $subrule;
# Otherwise, report the match failure...
say {*Regexp::Grammars::LOGFILE} _debug_context(q{ }) . $error_ref->{errmsg};
}
}
# Handle attempts to call non-existent subrules...
sub _debug_fatal {
my ($naughty_construct) = @_;
print {*Regexp::Grammars::LOGFILE}
"_________________________________________________________________\n",
"Fatal error: Entire parse terminated prematurely while attempting\n",
" to call non-existent rule: $naughty_construct\n",
"_________________________________________________________________\n";
$@ = "Entire parse terminated prematurely while attempting to call non-existent rule: $naughty_construct";
}
# Handle objrules that don't return hashes...
sub _debug_non_hash {
my ($obj, $name) = @_;
# If the object is okay, no further action required...
return q{} if reftype($obj) eq 'HASH';
# Generate error messages...
print {*Regexp::Grammars::LOGFILE}
"_________________________________________________________________\n",
"Fatal error: <objrule: $name> returned a non-hash-based object\n",
"_________________________________________________________________\n";
$@ = "<objrule: $name> returned a non-hash-based object";
return '(*COMMIT)(*FAIL)';
}
# Print a <log:...> message in context...
sub _debug_logmsg {
my ($stack_height, @msg) = @_;
# Determine indent for messages...
my $leader = _debug_context() . q{| } x ($stack_height-1) . '|';
# Report the attempt...
print {*Regexp::Grammars::LOGFILE} map { "$leader$_\n" } @msg;
}
# Print a message indicating a (sub)match attempt...
sub _debug_trying {
my ($stack_height, $curr_frame_ref, $subrule) = @_;
# Clean up after any preceding unsuccessful attempts...
_debug_handle_failures($stack_height, $subrule);
# Determine indent for messages...
my $leader = _debug_context() . q{| } x ($stack_height-2);
# Detect and report any backtracking prior to this attempt...
our $last_try_pos //= 0; #...Stores the pos() of the most recent match attempt?
my $backtrack_distance = $last_try_pos - pos();
if ($backtrack_distance > 0) {
say {*Regexp::Grammars::LOGFILE} ' <' . q{~} x (length(_debug_context(q{ }))-3) . q{ }
. q{| } x ($stack_height-2)
. qq{|...Backtracking $backtrack_distance char}
. ($backtrack_distance > 1 ? q{s} : q{})
. q{ and trying new match}
;
}
# Report the attempt...
print {*Regexp::Grammars::LOGFILE} $leader, "|...Trying $subrule\t";
# Handle user interactions during debugging...
_debug_interact($stack_height, $leader, $curr_frame_ref, 'step');
# Record the attempt, for later error handling in _debug_matched()...
if ($subrule ne 'next alternative') {
our @try_stack;
push @try_stack, {
height => $stack_height,
subrule => $subrule,
# errmsg should align under: |...Trying $subrule\t
errmsg => q{| } x ($stack_height-2) . "| \\FAIL $subrule",
};
}
$last_try_pos = pos();
}
# Print a message indicating a successful (sub)match...
sub _debug_matched {
my ($stack_height, $curr_frame_ref, $subrule, $matched_text) = @_;
# Clean up any intervening unsuccessful attempts...
_debug_handle_failures($stack_height, $subrule, 'in match');
# Build debugging message...
my $debug_context = _debug_context();
my $leader = $debug_context . q{| } x ($stack_height-2);
my $message = ($stack_height ? '| ' : q{})
. " \\_____$subrule matched ";
my $filler = $stack_height
? '| ' . q{ } x (length($message)-4)
: q{ } x length($message);
our $last_try_pos //= 0; #...Stores the pos() of the most recent match attempt?
# Report if match required backtracking...
my $backtrack_distance = $last_try_pos - (pos()//0);
if ($backtrack_distance > 0) {
say {*Regexp::Grammars::LOGFILE} ' <' . q{~} x (length(_debug_context(q{ }))-3) . q{ }
. q{| } x ($stack_height-2)
. qq{|...Backtracking $backtrack_distance char}
. ($backtrack_distance > 1 ? q{s} : q{})
. qq{ and rematching $subrule}
;
}
$last_try_pos = pos();
# Format match text (splitting multi-line texts and indent them correctly)...
$matched_text = defined($matched_text)
? $matched_text = q{'} . join("\n$leader$filler", split "\n", $matched_text) . q{'}
: q{};
# Print match message...
print {*Regexp::Grammars::LOGFILE} $leader . $message . $matched_text . qq{\t};
# Check for user interaction...
_debug_interact($stack_height, $leader, $curr_frame_ref, $stack_height ? 'match' : 'run');
}
# Print a message indicating a successful (sub)match...
sub _debug_require {
my ($stack_height, $condition, $succeeded) = @_;
# Build debugging message...
my $debug_context = _debug_context();
my $leader = $debug_context . q{| } x ($stack_height-1);
my $message1 = ($stack_height ? '|...' : q{})
. "Testing condition: $condition"
;
my $message2 = ($stack_height ? '| ' : q{})
. " \\_____"
. ($succeeded ? 'Satisified' : 'FAILED')
;
# Report if match required backtracking...
our $last_try_pos;
my $backtrack_distance = $last_try_pos - pos();
if ($backtrack_distance > 0) {
say {*Regexp::Grammars::LOGFILE} ' <' . q{~} x (length(_debug_context(q{ }))-3) . q{ }
. q{| } x ($stack_height-1)
. qq{|...Backtracking $backtrack_distance char}
. ($backtrack_distance > 1 ? q{s} : q{})
. qq{ and rematching}
;
}
# Remember where the condition was tried...
$last_try_pos = pos();
# Print match message...
say {*Regexp::Grammars::LOGFILE} $leader . $message1;
say {*Regexp::Grammars::LOGFILE} $leader . $message2;
}
# Print a message indicating a successful store-result-of-code-block...
sub _debug_executed {
my ($stack_height, $curr_frame_ref, $subrule, $value) = @_;
# Build message...
my $leader = _debug_context() . q{| } x ($stack_height-2);
my $message = "|...Action $subrule\n";
my $message2 = "| saved value: '";
$message .= $leader . $message2;
my $filler = q{ } x length($message2);
# Split multiline results over multiple lines (properly indented)...
$value = join "\n$leader$filler", split "\n", $value;
# Report the action...
print {*Regexp::Grammars::LOGFILE} $leader . $message . $value . qq{'\t};
# Check for user interaction...
_debug_interact($stack_height, $leader, $curr_frame_ref, 'match');
}
# Create the code to be inserted into the regex to facilitate debugging...
sub _build_debugging_statements {
my ($debugging_active, $subrule, $extra_pre_indent) = @_;
return (q{}, q{}) if ! $debugging_active;;
$extra_pre_indent //= 0;
$subrule = "q{$subrule}";
return (
qq{ Regexp::Grammars::_debug_trying(\@Regexp::Grammars::RESULT_STACK+$extra_pre_indent, \$Regexp::Grammars::RESULT_STACK[-2+$extra_pre_indent], $subrule)
if \$Regexp::Grammars::DEBUG_LEVEL{\$Regexp::Grammars::DEBUG};
},
qq{ Regexp::Grammars::_debug_matched(\@Regexp::Grammars::RESULT_STACK+1, \$Regexp::Grammars::RESULT_STACK[-1], $subrule, \$^N)
if \$Regexp::Grammars::DEBUG_LEVEL{\$Regexp::Grammars::DEBUG};
},
);
}
sub _build_raw_debugging_statements {
my ($debugging_active, $subpattern, $extra_pre_indent) = @_;
return (q{}, q{}) if ! $debugging_active;
$extra_pre_indent //= 0;
if ($subpattern eq '|') {
return (
q{},
qq{
(?{;Regexp::Grammars::_debug_trying(\@Regexp::Grammars::RESULT_STACK+$extra_pre_indent,
\$Regexp::Grammars::RESULT_STACK[-2+$extra_pre_indent], 'next alternative')
if \$Regexp::Grammars::DEBUG_LEVEL{\$Regexp::Grammars::DEBUG};})
},
);
}
else {
return (
qq{
(?{;Regexp::Grammars::_debug_trying(\@Regexp::Grammars::RESULT_STACK+$extra_pre_indent,
\$Regexp::Grammars::RESULT_STACK[-2+$extra_pre_indent], q{subpattern /$subpattern/}, \$^N)
if \$Regexp::Grammars::DEBUG_LEVEL{\$Regexp::Grammars::DEBUG};})
},
qq{
(?{;Regexp::Grammars::_debug_matched(\@Regexp::Grammars::RESULT_STACK+1,
\$Regexp::Grammars::RESULT_STACK[-1], q{subpattern /$subpattern/}, \$^N)
if \$Regexp::Grammars::DEBUG_LEVEL{\$Regexp::Grammars::DEBUG};})
},
);
}
}
#=====[ SUPPORT FOR AUTOMATIC TIMEOUTS ]=========================
sub _test_timeout {
our ($DEBUG, $TIMEOUT);
return q{} if time() < $TIMEOUT->{'limit'};
my $duration = "$TIMEOUT->{duration} second"
. ( $TIMEOUT->{duration} == 1 ? q{} : q{s} );
if (defined($DEBUG) && $DEBUG ne 'off') {
my $leader = _debug_context(q{ });
say {*LOGFILE} $leader . '|';
say {*LOGFILE} $leader . "|...Invoking <timeout: $TIMEOUT->{duration}>";
say {*LOGFILE} $leader . "| \\_____No match after $duration";
say {*LOGFILE} $leader . '|';
say {*LOGFILE} $leader . " \\FAIL <grammar>";
}
if (! @!) {
@! = "Internal error: Timed out after $duration (as requested)";
}
return q{(*COMMIT)(*FAIL)};
}
#=====[ SUPPORT FOR UPDATING THE RESULT STACK ]=========================
# Create a clone of the current result frame with an new key/value...
sub _extend_current_result_frame_with_scalar {
my ($stack_ref, $key, $value) = @_;
# Autovivify null stacks (only occur when grammar invokes no subrules)...
if (!@{$stack_ref}) {
$stack_ref = [{}];
}
# Copy existing frame, appending new value so it overwrites any old value...
my $cloned_result_frame = {
%{$stack_ref->[-1]},
$key => $value,
};
# Make the copy into an object, if the original was one...
if (my $class = blessed($stack_ref->[-1])) {
bless $cloned_result_frame, $class;
}
return $cloned_result_frame;
}
# Create a clone of the current result frame with an additional key/value
# (As above, but preserving the "listiness" of the key being added to)...
sub _extend_current_result_frame_with_list {
my ($stack_ref, $key, $value) = @_;
# Copy existing frame, appending new value to appropriate element's list...
my $cloned_result_frame = {
%{$stack_ref->[-1]},
$key => [
@{$stack_ref->[-1]{$key}//[]},
$value,
],
};
# Make the copy into an object, if the original was one...
if (my $class = blessed($stack_ref->[-1])) {
bless $cloned_result_frame, $class;
}
return $cloned_result_frame;
}
# Pop current result frame and add it to a clone of previous result frame
# (flattening it if possible, and preserving any blessing)...
sub _pop_current_result_frame {
my ($stack_ref, $key, $original_name, $value) = @_;
# Where are we in the stack?
my $curr_frame = $stack_ref->[-1];
my $caller_frame = $stack_ref->[-2];
# Track which frames are objects...
my $is_blessed_curr = blessed($curr_frame);
my $is_blessed_caller = blessed($caller_frame);
# Remove "private" captures (i.e. those starting with _)...
delete @{$curr_frame}{grep {substr($_,0,1) eq '_'} keys %{$curr_frame} };
# Remove "nocontext" marker...
my $nocontext = delete $curr_frame->{'~'};
# Build a clone of the current frame...
my $cloned_result_frame
= exists $curr_frame->{'='} ? $curr_frame->{'='}
: $is_blessed_curr || length(join(q{}, keys %{$curr_frame})) ? { q{} => $value, %{$curr_frame} }
: keys %{$curr_frame} ? $curr_frame->{q{}}
: $value
;
# Apply any appropriate handler...
if ($RULE_HANDLER) {
if ($RULE_HANDLER->can($original_name) || $RULE_HANDLER->can('AUTOLOAD')) {
my $replacement_result_frame
= $RULE_HANDLER->$original_name($cloned_result_frame);
if (defined $replacement_result_frame) {
$cloned_result_frame = $replacement_result_frame;
}
}
}
# Remove capture if not requested...
if ($nocontext && ref $cloned_result_frame eq 'HASH' && keys %{$cloned_result_frame} > 1) {
delete $cloned_result_frame->{q{}};
}
# Nest a clone of current frame inside a clone of the caller frame...
my $cloned_caller_frame = {
%{$caller_frame//{}},
$key => $cloned_result_frame,
};
# Make the copies into objects, if the originals were...
if ($is_blessed_curr && !exists $curr_frame->{'='} ) {
bless $cloned_caller_frame->{$key}, $is_blessed_curr;
}
if ($is_blessed_caller) {
bless $cloned_caller_frame, $is_blessed_caller;
}
return $cloned_caller_frame;
}
# Pop current result frame and add it to a clone of previous result frame
# (flattening it if possible, and preserving any blessing)
# (As above, but preserving listiness of key being added to)...
sub _pop_current_result_frame_with_list {
my ($stack_ref, $key, $original_name, $value) = @_;
# Where are we in the stack?
my $curr_frame = $stack_ref->[-1];
my $caller_frame = $stack_ref->[-2];
# Track which frames are objects...
my $is_blessed_curr = blessed($curr_frame);
my $is_blessed_caller = blessed($caller_frame);
# Remove "private" captures (i.e. those starting with _)...
delete @{$curr_frame}{grep {substr($_,0,1) eq '_'} keys %{$curr_frame} };
# Remove "nocontext" marker...
my $nocontext = delete $curr_frame->{'~'};
# Clone the current frame...
my $cloned_result_frame
= exists $curr_frame->{'='} ? $curr_frame->{'='}
: $is_blessed_curr || length(join(q{}, keys %{$curr_frame})) ? { q{} => $value, %{$curr_frame} }
: keys %{$curr_frame} ? $curr_frame->{q{}}
: $value
;
# Apply any appropriate handler...
if ($RULE_HANDLER) {
if ($RULE_HANDLER->can($original_name) || $RULE_HANDLER->can('AUTOLOAD')) {
my $replacement_result_frame
= $RULE_HANDLER->$original_name($cloned_result_frame);
if (defined $replacement_result_frame) {
$cloned_result_frame = $replacement_result_frame;
}
}
}
# Remove capture if not requested...
if ($nocontext && ref $cloned_result_frame eq 'HASH' && keys %{$cloned_result_frame} > 1) {
delete $cloned_result_frame->{q{}};
}
# Append a clone of current frame inside a clone of the caller frame...
my $cloned_caller_frame = {
%{$caller_frame},
$key => [
@{$caller_frame->{$key}//[]},
$cloned_result_frame,
],
};
# Make the copies into objects, if the originals were...
if ($is_blessed_curr && !exists $curr_frame->{'='} ) {
bless $cloned_caller_frame->{$key}[-1], $is_blessed_curr;
}
if ($is_blessed_caller) {
bless $cloned_caller_frame, $is_blessed_caller;
}
return $cloned_caller_frame;
}
#=====[ MISCELLANEOUS CONSTANTS ]=========================
# Namespace in which grammar inheritance occurs...
my $CACHE = 'Regexp::Grammars::_CACHE_::';
my $CACHE_LEN = length $CACHE;
my %CACHE; #...for subrule tracking
# This code inserted at the start of every grammar regex
# (initializes the result stack cleanly and backtrackably, via local)...
my $PROLOGUE = q{((?{; @! = () if !pos;
local @Regexp::Grammars::RESULT_STACK
= (@Regexp::Grammars::RESULT_STACK, {});
local $Regexp::Grammars::TIMEOUT = { limit => -1>>1 };
local $Regexp::Grammars::DEBUG = 'off' }) };
# This code inserted at the end of every grammar regex
# (puts final result in %/. Also defines default <ws>, <hk>, etc.)...
my $EPILOGUE = q{)(?{; $Regexp::Grammars::RESULT_STACK[-1]{q{}} //= $^N;;
local $Regexp::Grammars::match_frame = pop @Regexp::Grammars::RESULT_STACK;
delete @{$Regexp::Grammars::match_frame}{
'~', grep {substr($_,0,1) eq '_'} keys %{$Regexp::Grammars::match_frame}
};
if (exists $Regexp::Grammars::match_frame->{'='}) {
if (ref($Regexp::Grammars::match_frame->{'='}) eq 'HASH') {
$Regexp::Grammars::match_frame
= $Regexp::Grammars::match_frame->{'='};
}
}
if (@Regexp::Grammars::RESULT_STACK) {
$Regexp::Grammars::RESULT_STACK[-1]{'(?R)'}
= $Regexp::Grammars::match_frame;
}
Regexp::Grammars::clear_rule_handler();
*/ = $Regexp::Grammars::match_frame;
})|\Z(?{Regexp::Grammars::clear_rule_handler();})(?!)(?(DEFINE)
(?<ws__implicit__> \\s* )
(?<ws>
(?{$Regexp::Grammars::RESULT_STACK[-1]{'!'}=$#{!};})
\\s*
(?{;$#{!}=delete($Regexp::Grammars::RESULT_STACK[-1]{'!'})//0;
delete($Regexp::Grammars::RESULT_STACK[-1]{'@'});
})
)
(?<hk__implicit__> \\S+ )
(?<hk>
(?{$Regexp::Grammars::RESULT_STACK[-1]{'!'}=$#{!};})
\\S+
(?{;$#{!}=delete($Regexp::Grammars::RESULT_STACK[-1]{'!'})//0;
delete($Regexp::Grammars::RESULT_STACK[-1]{'@'});
})
)
(?<matchpos> (?{; $Regexp::Grammars::RESULT_STACK[-1]{"="} = pos; }) )
(?<matchline> (?{; $Regexp::Grammars::RESULT_STACK[-1]{"="} = 1 + substr($_,0,pos) =~ tr/\n/\n/; }) )
)
};
my $EPILOGUE_NC = $EPILOGUE;
$EPILOGUE_NC =~ s{ ; .* ;;}{;}xms;
#=====[ MISCELLANEOUS PATTERNS THAT MATCH USEFUL THINGS ]========
# Match an identifier...
my $IDENT = qr{ [^\W\d] \w*+ }xms;
my $QUALIDENT = qr{ (?: $IDENT :: )*+ $IDENT }xms;
# Match balanced parentheses, taking into account \-escapes and []-escapes...
my $PARENS = qr{
(?&VAR_PARENS)
(?(DEFINE)
(?<VAR_PARENS> \( (?: \\. | (?&VAR_PARENS) | (?&CHARSET) | [^][()\\]++)*+ \) )
(?<CHARSET> \[ \^?+ \]?+ (?: \[:\w+:\] | \\. | [^]])*+ \] )
)
}xms;
# Match a <ws:...> directive within rules...
my $WS_PATTERN = qr{<ws: ((?: \\. | [^\\()>]++ | $PARENS )*+) >}xms;
#=====[ UTILITY SUBS FOR ERROR AND WARNING MESSAGES ]========
sub _uniq {
my %seen;
return grep { defined $_ && !$seen{$_}++ } @_;
}
# Default translator for error messages...
my $ERRORMSG_TRANSLATOR = sub {
my ($errormsg, $rulename, $context) = @_;
$rulename = 'valid input' if $rulename eq q{};
$context //= '<end of string>';
# Unimplemented subrule when rulename starts with '-'...
if (substr($rulename,0,1) eq '-') {
$rulename = substr($rulename,1);
return "Can't match subrule <$rulename> (not implemented)";
}
# Empty message converts to a "Expected...but found..." message...
if ($errormsg eq q{}) {
$rulename =~ tr/_/ /;
$rulename = lc($rulename);
return "Expected $rulename, but found '$context' instead";
}
# "Expecting..." messages get "but found" added...
if (lc(substr($errormsg,0,6)) eq 'expect') {
return "$errormsg, but found '$context' instead";
}
# Everything else stays "as is"...
return $errormsg;
};
# Allow user to set translation...
sub set_error_translator {
{ package Regexp::Grammars::TranslatorRestorer;
sub new {
my ($class, $old_translator) = @_;
bless \$old_translator, $class;
}
sub DESTROY {
my ($old_translator_ref) = @_;
$ERRORMSG_TRANSLATOR = ${$old_translator_ref};
}
}
my ($translator_ref) = @_;
die "Usage: set_error_translator(\$subroutine_reference)\n"
if ref($translator_ref) ne 'CODE';
my $old_translator_ref = $ERRORMSG_TRANSLATOR;
$ERRORMSG_TRANSLATOR = $translator_ref;
return defined wantarray
? Regexp::Grammars::TranslatorRestorer->new($old_translator_ref)
: ();
}
# Dispatch to current translator for error messages...
sub _translate_errormsg {
goto &{$ERRORMSG_TRANSLATOR};
}
#=====[ SUPPORT FOR TRANSLATING GRAMMAR-ENHANCED REGEX TO NATIVE REGEX ]====
# Store any specified grammars...
my %user_defined_grammar;
my %REPETITION_DESCRIPTION_FOR = (
'+' => 'once or more',
'*' => 'any number of times',
'?' => 'if possible',
'+?' => 'as few times as possible',
'*?' => 'as few times as possible',
'??' => 'if necessary',
'++' => 'as many times as possible',
'*+' => 'as many times as possible',
'?+' => 'if possible',
);
sub _translate_raw_regex {
my ($regex, $debug_build, $debug_runtime) = @_;
my $is_comment = substr($regex, 0, 1) eq q{#}
|| substr($regex, 0, 3) eq q{(?#};
my $visible_regex = _squeeze_ws($regex);
# Report how regex was interpreted, if requested to...
if ($debug_build && $visible_regex ne q{} && $visible_regex ne q{ }) {
_debug_notify( info =>
" |",
" |...Treating '$visible_regex' as:",
($is_comment ? " | \\ a comment (which will be ignored)"
: " | \\ normal Perl regex syntax"
),
);
}
return q{} if $is_comment;
# Generate run-time debugging code (if any)...
my ($debug_pre, $debug_post)
= _build_raw_debugging_statements($debug_runtime,$visible_regex, +1);
# Replace negative lookahead with one that works under R::G...
$regex =~ s{\(\?!}{(?!(?!)|}gxms;
# ToDo: Also replace positive lookahead with one that works under R::G...
# This replacement should be of the form:
# $regex =~ s{\(\?!}{(?!(?!)|(?!(?!)|}gxms;
# but need to find a way to insert the extra ) at the other end
return $debug_runtime && $regex eq '|' ? $regex . $debug_post
: $debug_runtime && $regex =~ /\S/ ? "(?:$debug_pre($regex)$debug_post)"
: $regex;
}
# Report and convert a debugging directive...
sub _translate_debug_directive {
my ($construct, $cmd, $debug_build) = @_;
# Report how directive was interpreted, if requested to...
if ($debug_build) {
_debug_notify( info =>
" |",
" |...Treating $construct as:",
" | \\ Change run-time debugging mode to '$cmd'",
);
}
return qq{(?{; local \$Regexp::Grammars::DEBUG = q{$cmd}; }) };
}
# Report and convert a timeout directive...
sub _translate_timeout_directive {
my ($construct, $timeout, $debug_build) = @_;
# Report how directive was interpreted, if requested to...
if ($debug_build) {
_debug_notify( info =>
" |",
" |...Treating $construct as:",
($timeout > 0
? " | \\ Cause the entire parse to fail after $timeout second" . ($timeout==1 ? q{} : q{s})
: " | \\ Cause the entire parse to fail immediately"
),
);
}
return $timeout > 0
? qq{(?{; local \$Regexp::Grammars::TIMEOUT = { duration => $timeout, limit => time() + $timeout }; }) }
: qq{(*COMMIT)(*FAIL)};
}
# Report and convert a <require:...> directive...
sub _translate_require_directive {
my ($construct, $condition, $debug_build) = @_;
$condition = substr($condition, 3, -2);
# Report how directive was interpreted, if requested to...
if ($debug_build) {
_debug_notify( info =>
" |",
" |...Treating $construct as:",
" | \\ Require that {$condition} is true",
);
}
my $quoted_condition = $condition;
$quoted_condition =~ s{\$}{}xms;
return qq{(?(?{;$condition})
(?{;Regexp::Grammars::_debug_require(
scalar \@Regexp::Grammars::RESULT_STACK, q{$quoted_condition}, 1)
if \$Regexp::Grammars::DEBUG_LEVEL{\$Regexp::Grammars::DEBUG}})
| (?{;Regexp::Grammars::_debug_require(
scalar \@Regexp::Grammars::RESULT_STACK, q{$quoted_condition}, 0)
if \$Regexp::Grammars::DEBUG_LEVEL{\$Regexp::Grammars::DEBUG}})(?!))
};
}
# Report and convert a <minimize:> directive...
sub _translate_minimize_directive {
my ($construct, $debug_build) = @_;
# Report how directive was interpreted, if requested to...
if ($debug_build) {
_debug_notify( info =>
" |",
" |...Treating $construct as:",
" | \\ Minimize result value if possible",
);
}
return q{(?{;
if (1 == grep { $_ ne '!' && $_ ne '@' && $_ ne '~' } keys %MATCH) { # ...single alnum key
local %Regexp::Grammars::matches = %MATCH;
delete @Regexp::Grammars::matches{'!', '@', '~'};
local ($Regexp::Grammars::only_key) = keys %Regexp::Grammars::matches;
local $Regexp::Grammars::array_ref = $MATCH{$Regexp::Grammars::only_key};
if (ref($Regexp::Grammars::array_ref) eq 'ARRAY' && 1 == @{$Regexp::Grammars::array_ref}) {
$MATCH = $Regexp::Grammars::array_ref->[0];
}
}
})};
}
# Report and convert a debugging directive...
sub _translate_error_directive {
my ($construct, $type, $msg, $debug_build, $subrule_name) = @_;
$subrule_name //= 'undef';
# Determine severity...
my $severity = ($type eq 'error') ? 'fail' : 'non-fail';
# Determine fatality (and build code to invoke it)...
my $fatality = ($type eq 'fatal') ? '(*COMMIT)(*FAIL)' : q{};
# Unpack message...
if (substr($msg,0,3) eq '(?{') {
$msg = 'do'. substr($msg,2,-1);
}
else {
$msg = quotemeta $msg;
$msg = qq{qq{$msg}};
}
# Report how directive was interpreted, if requested to...
if ($debug_build) {
_debug_notify( info => " |",
" |...Treating $construct as:",
( $type eq 'log' ? " | \\ Log a message to the logfile"
: " | \\ Append a $severity error message to \@!"
),
);
}
# Generate the regex...
return $type eq 'log'
? qq{(?{Regexp::Grammars::_debug_logmsg(scalar \@Regexp::Grammars::RESULT_STACK,$msg)
if \$Regexp::Grammars::DEBUG_LEVEL{\$Regexp::Grammars::DEBUG}
})}
: qq{(?:(?{;local \$Regexp::Grammar::_memopos=pos();})
(?>\\s*+((?-s).{0,$MAX_CONTEXT_WIDTH}+))
(?{; pos() = \$Regexp::Grammar::_memopos;
@! = Regexp::Grammars::_uniq(
@!,
Regexp::Grammars::_translate_errormsg($msg,q{$subrule_name},\$CONTEXT)
) }) (?!)|}
. ($severity eq 'fail' ? q{(?!)} : $fatality)
. q{)}
;
}
sub _translate_subpattern {
my ($construct, $alias, $subpattern, $savemode, $postmodifier, $debug_build, $debug_runtime, $timeout, $backref)
= @_;
# Determine save behaviour...
my $is_noncapturing = $savemode eq 'noncapturing';
my $is_listifying = $savemode eq 'list';
my $is_codeblock = substr($subpattern,0,3) eq '(?{';
my $value_saved = $is_codeblock ? '$^R' : '$^N';
my $do_something_with = $is_codeblock ? 'execute the code block' : 'match the pattern';
my $result = $is_codeblock ? 'result' : 'matched substring';
my $description = $is_codeblock ? substr($subpattern,2,-1)
: defined $backref ? $backref
: $subpattern;
my $debug_construct
= $is_codeblock ? '<' . substr($alias,1,-1) . '= (?{;' . substr($subpattern,3,-2) . '})>'
: $construct
;
# Report how construct was interpreted, if requested to...
my $repeatedly = $REPETITION_DESCRIPTION_FOR{$postmodifier} // q{};
my $results = $is_listifying && $postmodifier ? "each $result"
: substr($postmodifier,0,1) eq '?' ? "any $result"
: $postmodifier && !$is_noncapturing ? "only the final $result"
: "the $result"
;
if ($debug_build) {
_debug_notify( info =>
" |",
" |...Treating $construct as:",
" | | $do_something_with $description $repeatedly",
( $is_noncapturing ? " | \\ but don't save $results"
: $is_listifying ? " | \\ appending $results to \@{\$MATCH{$alias}}"
: " | \\ saving $results in \$MATCH{$alias}"
)
);
}
# Generate run-time debugging code (if any)...
my ($debug_pre, $debug_post)
= _build_debugging_statements($debug_runtime,$debug_construct, +1);
# Generate post-match result-capturing code, if match captures...
my $post_action = $is_noncapturing
? q{}
: qq{local \@Regexp::Grammars::RESULT_STACK = (
\@Regexp::Grammars::RESULT_STACK[0..\@Regexp::Grammars::RESULT_STACK-2],
Regexp::Grammars::_extend_current_result_frame_with_$savemode(
\\\@Regexp::Grammars::RESULT_STACK, $alias, $value_saved
),
);}
;
# Generate timeout test...
my $timeout_test = $timeout ? q{(??{;Regexp::Grammars::_test_timeout()})} : q{};
# Translate to standard regex code...
return qq{$timeout_test(?{;local \@Regexp::Grammars::RESULT_STACK
= \@Regexp::Grammars::RESULT_STACK;$debug_pre})
(?:($subpattern)(?{;$post_action$debug_post}))$postmodifier};
}
sub _translate_hashmatch {
my ($construct, $alias, $hashname, $keypat, $savemode, $postmodifier, $debug_build, $debug_runtime, $timeout)
= @_;
# Empty or missing keypattern defaults to <.hk>...
if (!defined $keypat || $keypat !~ /\S/) {
$keypat = '(?&hk__implicit__)'
}
else {
$keypat = substr($keypat, 1, -1);
}
# Determine save behaviour...
my $is_noncapturing = $savemode eq 'noncapturing';
my $is_listifying = $savemode eq 'list';
# Convert hash to hash lookup...
my $hash_lookup = '$' . substr($hashname, 1). '{$^N}';
# Report how construct was interpreted, if requested to...
my $repeatedly = $REPETITION_DESCRIPTION_FOR{$postmodifier} // q{};
my $results = $is_listifying && $postmodifier ? 'each matched key'
: substr($postmodifier,0,1) eq '?' ? 'any matched key'
: $postmodifier && !$is_noncapturing ? 'only the final matched key'
: 'the matched key'
;
if ($debug_build) {
_debug_notify( info =>
" |",
" |...Treating $construct as:",
" | | match a key from the hash $hashname $repeatedly",
( $is_noncapturing ? " | \\ but don't save $results"
: $is_listifying ? " | \\ appending $results to \$MATCH{$alias}"
: " | \\ saving $results in \$MATCH{$alias}"
)
);
}
# Generate run-time debugging code (if any)...
my ($debug_pre, $debug_post)
= _build_debugging_statements($debug_runtime,$construct, +1);
# Generate post-match result-capturing code, if match captures...
my $post_action = $is_noncapturing
? q{}
: qq{local \@Regexp::Grammars::RESULT_STACK = (
\@Regexp::Grammars::RESULT_STACK[0..\@Regexp::Grammars::RESULT_STACK-2],
Regexp::Grammars::_extend_current_result_frame_with_$savemode(
\\\@Regexp::Grammars::RESULT_STACK, $alias, \$^N
),
);}
;
# Generate timeout test...
my $timeout_test = $timeout ? q{(??{;Regexp::Grammars::_test_timeout()})} : q{};
# Translate to standard regex code...
return qq{$timeout_test(?:(?{;local \@Regexp::Grammars::RESULT_STACK
= \@Regexp::Grammars::RESULT_STACK;$debug_pre})
(?:($keypat)(??{exists $hash_lookup ? q{} : q{(?!)}})(?{;$post_action$debug_post})))$postmodifier};
}
# Convert a "<rule><qualifier> % <rule>" construct to pure Perl 5.10...
sub _translate_separated_list {
my ($term, $op, $separator, $term_trans, $sep_trans,
$ws, $debug_build, $debug_runtime, $timeout) = @_;
# This insertion ensures backtracking upwinds the stack correctly...
state $CHECKPOINT = q{(?{;@Regexp::Grammars::RESULT_STACK = @Regexp::Grammars::RESULT_STACK;})};
# Translate meaningful whitespace...
$ws = length($ws) ? q{(?&ws__implicit__)} : q{};
# Generate timeout test...
my $timeout_test = $timeout ? q{(??{;Regexp::Grammars::_test_timeout()})} : q{};
# Report how construct was interpreted, if requested to...
if ($debug_build) {
_debug_notify( info =>
" |",
" |...Treating $term $op $separator as:",
" | | repeatedly match the subrule $term",
" | \\ as long as the matches are separated by matches of $separator",
);
}
# One-or-more...
return qq{$timeout_test(?:$ws$CHECKPOINT$sep_trans$ws$term_trans)*$+}
if $op =~ m{ [*][*]() | [+]([+?]?) \s* % | \{ 1, \}([+?]?) \s* % }xms;
# Zero-or-more...
return qq{{0}$timeout_test$ws(?:$term_trans(?:$ws$CHECKPOINT$sep_trans$ws$term_trans)*$+)?$+}
if $op =~ m{ [*]([+?]?) \s* % | \{ 0, \}([+?]?) \s* % }xms;
# One-or-zero...
return qq{?$+}
if $op =~ m{ [?]([+?]?) \s* % | \{ 0,1 \}([+?]?) \s* % }xms;
# Zero exactly...
return qq{{0}$ws}
if $op =~ m{ \{ 0 \}[+?]? \s* % }xms;
# N exactly...
if ($op =~ m{ \{ (\d+) \}([+?]?) \s* % }xms ) {
my $min = $1-1;
return qq{{0}$timeout_test$ws(?:$term_trans(?:$ws$CHECKPOINT$sep_trans$ws$term_trans){$min}$+)}
}
# Zero-to-N...
if ($op =~ m{ \{ 0,(\d+) \}([+?]?) \s* % }xms ) {
my $max = $1-1;
return qq{{0}$timeout_test$ws(?:$term_trans(?:$ws$CHECKPOINT$sep_trans$ws$term_trans){0,$max}$+)?$+}
}
# M-to-N and M-to-whatever...
if ($op =~ m{ \{ (\d+),(\d*) \} ([+?]?) \s* % }xms ) {
my $min = $1-1;
my $max = $2 ? $2-1 : q{};
return qq{{0}$timeout_test$ws(?:$term_trans(?:$ws$CHECKPOINT$sep_trans$ws$term_trans){$min,$max}$+)}
}
# Somehow we missed a case (this should never happen)...
die "Internal error: missing case in separated list handler";
}
sub _translate_subrule_call {
my ($source_line, $source_file, $rulename, $grammar_name, $construct, $alias,
$subrule, $args, $savemode, $postmodifier,
$debug_build, $debug_runtime, $timeout, $valid_subrule_names_ref, $nocontext)
= @_;
# Translate arg list, if provided...
my $arg_desc;
if ($args eq q{}) {
$args = q{()};
}
elsif (substr($args,0,3) eq '(?{') {
# Turn parencode into do block...
$arg_desc = substr($args,3,-2);
substr($args,1,1) = 'do';
}
else {
# Turn abbreviated format into a key=>value list...
$args =~ s{ [(,] \s* \K : (\w+) (?= \s* [,)] ) }{$1 => \$MATCH{'$1'}}gxms;
$arg_desc = substr($args,1,-1);
}
# Transform qualified subrule names...
my $simple_subrule = $subrule;
my $start_grammar = (($simple_subrule =~ s{(.*)::}{}xms) ? $1 : "");
if ($start_grammar !~ /^NEXT$|::/) {
$start_grammar = caller(3).'::'.$start_grammar;
}
my @candidates = $start_grammar eq 'NEXT' ? _ancestry_of($grammar_name)
: _ancestry_of($start_grammar);
# Rename fully-qualified rule call, if to ancestor grammar...
RESOLVING:
for my $parent_class (@candidates) {
my $inherited_subrule = $parent_class.'::'.$simple_subrule;
if ($CACHE{$inherited_subrule}) {
$subrule = $inherited_subrule;
last RESOLVING;
}
}
# Replace package separators, which regex engine can't handle...
my $internal_subrule = $subrule;
$internal_subrule =~ s{::}{_88_}gxms;
# Shortcircuit if unknown subrule invoked...
if (!$valid_subrule_names_ref->{$subrule}) {
_debug_notify( error =>
qq{Found call to $construct inside definition of $rulename},
qq{near $source_file line $source_line.},
qq{But no <rule: $subrule> or <token: $subrule> was defined in the grammar},
qq{(Did you misspell $construct? Or forget to define the rule?)},
q{},
);
return "(?{Regexp::Grammars::_debug_fatal('$construct')})(*COMMIT)(*FAIL)";
}
# Determine save behaviour...
my $is_noncapturing = $savemode =~ /noncapturing|lookahead/;
my $is_listifying = $savemode eq 'list';
my $save_code =
$is_noncapturing?
q{ @Regexp::Grammars::RESULT_STACK[0..@Regexp::Grammars::RESULT_STACK-2] }
: $is_listifying?
qq{ \@Regexp::Grammars::RESULT_STACK[0..\@Regexp::Grammars::RESULT_STACK-3],
Regexp::Grammars::_pop_current_result_frame_with_list(
\\\@Regexp::Grammars::RESULT_STACK, $alias, '$simple_subrule', \$^N
),
}
:
qq{ \@Regexp::Grammars::RESULT_STACK[0..\@Regexp::Grammars::RESULT_STACK-3],
Regexp::Grammars::_pop_current_result_frame(
\\\@Regexp::Grammars::RESULT_STACK, $alias, '$simple_subrule', \$^N
),
}
;
# Report how construct was interpreted, if requested to...
my $repeatedly = $REPETITION_DESCRIPTION_FOR{$postmodifier} // q{};
my $results = $is_listifying && $postmodifier ? 'each match'
: substr($postmodifier,0,1) eq '?' ? 'any match'
: 'the match'
;
my $do_something_with = $savemode eq 'neglookahead' ? 'lookahead for anything except'
: $savemode eq 'poslookahead' ? 'lookahead for'
: 'match'
;
if ($debug_build) {
_debug_notify( info =>
" |",
" |...Treating $construct as:",
" | | $do_something_with the subrule <$subrule> $repeatedly",
(defined $arg_desc ? " | | passing the args: ($arg_desc)"
: ()
),
( $is_noncapturing ? " | \\ but don't save anything"
: $is_listifying ? " | \\ appending $results to \$MATCH{$alias}"
: " | \\ saving $results in \$MATCH{$alias}"
),
);
}
# Generate post-match result-capturing code, if match captures...
my ($debug_pre, $debug_post)
= _build_debugging_statements($debug_runtime, $construct);
# Generate timeout test...
my $timeout_test = $timeout ? q{(??{;Regexp::Grammars::_test_timeout()})} : q{};
# Translate to standard regex code...
return qq{(?:$timeout_test(?{;
local \@Regexp::Grammars::RESULT_STACK = (\@Regexp::Grammars::RESULT_STACK, {'\@'=>{$args}});
\$Regexp::Grammars::RESULT_STACK[-2]{'~'} = $nocontext
if \@Regexp::Grammars::RESULT_STACK >= 2;
$debug_pre})((?&$internal_subrule))(?{;
local \@Regexp::Grammars::RESULT_STACK = (
$save_code
);$debug_post
}))$postmodifier};
}
sub _translate_rule_def {
my ($type, $qualifier, $name, $callname, $qualname, $body, $objectify, $local_ws) = @_;
$qualname =~ s{::}{_88_}gxms;
# Return object if requested...
my $objectification =
$objectify ? qq{(??{; local \@Regexp::Grammars::RESULT_STACK = \@Regexp::Grammars::RESULT_STACK;
\$Regexp::Grammars::RESULT_STACK[-1] = '$qualifier$name'->can('new')
? '$qualifier$name'->new(\$Regexp::Grammars::RESULT_STACK[-1])
: bless \$Regexp::Grammars::RESULT_STACK[-1], '$qualifier$name';
Regexp::Grammars::_debug_non_hash(\$Regexp::Grammars::RESULT_STACK[-1],'$name');
})}
: q{};
# Each rule or token becomes a DEFINE'd Perl 5.10 named capture...
my $implicit_version
= ($callname eq 'ws' || $callname eq 'hk')
? qq{(?<${callname}__implicit__> $body) }
: qq{};
return qq{
(?(DEFINE) $local_ws
(?<$qualname>
(?<$callname>
(?{\$Regexp::Grammars::RESULT_STACK[-1]{'!'}=\$#{!};})
(?:$body) $objectification
(?{;\$#{!}=delete(\$Regexp::Grammars::RESULT_STACK[-1]{'!'})//0;
delete(\$Regexp::Grammars::RESULT_STACK[-1]{'\@'});
})
))
$implicit_version
)
};
}
# Locate any valid <...> sequences and replace with native regex code...
sub _translate_subrule_calls {
my ($source_file, $source_line,
$grammar_name,
$grammar_spec,
$compiletime_debugging_requested,
$runtime_debugging_requested,
$timeout_requested,
$pre_match_debug,
$post_match_debug,
$rule_name,
$subrule_names_ref,
$magic_ws,
$nocontext,
) = @_;
my $pretty_rule_name = $rule_name ? ($magic_ws ? '<rule' : '<token') . ": $rule_name>"
: 'main regex (before first rule)';
# Remember the preceding construct, so as to implement the +% etc. operators...
my $prev_construct = q{};
my $prev_translation = q{};
my $curr_line_num = 1;
# Translate all other calls (MAIN GRAMMAR FOR MODULE)...
$grammar_spec =~ s{
(?<list_marker> (?<ws1> \s*+) (?<op> (?&SEPLIST_OP) ) (?<ws2> \s*+) )?
(?<construct>
(?<! \(\? )
<
(?:
(?<self_subrule_scalar_nocap>
\. \s* (?<subrule>(?&QUALIDENT)) \s* (?<args>(?&ARGLIST)) \s*
)
| (?<self_subrule_lookahead>
(?<sign> \? | \! ) \s* (?<subrule>(?&QUALIDENT)) \s* (?<args>(?&ARGLIST)) \s*
)
| (?<self_subrule_scalar>
\s* (?<subrule>(?&QUALIDENT)) \s* (?<args>(?&ARGLIST)) \s*
)
| (?<self_subrule_list>
\[ \s* (?<subrule>(?&QUALIDENT)) \s* (?<args>(?&ARGLIST)) \s* \]
)
| (?<alias_subrule_scalar>
(?<alias>(?&IDENT)) \s* = \s* (?<subrule>(?&QUALIDENT)) \s* (?<args>(?&ARGLIST)) \s*
)
| (?<alias_subrule_list>
\[ (?<alias>(?&IDENT)) \s* = \s* (?<subrule>(?&QUALIDENT)) \s* (?<args>(?&ARGLIST)) \s* \]
)
| (?<self_argrule_scalar>
\s* : (?<subrule>(?&QUALIDENT)) \s*
)
| (?<alias_argrule_scalar>
(?<alias>(?&IDENT)) \s* = \s* : (?<subrule>(?&QUALIDENT)) \s*
)
| (?<alias_argrule_list>
\[ (?<alias>(?&IDENT)) \s* = \s* : (?<subrule>(?&QUALIDENT)) \s* \]
)
| (?<alias_parens_scalar_nocap>
\. (?<alias>(?&IDENT)) \s* = \s* (?<pattern>(?&PARENCODE)|(?&PARENS)|(?&LITERAL)) \s*
)
| (?<alias_parens_scalar>
(?<alias>(?&IDENT)) \s* = \s* (?<pattern>(?&PARENCODE)|(?&PARENS)|(?&LITERAL)) \s*
)
| (?<alias_parens_list>
\[ (?<alias>(?&IDENT)) \s* = \s* (?<pattern>(?&PARENCODE)|(?&PARENS)|(?&LITERAL)) \s* \]
)
| (?<alias_hash_scalar_nocap>
(?<varname>(?&HASH)) \s* (?<keypat>(?&BRACES))? \s*
)
| (?<alias_hash_scalar>
(?<alias>(?&IDENT)) \s* = \s* (?<varname>(?&HASH)) \s* (?<keypat>(?&BRACES))? \s*
)
| (?<alias_hash_list>
\[ (?<alias>(?&IDENT)) \s* = \s* (?<varname>(?&HASH)) \s* (?<keypat>(?&BRACES))? \s* \]
)
| (?<backref>
\s* (?<slash> \\ | /) (?<subrule> [:] (?&QUALIDENT)) \s*
| \s* (?<slash> \\_ | /) (?<subrule> (?&QUALIDENT)) \s*
)
| (?<alias_backref>
(?<alias>(?&IDENT)) \s* = \s* (?<slash> \\ | /) (?<subrule> [:] (?&QUALIDENT)) \s*
| (?<alias>(?&IDENT)) \s* = \s* (?<slash> \\_ | /) (?<subrule> (?&QUALIDENT)) \s*
)
| (?<alias_backref_list>
\[ (?<alias>(?&IDENT)) \s* = \s* (?<slash> \\ | /) (?<subrule> [:] (?&QUALIDENT)) \s* \]
| \[ (?<alias>(?&IDENT)) \s* = \s* (?<slash> \\_ | /) (?<subrule> (?&QUALIDENT)) \s* \]
)
|
(?<minimize_directive>
minimize \s* : \s*
)
|
(?<require_directive>
require \s* : \s* (?<condition> (?&PARENCODE) ) \s*
)
|
(?<debug_directive>
debug \s* : \s* (?<cmd> run | match | step | try | off | on) \s*
)
|
(?<timeout_directive>
timeout \s* : \s* (?<timeout> \d+) \s*
)
|
(?<context_directive>
context \s* : \s*
)
|
(?<nocontext_directive>
nocontext \s* : \s*
)
|
(?<yadaerror_directive>
[.][.][.]
| [!][!][!]
| [?][?][?]
)
|
(?<autoerror_directive>
(?<error_type> error | fatal ) \s*+ : \s*+
)
|
(?<error_directive>
(?<error_type> log | error | warning | fatal )
\s*+ : \s*+
(?<msg> (?&PARENCODE) | .+? )
\s*+
)
)
> (?<modifier> \s* (?! (?&SEPLIST_OP) ) [?+*][?+]? | )
|
(?<ws_directive>
$WS_PATTERN
)
|
(?<raw_regex>
\(\?\<\w+\>
)
|
(?<incomplete_request>
< [^>\n]* [>\n]
)
|
(?<loose_quantifier>
(?<! \| ) \s++ (?&QUANTIFIER)
| (?<! \A ) \s++ (?&QUANTIFIER)
)
|
(?<reportable_raw_regex>
(?: \\[^shv]
| (?! (?&PARENCODE) ) (?&PARENS)
| (?&CHARSET)
| \w++
| \|
)
(?&QUANTIFIER)?
)
|
(?<raw_regex>
\s++
| \\. (?&QUANTIFIER)?
| \(\?!
| \(\?\# [^)]* \) # (?# -> old style inline comment)
| (?&PARENCODE)
| \# [^\n]*+
| [^][\s()<>#\\]++
)
)
(?(DEFINE)
(?<SEPLIST_OP> \*\* | [*+?][+?]?\s*% | \{ \d+(,\d*)? \} [+?]?\s*% )
(?<PARENS> \( (?:[?] (?: <[=!] | [:>] ))? (?: \\. | (?&PARENCODE) | (?&PARENS) | (?&CHARSET) | [^][()\\<>]++ )*+ \) )
(?<BRACES> \{ (?: \\. | (?&BRACES) | [^{}\\]++ )*+ \} )
(?<PARENCODE> \(\?[{] (?: \\. | (?&BRACES) | [^{}\\]++ )*+ [}]\) )
(?<HASH> \% (?&IDENT) (?: :: (?&IDENT) )* )
(?<CHARSET> \[ \^?+ \]?+ (?: \[:\w+:\] | \\. | [^]] )*+ \] )
(?<IDENT> [^\W\d]\w*+ )
(?<QUALIDENT> (?: [^\W\d]\w*+ :: )* [^\W\d]\w*+ )
(?<LITERAL> (?&NUMBER) | (?&STRING) | (?&VAR) )
(?<NUMBER> [+-]? \d++ (?:\. \d++)? (?:[eE] [+-]? \d++)? )
(?<STRING> ' [^\\']++ (?: \\. [^\\']++ )* ' )
(?<ARGLIST> (?&PARENCODE) | \( \s* (?&ARGS)? \s* \) | (?# NOTHING ) )
(?<ARGS> (?&ARG) \s* (?: , \s* (?&ARG) \s* )* ,? )
(?<ARG> (?&VAR) | (?&KEY) \s* => \s* (?&LITERAL) )
(?<VAR> : (?&IDENT) )
(?<KEY> (?&IDENT) | (?&LITERAL) )
(?<QUANTIFIER> [*+?][+?]? | \{ \d+,?\d* \} [+?]? )
)
}{
my $curr_construct = $+{construct};
my $list_marker = $+{list_marker} // q{};
my $alias = ($+{alias}//'MATCH') eq 'MATCH' ? q{'='} : qq{'$+{alias}'};
# Determine and remember the necessary translation...
my $curr_translation = do{
# Translate subrule calls of the form: <ALIAS=(...)>...
if (defined $+{alias_parens_scalar}) {
my $pattern = substr($+{pattern},0,1) eq '(' ? $+{pattern} : "(?{$+{pattern}})";
_translate_subpattern(
$curr_construct, $alias, $pattern, 'scalar', $+{modifier},
$compiletime_debugging_requested,
$runtime_debugging_requested, $timeout_requested,
);
}
elsif (defined $+{alias_parens_scalar_nocap}) {
my $pattern = substr($+{pattern},0,1) eq '(' ? $+{pattern} : "(?{$+{pattern}})";
_translate_subpattern(
$curr_construct, $alias, $pattern, 'noncapturing', $+{modifier},
$compiletime_debugging_requested,
$runtime_debugging_requested, $timeout_requested,
);
}
elsif (defined $+{alias_parens_list}) {
my $pattern = substr($+{pattern},0,1) eq '(' ? $+{pattern} : "(?{$+{pattern}})";
_translate_subpattern(
$curr_construct, $alias, $pattern, 'list', $+{modifier},
$compiletime_debugging_requested,
$runtime_debugging_requested, $timeout_requested,
);
}
# Translate subrule calls of the form: <ALIAS=%HASH>...
elsif (defined $+{alias_hash_scalar}) {
_translate_hashmatch(
$curr_construct, $alias, $+{varname}, $+{keypat}, 'scalar', $+{modifier},
$compiletime_debugging_requested,
$runtime_debugging_requested,
$timeout_requested,
);
}
elsif (defined $+{alias_hash_scalar_nocap}) {
_translate_hashmatch(
$curr_construct, $alias, $+{varname}, $+{keypat}, 'noncapturing', $+{modifier},
$compiletime_debugging_requested,
$runtime_debugging_requested,
$timeout_requested,
);
}
elsif (defined $+{alias_hash_list}) {
_translate_hashmatch(
$curr_construct, $alias, $+{varname}, $+{keypat}, 'list', $+{modifier},
$compiletime_debugging_requested,
$runtime_debugging_requested,
$timeout_requested,
);
}
# Translate subrule calls of the form: <ALIAS=RULENAME>...
elsif (defined $+{alias_subrule_scalar}) {
_translate_subrule_call(
$source_line, $source_file,
$pretty_rule_name,
$grammar_name,
$curr_construct, $alias, $+{subrule}, $+{args}, 'scalar', $+{modifier},
$compiletime_debugging_requested,
$runtime_debugging_requested,
$timeout_requested,
$subrule_names_ref,
$nocontext,
);
}
elsif (defined $+{alias_subrule_list}) {
_translate_subrule_call(
$source_line, $source_file,
$pretty_rule_name,
$grammar_name,
$curr_construct, $alias, $+{subrule}, $+{args}, 'list', $+{modifier},
$compiletime_debugging_requested,
$runtime_debugging_requested,
$timeout_requested,
$subrule_names_ref,
$nocontext,
);
}
# Translate subrule calls of the form: <?RULENAME> and <!RULENAME>...
elsif (defined $+{self_subrule_lookahead}) {
# Determine type of lookahead, and work around capture problem...
my ($type, $pre, $post) = ( 'neglookahead', '(?!(?!)|', ')' );
if (defined $+{sign} eq '?') {
$type = 'poslookahead';
$pre x= 2;
$post x= 2;
}
$pre . _translate_subrule_call(
$source_line, $source_file,
$pretty_rule_name,
$grammar_name,
$curr_construct, qq{'$+{subrule}'}, $+{subrule}, $+{args}, $type, q{},
$compiletime_debugging_requested,
$runtime_debugging_requested,
$timeout_requested,
$subrule_names_ref,
$nocontext,
)
. $post;
}
elsif (defined $+{self_subrule_scalar_nocap}) {
_translate_subrule_call(
$source_line, $source_file,
$pretty_rule_name,
$grammar_name,
$curr_construct, qq{'$+{subrule}'}, $+{subrule}, $+{args}, 'noncapturing', $+{modifier},
$compiletime_debugging_requested,
$runtime_debugging_requested,
$timeout_requested,
$subrule_names_ref,
$nocontext,
);
}
elsif (defined $+{self_subrule_scalar}) {
_translate_subrule_call(
$source_line, $source_file,
$pretty_rule_name,
$grammar_name,
$curr_construct, qq{'$+{subrule}'}, $+{subrule}, $+{args}, 'scalar', $+{modifier},
$compiletime_debugging_requested,
$runtime_debugging_requested,
$timeout_requested,
$subrule_names_ref,
$nocontext,
);
}
elsif (defined $+{self_subrule_list}) {
_translate_subrule_call(
$source_line, $source_file,
$pretty_rule_name,
$grammar_name,
$curr_construct, qq{'$+{subrule}'}, $+{subrule}, $+{args}, 'list', $+{modifier},
$compiletime_debugging_requested,
$runtime_debugging_requested,
$timeout_requested,
$subrule_names_ref,
$nocontext,
);
}
# Translate subrule calls of the form: <ALIAS=:ARGNAME>...
elsif (defined $+{alias_argrule_scalar}) {
my $pattern = qq{(??{;\$Regexp::Grammars::RESULT_STACK[-1]{'\@'}{'$+{subrule}'} // '(?!)'})};
_translate_subpattern(
$curr_construct, $alias, $pattern, 'scalar', $+{modifier},
$compiletime_debugging_requested, $runtime_debugging_requested, $timeout_requested,
"in \$ARG{'$+{subrule}'}"
);
}
elsif (defined $+{alias_argrule_list}) {
my $pattern = qq{(??{;\$Regexp::Grammars::RESULT_STACK[-1]{'\@'}{'$+{subrule}'} // '(?!)'})};
_translate_subpattern(
$curr_construct, $alias, $pattern, 'list', $+{modifier},
$compiletime_debugging_requested, $runtime_debugging_requested, $timeout_requested,
"in \$ARG{'$+{subrule}'}"
);
}
# Translate subrule calls of the form: <:ARGNAME>...
elsif (defined $+{self_argrule_scalar}) {
my $pattern = qq{(??{;\$Regexp::Grammars::RESULT_STACK[-1]{'\@'}{'$+{subrule}'} // '(?!)'})};
_translate_subpattern(
$curr_construct, qq{'$+{subrule}'}, $pattern, 'noncapturing', $+{modifier},
$compiletime_debugging_requested, $runtime_debugging_requested, $timeout_requested,
"in \$ARG{'$+{subrule}'}"
);
}
# Translate subrule calls of the form: <\IDENT> or </IDENT>...
elsif (defined $+{backref} || $+{alias_backref} || $+{alias_backref_list}) {
# Use "%ARGS" if subrule names starts with a colon...
my $subrule = $+{subrule};
if (substr($subrule,0,1) eq ':') {
substr($subrule,0,1,"\@'}{'");
}
my $backref = qq{\$Regexp::Grammars::RESULT_STACK[-1]{'$subrule'}};
my $quoter = $+{slash} eq '\\' || $+{slash} eq '\\_'
? "quotemeta($backref)"
: "Regexp::Grammars::_invert_delim($backref)"
;
my $pattern = qq{ (??{ defined $backref ? $quoter : q{(?!)}})};
my $type = $+{backref} ? 'noncapturing'
: $+{alias_backref} ? 'scalar'
: 'list'
;
_translate_subpattern(
$curr_construct, $alias, $pattern, $type, $+{modifier},
$compiletime_debugging_requested, $runtime_debugging_requested, $timeout_requested,
"in \$MATCH{'$subrule'}"
);
}
# Translate reportable raw regexes (add debugging support)...
elsif (defined $+{reportable_raw_regex}) {
_translate_raw_regex(
$+{reportable_raw_regex}, $compiletime_debugging_requested, $runtime_debugging_requested
);
}
# Translate non-reportable raw regexes (leave as is)...
elsif (defined $+{raw_regex}) {
_translate_raw_regex(
$+{raw_regex}, $compiletime_debugging_requested
);
}
# Translate directives...
elsif (defined $+{require_directive}) {
_translate_require_directive(
$curr_construct, $+{condition}, $compiletime_debugging_requested
);
}
elsif (defined $+{minimize_directive}) {
_translate_minimize_directive(
$curr_construct, $+{condition}, $compiletime_debugging_requested
);
}
elsif (defined $+{debug_directive}) {
_translate_debug_directive(
$curr_construct, $+{cmd}, $compiletime_debugging_requested
);
}
elsif (defined $+{timeout_directive}) {
_translate_timeout_directive(
$curr_construct, $+{timeout}, $compiletime_debugging_requested
);
}
elsif (defined $+{error_directive}) {
_translate_error_directive(
$curr_construct, $+{error_type}, $+{msg},
$compiletime_debugging_requested, $rule_name
);
}
elsif (defined $+{autoerror_directive}) {
_translate_error_directive(
$curr_construct, $+{error_type}, q{},
$compiletime_debugging_requested, $rule_name
);
}
elsif (defined $+{yadaerror_directive}) {
_translate_error_directive(
$curr_construct,
($+{yadaerror_directive} eq '???' ? 'warning' : 'error'),
q{},
$compiletime_debugging_requested, -$rule_name
);
}
elsif (defined $+{context_directive}) {
$nocontext = 0;
if ($compiletime_debugging_requested) {
_debug_notify( info => " |",
" |...Treating $curr_construct as:",
" | \\ Turn on context-saving for the current rule"
);
}
q{}; # Remove the directive
}
elsif (defined $+{nocontext_directive}) {
$nocontext = 1;
if ($compiletime_debugging_requested) {
_debug_notify( info => " |",
" |...Treating $curr_construct as:",
" | \\ Turn off context-saving for the current rule"
);
}
q{}; # Remove the directive
}
elsif (defined $+{ws_directive}) {
if ($compiletime_debugging_requested) {
_debug_notify( info => " |",
" |...Treating $curr_construct as:",
" | \\ Change whitespace matching for the current rule"
);
}
$curr_construct;
}
# Something that looks like a rule call or directive, but isn't...
elsif (defined $+{incomplete_request}) {
my $request = $+{incomplete_request};
my $inferred_type = $request =~ /:/ ? 'directive' : 'subrule call';
_debug_notify( warn =>
qq{Possible failed attempt to specify a $inferred_type:},
qq{ $request},
qq{near $source_file line $source_line},
qq{(If you meant to match literally, use: \\$request)},
q{},
);
$request;
}
# A quantifier that isn't quantifying anything...
elsif (defined $+{loose_quantifier}) {
my $quant = $+{loose_quantifier};
$quant =~ s{^\s+}{};
my $literal = quotemeta($quant);
_debug_notify( fatal =>
qq{Quantifier that doesn't quantify anything: $quant},
qq{in declaration of $pretty_rule_name},
qq{near $source_file line $source_line},
qq{(Did you mean to match literally? If so, try: $literal)},
q{},
);
exit(1);
}
# There shouldn't be any other possibility...
else {
die qq{Internal error: this shouldn't happen!\n},
qq{Near '$curr_construct' in $pretty_rule_name\n};
}
};
# Handle the **/*%/+%/{n,m}%/etc operators...
if ($list_marker) {
my $ws = $magic_ws ? $+{ws1} . $+{ws2} : q{};
my $op = $+{op};
$curr_translation = _translate_separated_list(
$prev_construct, $op, $curr_construct,
$prev_translation, $curr_translation, $ws,
$compiletime_debugging_requested,
$runtime_debugging_requested, $timeout_requested,
);
$curr_construct = qq{$prev_construct $op $curr_construct};
}
# Finally, remember this latest translation, and return it...
$prev_construct = $curr_construct;
$prev_translation = $curr_translation;;
}exmsg;
# Translate magic hash accesses...
$grammar_spec =~ s{\$(?:\:\:)?MATCH (?= \s*\{) }
{\$Regexp::Grammars::RESULT_STACK[-1]}xmsg;
$grammar_spec =~ s{\$(?:\:\:)?ARG (?= \s*\{) }
{\$Regexp::Grammars::RESULT_STACK[-1]{'\@'}}xmsg;
# Translate magic scalars and hashes...
state $translate_scalar = {
q{%$MATCH} => q{%{$Regexp::Grammars::RESULT_STACK[-1]{q{=}}}},
q{@$MATCH} => q{@{$Regexp::Grammars::RESULT_STACK[-1]{q{=}}}},
q{$MATCH} => q{$Regexp::Grammars::RESULT_STACK[-1]{q{=}}},
q{%MATCH} => q{%{$Regexp::Grammars::RESULT_STACK[-1]}},
q{$CAPTURE} => q{$^N},
q{$CONTEXT} => q{$^N},
q{$DEBUG} => q{$Regexp::Grammars::DEBUG},
q{$INDEX} => q{${\\pos()}},
q{%ARG} => q{%{$Regexp::Grammars::RESULT_STACK[-1]{'@'}}},
q{%$::MATCH} => q{%{$Regexp::Grammars::RESULT_STACK[-1]{q{=}}}},
q{@$::MATCH} => q{@{$Regexp::Grammars::RESULT_STACK[-1]{q{=}}}},
q{$::MATCH} => q{$Regexp::Grammars::RESULT_STACK[-1]{q{=}}},
q{%::MATCH} => q{%{$Regexp::Grammars::RESULT_STACK[-1]}},
q{$::CAPTURE} => q{$^N},
q{$::CONTEXT} => q{$^N},
q{$::DEBUG} => q{$Regexp::Grammars::DEBUG},
q{$::INDEX} => q{${\\pos()}},
q{%::ARG} => q{%{$Regexp::Grammars::RESULT_STACK[-1]{'@'}}},
};
state $translatable_scalar
= join '|', map {quotemeta $_}
sort {length $b <=> length $a}
keys %{$translate_scalar};
$grammar_spec =~ s{ ($translatable_scalar) (?! \s* (?: \[ | \{) ) }
{$translate_scalar->{$1}}oxmsg;
return $grammar_spec;
}
# Generate a "decimal timestamp" and insert in a template...
sub _timestamp {
my ($template) = @_;
# Generate and insert any timestamp...
if ($template =~ /%t/) {
my ($sec, $min, $hour, $day, $mon, $year) = localtime;
$mon++; $year+=1900;
my $timestamp = sprintf("%04d%02d%02d.%02d%02d%02d",
$year, $mon, $day, $hour, $min, $sec);
$template =~ s{%t}{$timestamp}xms;;
}
return $template;
}
# Open (or re-open) the requested log file...
sub _autoflush {
my ($fh) = @_;
my $originally_selected = select $fh;
$|=1;
select $originally_selected;
}
sub _open_log {
my ($mode, $filename, $from_where) = @_;
$from_where //= q{};
# Special case: '-' --> STDERR
if ($filename eq q{-}) {
return *STDERR{IO};
}
# Otherwise, just open the named file...
elsif (open my $fh, $mode, $filename) {
_autoflush($fh);
return $fh;
}
# Otherwise, generate a warning and default to STDERR...
else {
local *Regexp::Grammars::LOGFILE = *STDERR{IO};
_debug_notify( warn =>
qq{Unable to open log file '$filename'},
($from_where ? $from_where : ()),
qq{($!)},
qq{Defaulting to STDERR instead.},
q{},
);
return *STDERR{IO};
}
}
sub _invert_delim {
my ($delim) = @_;
$delim = reverse $delim;
$delim =~ tr/<>[]{}()??`'/><][}{)(??'`/;
return quotemeta $delim;
}
# Regex to detect if other regexes contain a grammar specification...
my $GRAMMAR_DIRECTIVE
= qr{ < grammar: \s* (?<grammar_name> $QUALIDENT ) \s* > }xms;
# Regex to detect if other regexes contain a grammar inheritance...
my $EXTENDS_DIRECTIVE
= qr{ < extends: \s* (?<base_grammar_name> $QUALIDENT ) \s* > }xms;
# Cache of rule/token names within defined grammars...
my %subrule_names_for;
# Build list of ancestors for a given grammar...
sub _ancestry_of {
my ($grammar_name) = @_;
return () if !$grammar_name;
use mro;
return map { substr($_, $CACHE_LEN) } @{mro::get_linear_isa($CACHE.$grammar_name, 'c3')};
}
# Detect and translate any requested grammar inheritances...
sub _extract_inheritances {
my ($source_line, $source_file, $regex, $compiletime_debugging_requested, $derived_grammar_name) = @_;
# Detect and remove inheritance requests...
while ($regex =~ s{$EXTENDS_DIRECTIVE}{}xms) {
# Normalize grammar name and report...
my $orig_grammar_name = $+{base_grammar_name};
my $grammar_name = $orig_grammar_name;
if ($grammar_name !~ /::/) {
$grammar_name = caller(2).'::'.$grammar_name;
}
if (exists $user_defined_grammar{$grammar_name}) {
if ($compiletime_debugging_requested) {
_debug_notify( info =>
"Processing inheritance request for $grammar_name...",
q{},
);
}
# Specify new relationship...
no strict 'refs';
push @{$CACHE.$derived_grammar_name.'::ISA'}, $CACHE.$grammar_name;
}
else {
_debug_notify( fatal =>
"Inheritance from unknown grammar requested",
"by <extends: $grammar_name> directive",
"in regex grammar declared at $source_file line $source_line",
q{},
);
exit(1);
}
}
# Retrieve ancestors (but not self) in C3 dispatch order...
my (undef, @ancestors) = _ancestry_of($derived_grammar_name);
# Extract subrule names and implementations for ancestors...
my %subrule_names = map { %{$subrule_names_for{$_}} } @ancestors;
$_ = -1 for values %subrule_names;
my $implementation
= join "\n", map { $user_defined_grammar{$_} } @ancestors;
return $implementation, \%subrule_names;
}
# Transform grammar-augmented regex into pure Perl 5.10 regex...
sub _build_grammar {
my ($grammar_spec) = @_;
$grammar_spec .= q{};
# Check for lack of Regexp::Grammar-y constructs and short-circuit...
if ($grammar_spec !~ m{ < (?: [.?![:%\\/]? [^\W\d]\w* [^>]* | [.?!]{3} ) > }xms) {
return $grammar_spec;
}
# Remember where we parked...
my ($source_file, $source_line) = (caller 1)[1,2];
$source_line -= $grammar_spec =~ tr/\n//;
# Check for dubious repeated <SUBRULE> constructs that throw away captures...
my $dubious_line = $source_line;
while ($grammar_spec =~ m{
(.*?)
(
< (?! \[ ) # not <[SUBRULE]>
( $IDENT (?: = [^>]*)? ) # but <SUBRULE> or <SUBRULE=*>
> \s*
( # followed by a quantifier...
[+*][?+]? # either symbolic
| \{\d+(?:,\d*)?\}[?+]? # or numeric
)
)
}gxms) {
my ($prefix, $match, $rule, $qual) = ($1, $2, $3, $4);
$dubious_line += $prefix =~ tr/\n//;
_debug_notify( warn =>
qq{Repeated subrule <$rule>$qual},
qq{at $source_file line $dubious_line},
qq{will only capture its final match},
qq{(Did you mean <[$rule]>$qual instead?)},
q{},
);
$dubious_line += $match =~ tr/\n//;
}
# Check for dubious non-backtracking <SUBRULE> constructs...
$dubious_line = $source_line;
while (
$grammar_spec =~ m{
(.*?)
(
<
(?! (?:obj)? (?:rule: | token ) )
( [^>]+ )
>
\s*
( [?+*][+] | \{.*\}[+] )
)
}gxms) {
my ($prefix, $match, $rule, $qual) = ($1, $2, $3, $4);
$dubious_line += $prefix =~ tr/\n//;
my $safe_qual = substr($qual,0,-1);
_debug_notify( warn =>
qq{Non-backtracking subrule call <$rule>$qual},
qq{at $source_file line $dubious_line},
qq{may not revert correctly during backtracking.},
qq{(If grammar does not work, try <$rule>$safe_qual instead)},
q{},
);
$dubious_line += $match =~ tr/\n//;
}
# Check whether a log file was specified...
my $compiletime_debugging_requested;
local *Regexp::Grammars::LOGFILE = *Regexp::Grammars::LOGFILE;
my $logfile = q{-};
my $log_where = "for regex grammar defined at $source_file line $source_line";
$grammar_spec =~ s{ ^ [^#]* < logfile: \s* ([^>]+?) \s* > }{
$logfile = _timestamp($1);
# Presence of <logfile:...> implies compile-time logging...
$compiletime_debugging_requested = 1;
*Regexp::Grammars::LOGFILE = _open_log('>',$logfile, $log_where );
# Delete <logfile:...> directive...
q{};
}gexms;
# Look ahead for any run-time debugging or timeout requests...
my $runtime_debugging_requested
= $grammar_spec =~ m{
^ [^#]*
< debug: \s* (run | match | step | try | on | same ) \s* >
| \$DEBUG (?! \s* (?: \[ | \{) )
}xms;
my $timeout_requested
= $grammar_spec =~ m{
^ [^#]*
< timeout: \s* \d+ \s* >
}xms;
# Standard actions set up and clean up any regex debugging...
# Before entire match, set up a stack of attempt records and report...
my $pre_match_debug
= $runtime_debugging_requested
? qq{(?{; *Regexp::Grammars::LOGFILE
= Regexp::Grammars::_open_log('>>','$logfile', '$log_where');
Regexp::Grammars::_init_try_stack(); })}
: qq{(?{; *Regexp::Grammars::LOGFILE
= Regexp::Grammars::_open_log('>>','$logfile', '$log_where'); })}
;
# After entire match, report whether successful or not...
my $post_match_debug
= $runtime_debugging_requested
? qq{(?{;Regexp::Grammars::_debug_matched(0,\\%/,'<grammar>',\$^N)})
|(?>(?{;Regexp::Grammars::_debug_handle_failures(0,'<grammar>'); }) (?!))
}
: q{}
;
# Remove comment lines...
$grammar_spec =~ s{^ ([^#\n]*) \s \# [^\n]* }{$1}gxms;
# Subdivide into rule and token definitions, preparing to process each...
# REWRITE THIS, USING (PROBABLY NEED TO REFACTOR ALL GRAMMARS TO REUSe
# THESE COMPONENTS:
# (?<PARAMLIST> \( \s* (?&PARAMS)? \s* \) | (?# NOTHING ) )
# (?<PARAMS> (?&PARAM) \s* (?: , \s* (?&PARAM) \s* )* ,? )
# (?<PARAM> (?&VAR) (?: \s* = \s* (?: (?&LITERAL) | (?&PARENCODE) ) )? )
# (?<LITERAL> (?&NUMBER) | (?&STRING) | (?&VAR) )
# (?<VAR> : (?&IDENT) )
my @defns = split m{
(< (obj|)(rule|token) \s*+ :
\s*+ ((?:${IDENT}::)*+) (?: ($IDENT) \s*+ = \s*+ )?+
($IDENT)
\s* >)
}xms, $grammar_spec;
# Extract up list of names of defined rules/tokens...
# (Name is every 6th item out of every seven, skipping the first item)
my @subrule_names = @defns[ map { $_ * 7 + 6 } 0 .. ((@defns-1)/7-1) ];
my @defns_copy = @defns[1..$#defns];
my %subrule_names;
# Build a look-up table of subrule names, checking for duplicates...
my $defn_line = $source_line + $defns[0] =~ tr/\n//;
my %first_decl_explanation;
for my $subrule_name (@subrule_names) {
my ($full_decl, $objectify, $type, $qualifier, $name, $callname, $body) = splice(@defns_copy, 0, 7);
if (++$subrule_names{$subrule_name} > 1) {
_debug_notify( warn =>
"Redeclaration of <$objectify$type: $subrule_name>",
"at $source_file line $defn_line",
"will be ignored.",
@{ $first_decl_explanation{$subrule_name} },
q{},
);
}
else {
$first_decl_explanation{$subrule_name} = [
"(Hidden by the earlier declaration of <$objectify$type: $subrule_name>",
" at $source_file line $defn_line)"
];
}
$defn_line += ($full_decl.$body) =~ tr/\n//;
}
# Add the built-ins...
@subrule_names{'ws', 'hk', 'matchpos', 'matchline'} = (1) x 4;
# An empty main rule will never match anything...
my $main_regex = shift @defns;
if ($main_regex =~ m{\A (?: \s++ | \(\?\# [^)]* \) | \# [^\n]++ )* \z}xms) {
_debug_notify( error =>
"No main regex specified before rule definitions",
"in regex grammar declared at $source_file line $source_line",
"Grammar will never match anything.",
"(Or did you forget a <grammar:...> specification?)",
q{},
);
}
# Compile the regex or grammar...
my $regex = q{};
my $grammar_name;
my $is_grammar;
# Is this a grammar specification?
if ($main_regex =~ $GRAMMAR_DIRECTIVE) {
# Normalize grammar name and report...
$grammar_name = $+{grammar_name};
if ($grammar_name !~ /::/) {
$grammar_name = caller(1) . "::$grammar_name";
}
$is_grammar = 1;
# Add subrule definitions to namespace...
for my $subrule_name (@subrule_names) {
$CACHE{$grammar_name.'::'.$subrule_name} = 1;
}
}
else {
state $dummy_grammar_index = 0;
$grammar_name = '______' . $dummy_grammar_index++;
}
# Extract any inheritance information...
my ($inherited_rules, $inherited_subrule_names)
= _extract_inheritances(
$source_line, $source_file,
$main_regex,
$compiletime_debugging_requested,
$grammar_name
);
# Remove <extends:...> requests...
$main_regex =~ s{ $EXTENDS_DIRECTIVE }{}gxms;
# Add inherited subrule names to allowed subrule names;
@subrule_names{ keys %{$inherited_subrule_names} }
= values %{$inherited_subrule_names};
# Remove comments from top-level grammar...
$main_regex =~ s{
\(\?\# [^)]* \)
| (?<! \\ ) [#] [^\n]+
}{}gxms;
# Remove any top-level nocontext directive...
# 1 2 3 4
$main_regex =~ s{^( (.*?) (\\*) (\# [^\n]*) )$}{length($3) % 2 ? $1 : $2.substr($3,0,-1)}gexms;
my $nocontext = ($main_regex =~ s{ < nocontext \s* : \s* > }{}gxms) ? 1
: ($main_regex =~ s{ < context \s* : \s* > }{}gxms) ? 0
: 0;
# If so, set up to save the grammar...
if ($is_grammar) {
# Normalize grammar name and report...
if ($grammar_name !~ /::/) {
$grammar_name = caller(1) . "::$grammar_name";
}
if ($compiletime_debugging_requested) {
_debug_notify( info =>
"Processing definition of grammar $grammar_name...",
q{},
);
}
# Remove the grammar directive...
$main_regex =~ s{
( $GRAMMAR_DIRECTIVE
| < debug: \s* (run | match | step | try | on | off | same ) \s* >
)
}{$source_line += $1 =~ tr/\n//; q{}}gexms;
# Check for anything else in the main regex...
if ($main_regex =~ /\A(\s*)\S/) {
$source_line += $1 =~ tr/\n//;
_debug_notify( warn =>
"Unexpected item before first subrule specification",
"in definition of <grammar: $grammar_name>",
"at $source_file line $source_line:",
map({ " $_"} grep /\S/, split "\n", $main_regex),
"(this will be ignored when defining the grammar)",
q{},
);
}
# Remember set of valid subrule names...
$subrule_names_for{$grammar_name}
= {
map({ ($_ => 1) } keys %subrule_names),
map({ ($grammar_name.'::'.$_ => 1) } grep { !/::/ } keys %subrule_names),
};
}
else { #...not a grammar specification
# Report how main regex was interpreted, if requested to...
if ($compiletime_debugging_requested) {
_debug_notify( info =>
"Processing the main regex before any rule definitions",
);
}
# Any actual regex is processed first...
$regex = _translate_subrule_calls(
$source_file, $source_line,
$grammar_name,
$main_regex,
$compiletime_debugging_requested,
$runtime_debugging_requested,
$timeout_requested,
$pre_match_debug,
$post_match_debug,
q{}, # Expected...what?
\%subrule_names,
0, # Whitespace isn't magical
$nocontext,
);
# Wrap the main regex (to ensure |'s don't segment pre and # post commands)...
$regex = "(?:$regex)";
# Report how construct was interpreted, if requested to...
if ($compiletime_debugging_requested) {
_debug_notify( q{} =>
q{ |},
q{ \\___End of main regex},
q{},
);
}
}
# Update line number...
$source_line += $main_regex =~ tr/\n//;
# Then iterate any following rule definitions...
while (@defns) {
# Grab details of each rule defn (as extracted by previous split)...
my ($full_decl, $objectify, $type, $qualifier, $name, $callname, $body) = splice(@defns, 0, 7);
$name //= $callname;
my $qualified_name = $grammar_name.'::'.$callname;
# Report how construct was interpreted, if requested to...
if ($compiletime_debugging_requested) {
_debug_notify( info =>
"Defining a $type: <$callname>",
" |...Returns: " . ($objectify ? "an object of class '$qualifier$name'" : "a hash"),
);
}
# Translate any nested <...> constructs...
my $trans_body = _translate_subrule_calls(
$source_file, $source_line,
$grammar_name,
$body,
$compiletime_debugging_requested,
$runtime_debugging_requested,
$timeout_requested,
$pre_match_debug,
$post_match_debug,
$callname, # Expected...what?
\%subrule_names,
$type eq 'rule', # Is whitespace magical?
$nocontext, # Start with the global nocontextuality
);
# Report how construct was interpreted, if requested to...
if ($compiletime_debugging_requested) {
_debug_notify( q{} =>
q{ |},
q{ \\___End of rule definition},
q{},
);
}
# Make allowance for possible local whitespace definitions...
my $local_ws_defn = q{};
my $local_ws_call = q{(?&ws__implicit__)};
# Rules make non-code literal whitespace match textual whitespace...
if ($type eq 'rule') {
# Implement any local whitespace definition...
my $first_ws = 1;
WS_DIRECTIVE:
while ($trans_body =~ s{$WS_PATTERN}{}oxms) {
my $defn = $1;
if ($defn !~ m{\S}xms) {
_debug_notify( warn =>
qq{Ignoring useless empty <ws:> directive},
qq{in definition of <rule: $name>},
qq{near $source_file line $source_line},
qq{(Did you mean <ws> instead?)},
q{},
);
next WS_DIRECTIVE;
}
elsif (!$first_ws) {
_debug_notify( warn =>
qq{Ignoring useless extra <ws:$defn> directive},
qq{in definition of <rule: $name>},
qq{at $source_file line $source_line},
qq{(No more than one is permitted per rule!)},
q{},
);
next WS_DIRECTIVE;
}
else {
$first_ws = 0;
}
state $ws_counter = 0;
$ws_counter++;
$local_ws_defn = qq{(?<__RG_ws_$ws_counter> $defn)};
$local_ws_call = qq{(?&__RG_ws_$ws_counter)};
}
# Implement auto-whitespace...
state $CODE_OR_SPACE = qr{
(?<ignorable_space> # These are not magic...
\( \?\?? (?&BRACED) \) # Embedded code blocks
| \s++ # Whitespace not followed by...
(?= \| # ...an OR
| (?: \) \s* )? \z # ...the end of the rule
| \(\(?\?\&ws\) # ...an explicit ws match
| \(\?\??\{ # ...an embedded code block
| \\s # ...an explicit space match
)
)
|
(?<magic_space> \s++ ) # All other whitespace is magic
(?(DEFINE) (?<BRACED> \{ (?: \\. | (?&BRACED) | [^{}] )* \} ) )
}xms;
$trans_body =~ s{($CODE_OR_SPACE)}{ $+{ignorable_space} // $local_ws_call }exmsg;
}
else {
while ($trans_body =~ s{$WS_PATTERN}{}oxms) {
_debug_notify( warn =>
qq{Ignoring useless <ws:$1> directive},
qq{in definition of <token: $name>},
qq{at $source_file line $source_line},
qq{(Did you need to define <rule: $name> instead of <token: $name>?)},
q{},
);
}
}
$regex
.= "\n###############[ $source_file line $source_line ]###############\n"
. _translate_rule_def(
$type, $qualifier, $name, $callname, $qualified_name, $trans_body, $objectify, $local_ws_defn
);
# Update line number...
$source_line += ($full_decl.$body) =~ tr/\n//;
}
# Insert checkpoints into any user-defined code block...
$regex =~ s{ \( \?\?? \{ \K (?!;) }{
local \@Regexp::Grammars::RESULT_STACK = \@Regexp::Grammars::RESULT_STACK;
}xmsg;
# Check for any suspicious left-overs from the start of the regex...
pos $regex = 0;
# If a grammar definition, save grammar and return a placeholder...
if ($is_grammar) {
$user_defined_grammar{$grammar_name} = $regex;
return qq{(?{
warn "Can't match directly against a pure grammar: <grammar: $grammar_name>\n";
})(*COMMIT)(?!)};
}
# Otherwise, aggregrate the final grammar...
else {
return _complete_regex($regex.$inherited_rules, $pre_match_debug, $post_match_debug, $nocontext);
}
}
sub _complete_regex {
my ($regex, $pre_match_debug, $post_match_debug, $nocontext) = @_;
return $nocontext ? qq{(?x)$pre_match_debug$PROLOGUE$regex$EPILOGUE_NC$post_match_debug}
: qq{(?x)$pre_match_debug$PROLOGUE$regex$EPILOGUE$post_match_debug};
}
1; # Magic true value required at end of module
__END__
=head1 NAME
Regexp::Grammars - Add grammatical parsing features to Perl 5.10 regexes
=head1 VERSION
This document describes Regexp::Grammars version 1.048
=head1 SYNOPSIS
use Regexp::Grammars;
my $parser = qr{
(?:
<Verb> # Parse and save a Verb in a scalar
<.ws> # Parse but don't save whitespace
<Noun> # Parse and save a Noun in a scalar
<type=(?{ rand > 0.5 ? 'VN' : 'VerbNoun' })>
# Save result of expression in a scalar
|
(?:
<[Noun]> # Parse a Noun and save result in a list
(saved under the key 'Noun')
<[PostNoun=ws]> # Parse whitespace, save it in a list
# (saved under the key 'PostNoun')
)+
<Verb> # Parse a Verb and save result in a scalar
(saved under the key 'Verb')
<type=(?{ 'VN' })> # Save a literal in a scalar
|
<debug: match> # Turn on the integrated debugger here
<.Cmd= (?: mv? )> # Parse but don't capture a subpattern
(name it 'Cmd' for debugging purposes)
<[File]>+ # Parse 1+ Files and save them in a list
(saved under the key 'File')
<debug: off> # Turn off the integrated debugger here
<Dest=File> # Parse a File and save it in a scalar
(saved under the key 'Dest')
)
################################################################
<token: File> # Define a subrule named File
<.ws> # - Parse but don't capture whitespace
<MATCH= ([\w-]+) > # - Parse the subpattern and capture
# matched text as the result of the
# subrule
<token: Noun> # Define a subrule named Noun
cat | dog | fish # - Match an alternative (as usual)
<rule: Verb> # Define a whitespace-sensitive subrule
eats # - Match a literal (after any space)
<Object=Noun>? # - Parse optional subrule Noun and
# save result under the key 'Object'
| # Or else...
<AUX> # - Parse subrule AUX and save result
<part= (eaten|seen) > # - Match a literal, save under 'part'
<token: AUX> # Define a whitespace-insensitive subrule
(has | is) # - Match an alternative and capture
(?{ $MATCH = uc $^N }) # - Use captured text as subrule result
}x;
# Match the grammar against some text...
if ($text =~ $parser) {
# If successful, the hash %/ will have the hierarchy of results...
process_data_in( %/ );
}
=head1 QUICKSTART CHEATSHEET
=head2 In your program...
use Regexp::Grammars; Allow enhanced regexes in lexical scope
%/ Result-hash for successful grammar match
=head2 Defining and using named grammars...
<grammar: GRAMMARNAME> Define a named grammar that can be inherited
<extends: GRAMMARNAME> Current grammar inherits named grammar's rules
=head2 Defining rules in your grammar...
<rule: RULENAME> Define rule with magic whitespace
<token: RULENAME> Define rule without magic whitespace
<objrule: CLASS= NAME> Define rule that blesses return-hash into class
<objtoken: CLASS= NAME> Define token that blesses return-hash into class
<objrule: CLASS> Shortcut for above (rule name derived from class)
<objtoken: CLASS> Shortcut for above (token name derived from class)
=head2 Matching rules in your grammar...
<RULENAME> Call named subrule (may be fully qualified)
save result to $MATCH{RULENAME}
<RULENAME(...)> Call named subrule, passing args to it
<!RULENAME> Call subrule and fail if it matches
<!RULENAME(...)> (shorthand for (?!<.RULENAME>) )
<:IDENT> Match contents of $ARG{IDENT} as a pattern
<\:IDENT> Match contents of $ARG{IDENT} as a literal
</:IDENT> Match closing delimiter for $ARG{IDENT}
<%HASH> Match longest possible key of hash
<%HASH {PAT}> Match any key of hash that also matches PAT
</IDENT> Match closing delimiter for $MATCH{IDENT}
<\_IDENT> Match the literal contents of $MATCH{IDENT}
<ALIAS= RULENAME> Call subrule, save result in $MATCH{ALIAS}
<ALIAS= %HASH> Match a hash key, save key in $MATCH{ALIAS}
<ALIAS= ( PATTERN )> Match pattern, save match in $MATCH{ALIAS}
<ALIAS= (?{ CODE })> Execute code, save value in $MATCH{ALIAS}
<ALIAS= 'STR' > Save specified string in $MATCH{ALIAS}
<ALIAS= 42 > Save specified number in $MATCH{ALIAS}
<ALIAS= /IDENT> Match closing delim, save as $MATCH{ALIAS}
<ALIAS= \_IDENT> Match '$MATCH{IDENT}', save as $MATCH{ALIAS}
<.SUBRULE> Call subrule (one of the above forms),
but don't save the result in %MATCH
<[SUBRULE]> Call subrule (one of the above forms), but
append result instead of overwriting it
<SUBRULE1>+ % <SUBRULE2> Match one or more repetitions of SUBRULE1
as long as they're separated by SUBRULE2
<SUBRULE1> ** <SUBRULE2> Same (only for backwards compatibility)
<SUBRULE1>* % <SUBRULE2> Match zero or more repetitions of SUBRULE1
as long as they're separated by SUBRULE2
=head2 In your grammar's code blocks...
$CAPTURE Alias for $^N (the most recent paren capture)
$CONTEXT Another alias for $^N
$INDEX Current index of next matching position in string
%MATCH Current rule's result-hash
$MATCH Magic override value (returned instead of result-hash)
%ARG Current rule's argument hash
$DEBUG Current match-time debugging mode
=head2 Directives...
<require: (?{ CODE }) > Fail if code evaluates false
<timeout: INT > Fail after specified number of seconds
<debug: COMMAND > Change match-time debugging mode
<logfile: LOGFILE > Change debugging log file (default: STDERR)
<fatal: TEXT|(?{CODE})> Queue error message and fail parse
<error: TEXT|(?{CODE})> Queue error message and backtrack
<warning: TEXT|(?{CODE})> Queue warning message and continue
<log: TEXT|(?{CODE})> Explicitly add a message to debugging log
<ws: PATTERN > Override automatic whitespace matching
<minimize:> Simplify the result of a subrule match
<context:> Switch on context substring retention
<nocontext:> Switch off context substring retention
=head1 DESCRIPTION
This module adds a small number of new regex constructs that can be used
within Perl 5.10 patterns to implement complete recursive-descent parsing.
Perl 5.10 already supports recursive=descent I<matching>, via the new
C<< (?<name>...) >> and C<< (?&name) >> constructs. For example, here is
a simple matcher for a subset of the LaTeX markup language:
$matcher = qr{
(?&File)
(?(DEFINE)
(?<File> (?&Element)* )
(?<Element> \s* (?&Command)
| \s* (?&Literal)
)
(?<Command> \\ \s* (?&Literal) \s* (?&Options)? \s* (?&Args)? )
(?<Options> \[ \s* (?:(?&Option) (?:\s*,\s* (?&Option) )*)? \s* \])
(?<Args> \{ \s* (?&Element)* \s* \} )
(?<Option> \s* [^][\$&%#_{}~^\s,]+ )
(?<Literal> \s* [^][\$&%#_{}~^\s]+ )
)
}xms
This technique makes it possible to use regexes to recognize complex,
hierarchical--and even recursive--textual structures. The problem is
that Perl 5.10 doesn't provide any support for extracting that
hierarchical data into nested data structures. In other words, using
Perl 5.10 you can I<match> complex data, but not I<parse> it into an
internally useful form.
An additional problem when using Perl 5.10 regexes to match complex data
formats is that you have to make sure you remember to insert
whitespace-matching constructs (such as C<\s*>) at every possible position
where the data might contain ignorable whitespace. This reduces the
readability of such patterns, and increases the chance of errors (typically
caused by overlooking a location where whitespace might appear).
The Regexp::Grammars module solves both those problems.
If you import the module into a particular lexical scope, it
preprocesses any regex in that scope, so as to implement a number of
extensions to the standard Perl 5.10 regex syntax. These extensions
simplify the task of defining and calling subrules within a grammar, and
allow those subrule calls to capture and retain the components of they
match in a proper hierarchical manner.
For example, the above LaTeX matcher could be converted to a full LaTeX parser
(and considerably tidied up at the same time), like so:
use Regexp::Grammars;
$parser = qr{
<File>
<rule: File> <[Element]>*
<rule: Element> <Command> | <Literal>
<rule: Command> \\ <Literal> <Options>? <Args>?
<rule: Options> \[ <[Option]>+ % (,) \]
<rule: Args> \{ <[Element]>* \}
<rule: Option> [^][\$&%#_{}~^\s,]+
<rule: Literal> [^][\$&%#_{}~^\s]+
}xms
Note that there is no need to explicitly place C<\s*> subpatterns throughout
the rules; that is taken care of automatically.
If the Regexp::Grammars version of this regex were successfully matched
against some appropriate LaTeX document, each rule would call the
subrules specified within it, and then return a hash containing whatever
result each of those subrules returned, with each result indexed by the
subrule's name.
That is, if the rule named C<Command> were invoked, it would first try
to match a backslash, then it would call the three subrules
C<< <Literal> >>, C<< <Options> >>, and C<< <Args> >> (in that sequence). If
they all matched successfully, the C<Command> rule would then return a
hash with three keys: C<'Literal'>, C<'Options'>, and C<'Args'>. The value
for each of those hash entries would be whatever result-hash the
subrules themselves had returned when matched.
In this way, each level of the hierarchical regex can generate hashes
recording everything its own subrules matched, so when the entire pattern
matches, it produces a tree of nested hashes that represent the
structured data the pattern matched.
For example, if the previous regex grammar were matched against a string
containing:
\documentclass[a4paper,11pt]{article}
\author{D. Conway}
it would automatically extract a data structure equivalent to the
following (but with several extra "empty" keys, which are described in
L<Subrule results>):
{
'file' => {
'element' => [
{
'command' => {
'literal' => 'documentclass',
'options' => {
'option' => [ 'a4paper', '11pt' ],
},
'args' => {
'element' => [ 'article' ],
}
}
},
{
'command' => {
'literal' => 'author',
'args' => {
'element' => [
{
'literal' => 'D.',
},
{
'literal' => 'Conway',
}
]
}
}
}
]
}
}
The data structure that Regexp::Grammars produces from a regex match
is available to the surrounding program in the magic variable C<%/>.
Regexp::Grammars provides many features that simplify the extraction of
hierarchical data via a regex match, and also some features that can
simplify the processing of that data once it has been extracted. The
following sections explain each of those features, and some of the
parsing techniques they support.
=head2 Setting up the module
Just add:
use Regexp::Grammars;
to any lexical scope. Any regexes within that scope will automatically now
implement the new parsing constructs:
use Regexp::Grammars;
my $parser = qr/ regex with $extra <chocolatey> grammar bits /;
Note that you do not to use the C</x> modifier when declaring a regex
grammar (though you certainly may). But even if you don't, the module
quietly adds a C</x> to every regex within the scope of its usage.
Otherwise, the default I<"a whitespace character matches exactly that
whitespace character"> behaviour of Perl regexes would mess up your
grammar's parsing. If you need the non-C</x> behaviour, you can still
use the C<(?-x)> of C<(?-x:...)> directives to switch of C</x> within
one or more of your grammar's components.
Once the grammar has been processed, you can then match text against the
extended regexes, in the usual manner (i.e. via a C<=~> match):
if ($input_text =~ $parser) {
...
}
After a successful match, the variable C<%/> will contain a series of
nested hashes representing the structured hierarchical data captured
during the parse.
=head2 Structure of a Regexp::Grammars grammar
A Regexp::Grammars specification consists of a I<start-pattern> (which
may include both standard Perl 5.10 regex syntax, as well as special
Regexp::Grammars directives), followed by one or more rule or token
definitions.
For example:
use Regexp::Grammars;
my $balanced_brackets = qr{
# Start-pattern...
<paren_pair> | <brace_pair>
# Rule definition...
<rule: paren_pair>
\( (?: <escape> | <paren_pair> | <brace_pair> | [^()] )* \)
# Rule definition...
<rule: brace_pair>
\{ (?: <escape> | <paren_pair> | <brace_pair> | [^{}] )* \}
# Token definition...
<token: escape>
\\ .
}xms;
The start-pattern at the beginning of the grammar acts like the
"top" token of the grammar, and must be matched completely for the
grammar to match.
This pattern is treated like a token for whitespace
matching behaviour (see L<"Tokens vs rules (whitespace handling)">).
That is, whitespace in the start-pattern is treated like whitespace
in any normal Perl regex.
The rules and tokens are declarations only and they are not directly matched.
Instead, they act like subroutines, and are invoked by name from the
initial pattern (or from within a rule or token).
Each rule or token extends from the directive that introduces it up to either
the next rule or token directive, or (in the case of the final rule or token)
to the end of the grammar.
=head2 Tokens vs rules (whitespace handling)
The difference between a token and a rule is that a token treats any
whitespace within it exactly as a normal Perl regular expression would.
That is, a sequence of whitespace in a token is ignored if the C</x>
modifier is in effect, or else matches the same literal sequence of
whitespace characters (if C</x> is not in effect).
In a rule, most sequences of whitespace are treated as matching the
implicit subrule C<< <.ws> >>, which is automatically predefined to
match optional whitespace (i.e. C<\s*>).
Exceptions to this behaviour are whitespaces before a C<|> or a code
block or an explicit space-matcher (such as C<< <ws> >> or C<\s>),
or at the very end of the rule)
You can explicitly define a C<< <ws> >> token to change that default
behaviour. For example, you could alter the definition of "whitespace" to
include Perlish comments, by adding an explicit C<< <token: ws> >>:
<token: ws>
(?: \s+ | #[^\n]* )*
But be careful not to define C<< <ws> >> as a rule, as this will lead to
all kinds of infinitely recursive unpleasantness.
=head3 Per-rule whitespace handling
Redefining the C<< <ws> >> token changes its behaviour throughout the
entire grammar, within every rule definition. Usually that's appropriate,
but sometimes you need finer-grained control over whitespace handling.
So Regexp::Grammars provides the C<< <ws:> >> directive, which allows
you to override the implicit whitespace-matches-whitespace behaviour
only within the current rule.
Note that this directive does I<not> redefined C<< <ws> >> within the
rule; it simply specifies what to replace each whitespace sequence with
(instead of replacing each with a C<< <ws> >> call).
For example, if a language allows one kind of comment between statements
and another within statements, you could parse it with:
<rule: program>
# One type of comment between...
<ws: (\s++ | \# .*? \n)* >
# ...colon-separated statements...
<[statement]>+ % ( ; )
<rule: statement>
# Another type of comment...
<ws: (\s*+ | \#{ .*? }\# )* >
# ...between comma-separated commands...
<cmd> <[arg]>+ % ( , )
Note that each directive only applies to the rule in which it is
specified. In every other rule in the grammar, whitespace would still
match the usual C<< <ws> >> subrule.
=head2 Calling subrules
To invoke a rule to match at any point, just enclose the rule's name in angle
brackets (like in Perl 6). There must be no space between the opening bracket
and the rulename. For example::
qr{
file: # Match literal sequence 'f' 'i' 'l' 'e' ':'
<name> # Call <rule: name>
<options>? # Call <rule: options> (it's okay if it fails)
<rule: name>
# etc.
}x;
If you need to match a literal pattern that would otherwise look like a
subrule call, just backslash-escape the leading angle:
qr{
file: # Match literal sequence 'f' 'i' 'l' 'e' ':'
\<name> # Match literal sequence '<' 'n' 'a' 'm' 'e' '>'
<options>? # Call <rule: options> (it's okay if it fails)
<rule: name>
# etc.
}x;
=head2 Subrule results
If a subrule call successfully matches, the result of that match is a
reference to a hash. That hash reference is stored in the current rule's
own result-hash, under the name of the subrule that was invoked. The
hash will, in turn, contain the results of any more deeply nested
subrule calls, each stored under the name by which the nested
subrule was invoked.
In other words, if the rule C<sentence> is defined:
<rule: sentence>
<noun> <verb> <object>
then successfully calling the rule:
<sentence>
causes a new hash entry at the current nesting level. That entry's key will be
C<'sentence'> and its value will be a reference to a hash, which in turn will
have keys: C<'noun'>, C<'verb'>, and C<'object'>.
In addition each result-hash has one extra key: the empty string. The
value for this key is whatever substring the entire subrule call matched.
This value is known as the I<context substring>.
So, for example, a successful call to C<< <sentence> >> might add
something like the following to the current result-hash:
sentence => {
"" => 'I saw a dog',
noun => 'I',
verb => 'saw',
object => {
"" => 'a dog',
article => 'a',
noun => 'dog',
},
}
Note, however, that if the result-hash at any level contains I<only>
the empty-string key (i.e. the subrule did not call any sub-subrules or
save any of their nested result-hashes), then the hash is "unpacked"
and just the context substring itself is returned.
For example, if C<< <rule: sentence> >> had been defined:
<rule: sentence>
I see dead people
then a successful call to the rule would only add:
sentence => 'I see dead people'
to the current result-hash.
This is a useful feature because it prevents a series of nested subrule
calls from producing very unwieldy data structures. For example, without
this automatic unpacking, even the simple earlier example:
<rule: sentence>
<noun> <verb> <object>
would produce something needlessly complex, such as:
sentence => {
"" => 'I saw a dog',
noun => {
"" => 'I',
},
verb => {
"" => 'saw',
},
object => {
"" => 'a dog',
article => {
"" => 'a',
},
noun => {
"" => 'dog',
},
},
}
=head3 Turning off the context substring
The context substring is convenient for debugging and for generating
error messages but, in a large grammar, or when parsing a long string,
the capture and storage of many nested substrings may quickly become
prohibitively expensive.
So Regexp::Grammars provides a directive to prevent context substrings
from being retained. Any rule or token that includes the directive
C<< <nocontext:> >> anywhere in the rule's body will not retain any
context substring it matches...unless that substring would be the only
entry in its result hash (which only happens within objrules and
objtokens).
If a C<< <nocontext:> >> directive appears I<before> the first rule or
token definition (i.e. as part of the main pattern), then the entire grammar
will discard all context substrings from every one of its rules
and tokens.
However, you can override this universal prohibition with a second
directive: C<< <context:> >>. If this directive appears in any rule or
token, that rule or token I<will> save its context substring, even if a
global C<< <nocontext:> >> is in effect.
This means that this grammar:
qr{
<Command>
<rule: Command>
<nocontext:>
<Keyword> <arg=(\S+)>+ % <.ws>
<token: Keyword>
<Move> | <Copy> | <Delete>
# etc.
}x
and this grammar:
qr{
<nocontext:>
<Command>
<rule: Command>
<Keyword> <arg=(\S+)>+ % <.ws>
<token: Keyword>
<context:>
<Move> | <Copy> | <Delete>
# etc.
}x
will behave identically (saving context substrings for keywords, but not
for commands), except that the first version will also retain the global
context substring (i.e. $/{""}), whereas the second version will not.
Note that C<< <context:> >> and C<< <nocontext:> >> have no effect on,
or even any interaction with, the various
L<result distillation|"Result distillation"> mechanisms,
which continue to work in the usual way when either or both of the
directives is used.
=head2 Renaming subrule results
It is not always convenient to have subrule results stored under the
same name as the rule itself. Rule names should be optimized for
understanding the behaviour of the parser, whereas result names should
be optimized for understanding the structure of the data. Often those
two goals are identical, but not always; sometimes rule names need to
describe what the data looks like, while result names need to describe
what the data means.
For example, sometimes you need to call the same rule twice, to match
two syntactically identical components whose positions give then semantically
distinct meanings:
<rule: copy_cmd>
copy <file> <file>
The problem here is that, if the second call to C<< <file> >> succeeds, its
result-hash will be stored under the key C<'file'>, clobbering the data that
was returned from the first call to C<< <file> >>.
To avoid such problems, Regexp::Grammars allows you to I<alias> any subrule
call, so that it is still invoked by the original name, but its result-hash is
stored under a different key. The syntax for that is:
C<<< <I<alias>=I<rulename>> >>>. For example:
<rule: copy_cmd>
copy <from=file> <to=file>
Here, C<< <rule: file> >> is called twice, with the first result-hash being
stored under the key C<'from'>, and the second result-hash being stored under
the key C<'to'>.
Note, however, that the alias before the C<=> must be a proper
identifier (i.e. a letter or underscore, followed by letters, digits,
and/or underscores). Aliases that start with an underscore and aliases named
C<MATCH> have special meaning (see L<Private subrule calls> and
L<Result distillation> respectively).
Aliases can also be useful for normalizing data that may appear in different
formats and sequences. For example:
<rule: copy_cmd>
copy <from=file> <to=file>
| dup <to=file> as <from=file>
| <from=file> -> <to=file>
| <to=file> <- <from=file>
Here, regardless of which order the old and new files are specified, the
result-hash always gets:
copy_cmd => {
from => 'oldfile',
to => 'newfile',
}
=head2 List-like subrule calls
If a subrule call is quantified with a repetition specifier:
<rule: file_sequence>
<file>+
then each repeated match overwrites the corresponding entry in the
surrounding rule's result-hash, so only the result of the final
repetition will be retained. That is, if the above example matched
the string C<S<"foo.pl bar.py baz.php">>, then the result-hash would contain:
file_sequence {
"" => 'foo.pl bar.py baz.php',
file => 'baz.php',
}
Usually, that's not the desired outcome, so Regexp::Grammars provides
another mechanism by which to call a subrule; one that saves I<all>
repetitions of its results.
A regular subrule call consists of the rule's name surrounded by angle
brackets. If, instead, you surround the rule's name with C<< <[...]> >>
(angle I<and> square brackets) like so:
<rule: file_sequence>
<[file]>+
then the rule is invoked in exactly the same way, but the result of that
submatch is pushed onto an array nested inside the appropriate result-hash
entry. In other words, if the above example matched the same
C<S<"foo.pl bar.py baz.php">> string, the result-hash would contain:
file_sequence {
"" => 'foo.pl bar.py baz.php',
file => [ 'foo.pl', 'bar.py', 'baz.php' ],
}
This "listifying subrule call" can also be useful for non-repeated subrule
calls, if the same subrule is invoked in several places in a grammar. For
example if a cmdline option could be given either one or two values, you
might parse it:
<rule: size_option>
-size <[size]> (?: x <[size]> )?
The result-hash entry for C<'size'> would then always contain an array,
with either one or two elements, depending on the input being parsed.
Listifying subrules can also be given L<aliases|"Renaming subrule results">,
just like ordinary subrules. The alias is always specified inside the square
brackets:
<rule: size_option>
-size <[size=pos_integer]> (?: x <[size=pos_integer]> )?
Here, the sizes are parsed using the C<pos_integer> rule, but saved in the
result-hash in an array under the key C<'size'>.
=head2 Parametric subrules
When a subrule is invoked, it can be passed a set of named arguments
(specified as I<key>C<< => >>I<values> pairs). This argument list is
placed in a normal Perl regex code block and must appear immediately
after the subrule name, before the closing angle bracket.
Within the subrule that has been invoked, the arguments can be accessed
via the special hash C<%ARG>. For example:
<rule: block>
<tag>
<[block]>*
<end_tag(?{ tag=>$MATCH{tag} })> # ...call subrule with argument
<token: end_tag>
end_ (??{ quotemeta $ARG{tag} })
Here the C<block> rule first matches a C<< <tag> >>, and the corresponding
substring is saved in C<$MATCH{tag}>. It then matches any number of nested
blocks. Finally it invokes the C<< <end_tag> >> subrule, passing it an
argument whose name is C<'tag'> and whose value is the current value of
C<$MATCH{tag}> (i.e. the original opening tag).
When it is thus invoked, the C<end_tag> token first matches C<'end_'>,
then interpolates the literal value of the C<'tag'> argument and
attempts to match it.
Any number of named arguments can be passed when a subrule is invoked.
For example, we could generalize the C<end_tag> rule to allow any prefix
(not just C<'end_'>), and also to allow for 'if...fi'-style reversed
tags, like so:
<rule: block>
<tag>
<[block]>*
<end_tag (?{ prefix=>'end', tag=>$MATCH{tag} })>
<token: end_tag>
(??{ $ARG{prefix} // q{(?!)} }) # ...prefix as pattern
(??{ quotemeta $ARG{tag} }) # ...tag as literal
|
(??{ quotemeta reverse $ARG{tag} }) # ...reversed tag
Note that, if you do not need to interpolate values (such as
C<$MATCH{tag}>) into a subrule's argument list, you can
use simple parentheses instead of C<(?{...})>, like so:
<end_tag( prefix=>'end', tag=>'head' )>
The only types of values you can use in this simplified
syntax are numbers and single-quote-delimited strings.
For anything more complex, put the argument list
in a full C<(?{...})>.
As the earlier examples show, the single most common
type of argument is one of the form:
I<IDENTIFIER> C<< => $MATCH{ >>I<IDENTIFIER>C<}>. That is,
it's a common requirement to pass an element of C<%MATCH>
into a subrule, named with its own key.
Because this is such a common usage, Regexp::Grammars
provides a shortcut. If you use simple parentheses (instead
of C<(?{...})> parentheses) then instead of a pair, you can
specify an argument using a colon followed by an identifier.
This argument is replaced by a named argument whose name
is the identifier and whose value is the corresponding item
from C<%MATCH>. So, for example, instead of:
<end_tag(?{ prefix=>'end', tag=>$MATCH{tag} })>
you can just write:
<end_tag( prefix=>'end', :tag )>
Note that, from Perl 5.20 onwards, due to changes in the way that
Perl parses regexes, Regexp::Grammars does not support explicitly passing
elements of C<%MATCH> as argument values within a list subrule
(yeah, it's a very specific and obscure edge-case):
<[end_tag(?{ prefix=>'end', tag=>$MATCH{tag} })]> # Does not work
Note, however, that the shortcut:
<[end_tag( prefix=>'end', :tag )]>
still works correctly.
=head3 Accessing subrule arguments more cleanly
As the preceding examples illustrate, using subrule arguments
effectively generally requires the use of run-time interpolated
subpatterns via the C<(??{...})> construct.
This produces ugly rule bodies such as:
<token: end_tag>
(??{ $ARG{prefix} // q{(?!)} }) # ...prefix as pattern
(??{ quotemeta $ARG{tag} }) # ...tag as literal
|
(??{ quotemeta reverse $ARG{tag} }) # ...reversed tag
To simplify these common usages, Regexp::Grammars provides
three convenience constructs.
A subrule call of the form C<< <: >>I<identifier>C<< > >>
is equivalent to:
(??{ $ARG{'identifier'} // q{(?!)} })
Namely: I<"Match the contents of C<$ARG{'identifier'}>,
treating those contents as a pattern.">
A subrule call of the form C<< <\: >>I<identifier>C<< > >>
(that is: a L<matchref|"Rematching subrule results">
with a colon after the backslash) is equivalent to:
(??{ defined $ARG{'identifier'}
? quotemeta($ARG{'identifier'})
: '(?!)'
})
Namely: I<"Match the contents of C<$ARG{'identifier'}>,
treating those contents as a literal.">
A subrule call of the form C<< </: >>I<identifier>C<< > >>
(that is: an L<invertref|"Rematching balanced delimiters">
with a colon after the forward slash) is equivalent to:
(??{ defined $ARG{'identifier'}
? quotemeta(reverse $ARG{'identifier'})
: '(?!)'
})
Namely: I<"Match the closing delimiter corresponding to
the contents of C<$ARG{'identifier'}>, as if it were a literal">.
The availability of these three constructs mean that we could rewrite
the above C<< <end_tag> >> token much more cleanly as:
<token: end_tag>
<:prefix> # ...prefix as pattern
<\:tag> # ...tag as a literal
|
</:tag> # ...reversed tag
In general these constructs mean that, within a subrule,
if you want to match an argument passed to that subrule,
you use C<< <: >>I<ARGNAME>C<< > >> (to match the argument
as a pattern) or C<< <\: >>I<ARGNAME>C<< > >> (to match
the argument as a literal).
Note the consistent mnemonic in these various subrule-like
interpolations of named arguments: the name is always prefixed by a
colon.
In other words, the C<< <:ARGNAME> >> form works just like
a C<< <RULENAME> >>, except that the leading colon tells
Regexp::Grammars to use the contents of C<$ARG{'ARGNAME'}>
as the subpattern, instead of the contents of C<(?&RULENAME)>
Likewise, the C<< <\:ARGNAME> >> and C<< </:ARGNAME> >> constructs work
exactly like C<< <\_MATCHNAME> >> and C<< </INVERTNAME> >> respectively,
except that the leading colon indicates that the matchref or invertref
should be taken from C<%ARG> instead of from C<%MATCH>.
=head2 Pseudo-subrules
Aliases can also be given to standard Perl subpatterns, as well as to
code blocks within a regex. The syntax for subpatterns is:
<ALIAS= (SUBPATTERN) >
In other words, the syntax is exactly like an aliased subrule call, except
that the rule name is replaced with a set of parentheses containing the
subpattern. Any parentheses--capturing or non-capturing--will do.
The effect of aliasing a standard subpattern is to cause whatever that
subpattern matches to be saved in the result-hash, using the alias as
its key. For example:
<rule: file_command>
<cmd=(mv|cp|ln)> <from=file> <to=file>
Here, the C<< <cmd=(mv|cp|ln)> >> is treated exactly like a regular
C<(mv|cp|ln)>, but whatever substring it matches is saved in the result-hash
under the key C<'cmd'>.
The syntax for aliasing code blocks is:
<ALIAS= (?{ your($code->here) }) >
Note, however, that the code block must be specified in the standard Perl 5.10
regex notation: C<(?{...})>. A common mistake is to write:
<ALIAS= { your($code->here } >
instead, which will attempt to interpolate C<$code> before
the regex is even compiled, as such variables are only "protected" from
interpolation inside a C<< (?{...}) >>.
When correctly specified, this construct executes the code in the block
and saves the result of that execution in the result-hash, using the
alias as its key. Aliased code blocks are useful for adding semantic
information based on which branch of a rule is executed. For example,
consider the C<copy_cmd> alternatives shown earlier:
<rule: copy_cmd>
copy <from=file> <to=file>
| dup <to=file> as <from=file>
| <from=file> -> <to=file>
| <to=file> <- <from=file>
Using aliased code blocks, you could add an extra field to the result-
hash to describe which form of the command was detected, like so:
<rule: copy_cmd>
copy <from=file> <to=file> <type=(?{ 'std' })>
| dup <to=file> as <from=file> <type=(?{ 'rev' })>
| <from=file> -> <to=file> <type=(?{ +1 })>
| <to=file> <- <from=file> <type=(?{ -1 })>
Now, if the rule matched, the result-hash would contain something like:
copy_cmd => {
from => 'oldfile',
to => 'newfile',
type => 'fwd',
}
Note that, in addition to the semantics described above, aliased
subpatterns and code blocks also become visible to Regexp::Grammars'
integrated debugger (see L<Debugging>).
=head2 Aliased literals
As the previous example illustrates, it is inconveniently verbose to
assign constants via aliased code blocks. So Regexp::Grammars provides a
short-cut. It is possible to directly alias a numeric literal or a
single-quote delimited literal string, without putting either inside a code
block. For example, the previous example could also be written:
<rule: copy_cmd>
copy <from=file> <to=file> <type='std'>
| dup <to=file> as <from=file> <type='rev'>
| <from=file> -> <to=file> <type= +1 >
| <to=file> <- <from=file> <type= -1 >
Note that only these two forms of literal are supported in this
abbreviated syntax.
=head2 Amnesiac subrule calls
By default, every subrule call saves its result into the result-hash, either
under its own name, or under an alias.
However, sometimes you may want to refactor some literal part of a rule
into one or more subrules, without having those submatches added to the
result-hash. The syntax for calling a subrule, but ignoring its return value
is:
<.SUBRULE>
(which is stolen directly from Perl 6).
For example, you may prefer to rewrite a rule such as:
<rule: paren_pair>
\(
(?: <escape> | <paren_pair> | <brace_pair> | [^()] )*
\)
without any literal matching, like so:
<rule: paren_pair>
<.left_paren>
(?: <escape> | <paren_pair> | <brace_pair> | <.non_paren> )*
<.right_paren>
<token: left_paren> \(
<token: right_paren> \)
<token: non_paren> [^()]
Moreover, as the individual components inside the parentheses probably
aren't being captured for any useful purpose either, you could further
optimize that to:
<rule: paren_pair>
<.left_paren>
(?: <.escape> | <.paren_pair> | <.brace_pair> | <.non_paren> )*
<.right_paren>
Note that you can also use the dot modifier on an aliased subpattern:
<.Alias= (SUBPATTERN) >
This seemingly contradictory behaviour (of giving a subpattern a name,
then deliberately ignoring that name) actually does make sense in one
situation. Providing the alias makes the subpattern visible to the
debugger, while using the dot stops it from affecting the result-hash.
See L<"Debugging non-grammars"> for an example of this usage.
=head2 Private subrule calls
If a rule name (or an alias) begins with an underscore:
<_RULENAME> <_ALIAS=RULENAME>
<[_RULENAME]> <[_ALIAS=RULENAME]>
then matching proceeds as normal, and any result that is returned is
stored in the current result-hash in the usual way.
However, when any rule finishes (and just before it returns) it first
filters its result-hash, removing any entries whose keys begin with an
underscore. This means that any subrule with an underscored name (or
with an underscored alias) remembers its result, but only until the end
of the current rule. Its results are effectively private to the current
rule.
This is especially useful in conjunction with
L<result distillation|"Result distillation">.
=head2 Lookahead (zero-width) subrules
Non-capturing subrule calls can be used in normal lookaheads:
<rule: qualified_typename>
# A valid typename and has a :: in it...
(?= <.typename> ) [^\s:]+ :: \S+
<rule: identifier>
# An alpha followed by alnums (but not a valid typename)...
(?! <.typename> ) [^\W\d]\w*
but the syntax is a little unwieldy. More importantly, an internal
problem with backtracking causes positive lookaheads to mess up
the module's named capturing mechanism.
So Regexp::Grammars provides two shorthands:
<!typename> same as: (?! <.typename> )
<?typename> same as: (?= <.typename> ) ...but works correctly!
These two constructs can also be called with arguments, if necessary:
<rule: Command>
<Keyword>
(?:
<!Terminator(:Keyword)> <Args=(\S+)>
)?
<Terminator(:Keyword)>
Note that, as the above equivalences imply, neither of these forms of a
subroutine call ever captures what it matches.
=head2 Matching separated lists
One of the commonest tasks in text parsing is to match a list of unspecified
length, in which items are separated by a fixed token. Things like:
1, 2, 3 , 4 ,13, 91 # Numbers separated by commas and spaces
g-c-a-g-t-t-a-c-a # DNA bases separated by dashes
/usr/local/bin # Names separated by directory markers
/usr:/usr/local:bin # Directories separated by colons
The usual construct required to parse these kinds of structures is either:
<rule: list>
<item> <separator> <list> # recursive definition
| <item> # base case
or, if you want to allow zero-or-more items instead of requiring one-or-more:
<rule: list_opt>
<list>? # entire list may be missing
<rule: list> # as before...
<item> <separator> <list> # recursive definition
| <item> # base case
Or, more efficiently, but less prettily:
<rule: list>
<[item]> (?: <separator> <[item]> )* # one-or-more
<rule: list_opt>
(?: <[item]> (?: <separator> <[item]> )* )? # zero-or-more
Because separated lists are such a common component of grammars,
Regexp::Grammars provides cleaner ways to specify them:
<rule: list>
<[item]>+ % <separator> # one-or-more
<rule: list_zom>
<[item]>* % <separator> # zero-or-more
Note that these are just regular repetition qualifiers (i.e. C<+>
and C<*>) applied to a subriule (C<< <[item]> >>), with a C<%>
modifier after them to specify the required separator between the
repeated matches.
The number of repetitions matched is controlled both by the nature of
the qualifier (C<+> vs C<*>) and by the subrule specified after the C<%>.
The qualified subrule will be repeatedly matched
for as long as its qualifier allows, provided that the second subrule
also matches I<between> those repetitions.
For example, you can match a parenthesized sequence of one-or-more
numbers separated by commas, such as:
(1, 2, 3, 4, 13, 91) # Numbers separated by commas (and spaces)
with:
<rule: number_list>
\( <[number]>+ % <comma> \)
<token: number> \d+
<token: comma> ,
Note that any spaces round the commas will be ignored because
C<< <number_list> >> is specified as a rule and the C<+%> specifier
has spaces within and around it. To disallow spaces around the commas,
make sure there are no spaces in or around the C<+%>:
<rule: number_list_no_spaces>
\( <[number]>+%<comma> \)
(or else specify the rule as a token instead).
Because the C<%> is a modifier applied to a qualifier, you can modify
I<any> other repetition qualifier in the same way. For example:
<[item]>{2,4} % <sep> # two-to-four items, separated
<[item]>{7} % <sep> # exactly 7 items, separated
<[item]>{10,}? % <sep> # minimum of 10 or more items, separated
You can even do this:
<[item]>? % <sep> # one-or-zero items, (theoretically) separated
though the separator specification is, of course, meaningless in that case
as it will never be needed to separate a maximum of one item.
If a C<%> appears anywhere else in a grammar (i.e. I<not> immediately after a
repetition qualifier), it is treated normally (i.e. as a self-matching literal
character):
<token: perl_hash>
% <ident> # match "%foo", "%bar", etc.
<token: perl_mod>
<expr> % <expr> # match "$n % 2", "($n+3) % ($n-1)", etc.
If you need to match a literal C<%> immediately after a repetition, either
quote it:
<token: percentage>
\d{1,3} \% solution # match "7% solution", etc.
or refactor the C<%> character:
<token: percentage>
\d{1,3} <percent_sign> solution # match "7% solution", etc.
<token: percent_sign>
%
Note that it's usually necessary to use the C<< <[...]> >> form for the
repeated items being matched, so that all of them are saved in the
result hash. You can also save all the separators (if they're important)
by specifying them as a list-like subrule too:
\( <[number]>* % <[comma]> \) # save numbers *and* separators
The repeated item I<must> be specified as a subrule call of some kind
(i.e. in angles), but the separators may be specified either as a
subrule or as a raw bracketed pattern. For example:
<[number]>* % ( , | : ) # Numbers separated by commas or colons
<[number]>* % [,:] # Same, but more efficiently matched
The separator should always be specified within matched delimiters of
some kind: either matching C<< <...> >> or matching C<(...)> or matching
C<[...]>. Simple, non-bracketed separators will sometimes also work:
<[number]>+ % ,
but not always:
<[number]>+ % ,\s+ # Oops! Separator is just: ,
This is because of the limited way in which the module internally parses
ordinary regex components (i.e. without full understanding of their
implicit precedence). As a consequence, consistently placing brackets
around any separator is a much safer approach:
<[number]>+ % (,\s+)
You can also use a simple pattern on the left of the C<%> as the item
matcher, but in this case it I<must always> be aliased into a
list-collecting subrule, like so:
<[item=(\d+)]>* % [,]
Note that, for backwards compatibility with earlier versions of
Regexp::Grammars, the C<+%> operator can also be written: C<**>.
However, there can be no space between the two asterisks of this
variant. That is:
<[item]> ** <sep> # same as <[item]>* % <sep>
<[item]>* * <sep> # error (two * qualifiers in a row)
=head2 Matching hash keys
In some situations a grammar may need a rule that matches dozens,
hundreds, or even thousands of one-word alternatives. For example, when
matching command names, or valid userids, or English words. In such
cases it is often impractical (and always inefficient) to list all the
alternatives between C<|> alterators:
<rule: shell_cmd>
a2p | ac | apply | ar | automake | awk | ...
# ...and 400 lines later
... | zdiff | zgrep | zip | zmore | zsh
<rule: valid_word>
a | aa | aal | aalii | aam | aardvark | aardwolf | aba | ...
# ...and 40,000 lines later...
... | zymotize | zymotoxic | zymurgy | zythem | zythum
To simplify such cases, Regexp::Grammars provides a special construct
that allows you to specify all the alternatives as the keys of a normal
hash. The syntax for that construct is simply to put the hash name
inside angle brackets (with no space between the angles and the hash name).
Which means that the rules in the previous example could also be written:
<rule: shell_cmd>
<%cmds>
<rule: valid_word>
<%dict>
provided that the two hashes (C<%cmds> and C<%dict>) are visible in the scope
where the grammar is created.
Matching a hash key in this way is typically I<significantly> faster
than matching a large set of alternations. Specifically, it is
I<O(length of longest potential key) ^ 2>, instead of I<O(number of keys)>.
Internally, the construct is converted to something equivalent to:
<rule: shell_cmd>
(<.hk>) <require: (?{ exists $cmds{$CAPTURE} })>
<rule: valid_word>
(<.hk>) <require: (?{ exists $dict{$CAPTURE} })>
The special C<< <hk> >> rule is created automatically, and defaults to
C<\S+>, but you can also define it explicitly to handle other kinds of
keys. For example:
<rule: hk>
[^\n]+ # Key may be any number of chars on a single line
<rule: hk>
[ACGT]{10,} # Key is a base sequence of at least 10 pairs
Alternatively, you can specify a different key-matching pattern for
each hash you're matching, by placing the required pattern in braces
immediately after the hash name. For example:
<rule: client_name>
# Valid keys match <.hk> (default or explicitly specified)
<%clients>
<rule: shell_cmd>
# Valid keys contain only word chars, hyphen, slash, or dot...
<%cmds { [\w-/.]+ }>
<rule: valid_word>
# Valid keyss contain only alphas or internal hyphen or apostrophe...
<%dict{ (?i: (?:[a-z]+[-'])* [a-z]+ ) }>
<rule: DNA_sequence>
# Valid keys are base sequences of at least 10 pairs...
<%sequences{[ACGT]{10,}}>
This second approach to key-matching is preferred, because it localizes
any non-standard key-matching behaviour to each individual hash.
Note that changes in the compilation process from Perl 5.18 onwards
mean that in some cases the C<< <%hash> >> construct only works
reliably if the hash itself is declared at the outermost lexical scope
(i.e. file scope).
Specifically, if the regex grammar does not include any interpolated
scalars or arrays I<and> the hash was declared within a subroutine (even
within the same subroutine as the regex grammar that uses it), the regex
will not be able to "see" the hash variable at compile-time. This will
produce a I<"Global symbol "%hash" requires explicit package name">
compile-time error. For example:
sub build_keyword_parser {
# Hash declared inside subroutine...
my %keywords = (foo => 1, bar => 1);
# ...then used in <%hash> construct within uninterpolated regex...
return qr{
^<keyword>$
<rule: keyword> <%keywords>
}x;
# ...produces compile-time error
}
The solution is to place the hash outside the subroutine containing the
grammar:
# Hash declared OUTSIDE subroutine...
my %keywords = (foo => 1, bar => 1);
sub build_keyword_parser {
return qr{
^<keyword>$
<rule: keyword> <%keywords>
}x;
}
...or else to explicitly interpolate at least one scalar (even
just a scalar containing an empty string):
sub build_keyword_parser {
my %keywords = (foo => 1, bar => 1);
my $DEFER_REGEX_COMPILATION = "";
return qr{
^<keyword>$
<rule: keyword> <%keywords>
$DEFER_REGEX_COMPILATION
}x;
}
=head2 Rematching subrule results
Sometimes it is useful to be able to rematch a string that has previously
been matched by some earlier subrule. For example, consider a rule to
match shell-like control blocks:
<rule: control_block>
for <expr> <[command]>+ endfor
| while <expr> <[command]>+ endwhile
| if <expr> <[command]>+ endif
| with <expr> <[command]>+ endwith
This would be much tidier if we could factor out the command names
(which are the only differences between the four alternatives). The
problem is that the obvious solution:
<rule: control_block>
<keyword> <expr>
<[command]>+
end<keyword>
doesn't work, because it would also match an incorrect input like:
for 1..10
echo $n
ls subdir/$n
endif
We need some way to ensure that the C<< <keyword> >> matched immediately
after "end" is the same C<< <keyword> >> that was initially matched.
That's not difficult, because the first C<< <keyword> >> will have
captured what it matched into C<$MATCH{keyword}>, so we could just
write:
<rule: control_block>
<keyword> <expr>
<[command]>+
end(??{quotemeta $MATCH{keyword}})
This is such a useful technique, yet so ugly, scary, and prone to error,
that Regexp::Grammars provides a cleaner equivalent:
<rule: control_block>
<keyword> <expr>
<[command]>+
end<\_keyword>
A directive of the form C<<< <\_I<IDENTIFIER>> >>> is known as a
"matchref" (an abbreviation of "%MATCH-supplied backreference").
Matchrefs always attempt to match, as a literal, the current value of
C<<< $MATCH{I<IDENTIFIER>} >>>.
By default, a matchref does not capture what it matches, but you
can have it do so by giving it an alias:
<token: delimited_string>
<ldelim=str_delim> .*? <rdelim=\_ldelim>
<token: str_delim> ["'`]
At first glance this doesn't seem very useful as, by definition,
C<$MATCH{ldelim}> and C<$MATCH{rdelim}> must necessarily
always end up with identical values. However, it can be useful
if the rule also has other alternatives and you want to create a
consistent internal representation for those alternatives, like so:
<token: delimited_string>
<ldelim=str_delim> .*? <rdelim=\_ldelim>
| <ldelim=( \[ ) .*? <rdelim=( \] )
| <ldelim=( \{ ) .*? <rdelim=( \} )
| <ldelim=( \( ) .*? <rdelim=( \) )
| <ldelim=( \< ) .*? <rdelim=( \> )
You can also force a matchref to save repeated matches
as a nested array, in the usual way:
<token: marked_text>
<marker> <text> <[endmarkers=\_marker]>+
Be careful though, as the following will not do as you may expect:
<[marker]>+ <text> <[endmarkers=\_marker]>+
because the value of C<$MATCH{marker}> will be an array reference, which
the matchref will flatten and concatenate, then match the
resulting string as a literal, which will mean the previous example will
match endmarkers that are exact multiples of the complete start marker,
rather than endmarkers that consist of any number of repetitions of the
individual start marker delimiter. So:
""text here""
""text here""""
""text here""""""
but not:
""text here"""
""text here"""""
Uneven start and end markers such as these are extremely unusual, so
this problem rarely arises in practice.
I<B<Note:> Prior to Regexp::Grammars version 1.020, the syntax for matchrefs
was C<<< <\I<IDENTIFIER>> >>> instead of C<<< <\_I<IDENTIFIER>> >>>. This
created problems when the identifier started with any of C<l>, C<u>, C<L>,
C<U>, C<Q>, or C<E>, so the syntax has had to be altered in a backwards
incompatible way. It will not be altered again.
>
=head2 Rematching balanced delimiters
Consider the example in the previous section:
<token: delimited_string>
<ldelim=str_delim> .*? <rdelim=\_ldelim>
| <ldelim=( \[ ) .*? <rdelim=( \] )
| <ldelim=( \{ ) .*? <rdelim=( \} )
| <ldelim=( \( ) .*? <rdelim=( \) )
| <ldelim=( \< ) .*? <rdelim=( \> )
The repeated pattern of the last four alternatives is gauling,
but we can't just refactor those delimiters as well:
<token: delimited_string>
<ldelim=str_delim> .*? <rdelim=\_ldelim>
| <ldelim=bracket> .*? <rdelim=\_ldelim>
because that would incorrectly match:
{ delimited content here {
while failing to match:
{ delimited content here }
To refactor balanced delimiters like those, we need a second
kind of matchref; one that's a little smarter.
Or, preferably, a lot smarter...because there are many other kinds of
balanced delimiters, apart from single brackets. For example:
{{{ delimited content here }}}
/* delimited content here */
(* delimited content here *)
`` delimited content here ''
if delimited content here fi
The common characteristic of these delimiter pairs is that the closing
delimiter is the I<inverse> of the opening delimiter: the sequence of
characters is reversed and certain characters (mainly brackets, but also
single-quotes/backticks) are mirror-reflected.
Regexp::Grammars supports the parsing of such delimiters with a
construct known as an I<invertref>, which is specified using the
C<<< </I<IDENT>> >>> directive. An invertref acts very like a
L<matchref|"Rematching subrule results">, except that it does not
convert to:
(??{ quotemeta( $MATCH{I<IDENT>} ) })
but rather to:
(??{ quotemeta( inverse( $MATCH{I<IDENT> ))} })
With this directive available, the balanced delimiters of the previous
example can be refactored to:
<token: delimited_string>
<ldelim=str_delim> .*? <rdelim=\_ldelim>
| <ldelim=( [[{(<] ) .*? <rdelim=/ldelim>
Like matchrefs, invertrefs come in the usual range of flavours:
</ident> # Match the inverse of $MATCH{ident}
<ALIAS=/ident> # Match inverse and capture to $MATCH{ident}
<[ALIAS=/ident]> # Match inverse and push on @{$MATCH{ident}}
The character pairs that are reversed during mirroring are: C<{> and C<}>,
C<[> and C<]>, C<(> and C<)>, C<< < >> and C<< > >>, C<?> and C<?>,
C<`> and C<'>.
The following mnemonics may be useful in distinguishing inverserefs from
backrefs: a backref starts with a C<\> (just like the standard Perl
regex backrefs C<\1> and C<\g{-2}> and C<< \k<name> >>), whereas an
inverseref starts with a C</> (like an HTML or XML closing tag). Or
just remember that C<< <\_IDENT> >> is "match the same again", and if you
want "the same again, only mirrored" instead, just mirror the C<\>
to get C<< </IDENT> >>.
=head2 Rematching parametric results and delimiters
The C<< <\I<IDENTIFIER>> >> and C<< </I<IDENTIFIER>> >> mechanisms
normally locate the literal to be matched by looking in
C<$MATCH{I<IDENTIFIER>}>.
However, you can cause them to look in C<$ARG{I<IDENTIFIER>}> instead,
by prefixing the identifier with a single C<:>. This is especially
useful when refactoring subrules. For example, instead of:
<rule: Command>
<Keyword> <CommandBody> end_ <\_Keyword>
<rule: Placeholder>
<Keyword> \.\.\. end_ <\_Keyword>
you could parameterize the Terminator rule, like so:
<rule: Command>
<Keyword> <CommandBody> <Terminator(:Keyword)>
<rule: Placeholder>
<Keyword> \.\.\. <Terminator(:Keyword)>
<token: Terminator>
end_ <\:Keyword>
=head2 Tracking and reporting match positions
Regexp::Grammars automatically predefines a special token that makes it
easy to track exactly where in its input a particular subrule matches.
That token is: C<< <matchpos> >>.
The C<< <matchpos> >> token implements a zero-width match that never
fails. It always returns the current index within the string that the
grammar is matching.
So, for example you could have your C<< <delimited_text> >> subrule
detect and report unterminated text like so:
<token: delimited_text>
qq? <delim> <text=(.*?)> </delim>
|
<matchpos> qq? <delim>
<error: (?{"Unterminated string starting at index $MATCH{matchpos}"})>
Matching C<< <matchpos> >> in the second alternative causes
C<$MATCH{matchpos}> to contain the position in the string at which the
C<< <matchpos> >> subrule was matched (in this example: the start of the
unterminated text).
If you want the line number instead of the string index, use the
predefined C<< <matchline> >> subrule instead:
<token: delimited_text>
qq? <delim> <text=(.*?)> </delim>
| <matchline> qq? <delim>
<error: (?{"Unterminated string starting at line $MATCH{matchline}"})>
Note that the line numbers returned by C<< <matchline> >> start at 1
(not at zero, as with C<< <matchpos> >>).
The C<< <matchpos> >> and C<< <matchline> >> subrules are just like any
other subrules; you can alias them (C<< <started_at=matchpos> >>) or
match them repeatedly ( C<< (?: <[matchline]> <[item]> )++ >>), etc.
=head1 Autoactions
The module also supports event-based parsing. You can specify a grammar
in the usual way and then, for a particular parse, layer a collection of
call-backs (known as "autoactions") over the grammar to handle the data
as it is parsed.
Normally, a grammar rule returns the result hash it has accumulated
(or whatever else was aliased to C<MATCH=> within the rule). However,
you can specify an autoaction object before the grammar is matched.
Once the autoaction object is specified, every time a rule succeeds
during the parse, its result is passed to the object via one of its
methods; specifically it is passed to the method whose name is the same
as the rule's.
For example, suppose you had a grammar that recognizes simple algebraic
expressions:
my $expr_parser = do{
use Regexp::Grammars;
qr{
<Expr>
<rule: Expr> <[Operand=Mult]>+ % <[Op=(\+|\-)]>
<rule: Mult> <[Operand=Pow]>+ % <[Op=(\*|/|%)]>
<rule: Pow> <[Operand=Term]>+ % <Op=(\^)>
<rule: Term> <MATCH=Literal>
| \( <MATCH=Expr> \)
<token: Literal> <MATCH=( [+-]? \d++ (?: \. \d++ )?+ )>
}xms
};
You could convert this grammar to a calculator, by installing a set of
autoactions that convert each rule's result hash to the corresponding
value of the sub-expression that the rule just parsed. To do that, you
would create a class with methods whose names match the rules whose
results you want to change. For example:
package Calculator;
use List::Util qw< reduce >;
sub new {
my ($class) = @_;
return bless {}, $class
}
sub Answer {
my ($self, $result_hash) = @_;
my $sum = shift @{$result_hash->{Operand}};
for my $term (@{$result_hash->{Operand}}) {
my $op = shift @{$result_hash->{Op}};
if ($op eq '+') { $sum += $term; }
else { $sum -= $term; }
}
return $sum;
}
sub Mult {
my ($self, $result_hash) = @_;
return reduce { eval($a . shift(@{$result_hash->{Op}}) . $b) }
@{$result_hash->{Operand}};
}
sub Pow {
my ($self, $result_hash) = @_;
return reduce { $b ** $a } reverse @{$result_hash->{Operand}};
}
Objects of this class (and indeed the class itself) now have methods
corresponding to some of the rules in the expression grammar. To
apply those methods to the results of the rules (as they parse) you
simply install an object as the "autoaction" handler, immediately
before you initiate the parse:
if ($text ~= $expr_parser->with_actions(Calculator->new)) {
say $/{Answer}; # Now prints the result of the expression
}
The C<with_actions()> method expects to be passed an object or
classname. This object or class will be installed as the autoaction
handler for the next match against any grammar. After that match, the
handler will be uninstalled. C<with_actions()> returns the grammar it's
called on, making it easy to call it as part of a match (which is the
recommended idiom).
With a C<Calculator> object set as the autoaction handler, whenever
the C<Answer>, C<Mult>, or C<Pow> rule of the grammar matches, the
corresponding C<Answer>, C<Mult>, or C<Pow> method of the
C<Calculator> object will be called (with the rule's result value
passed as its only argument), and the result of the method will be
used as the result of the rule.
Note that nothing new happens when a C<Term> or C<Literal> rule matches,
because the C<Calculator> object doesn't have methods with those names.
The overall effect, then, is to allow you to specify a grammar without
rule-specific bahaviours and then, later, specify a set of final actions
(as methods) for some or all of the rules of the grammar.
Note that, if a particular callback method returns C<undef>, the result
of the corresponding rule will be passed through without modification.
=head1 Named grammars
All the grammars shown so far are confined to a single regex. However,
Regexp::Grammars also provides a mechanism that allows you to defined
named grammars, which can then be imported into other regexes. This
gives the a way of modularizing common grammatical components.
=head2 Defining a named grammar
You can create a named grammar using the C<< <grammar:...> >>
directive. This directive must appear before the first rule definition
in the grammar, and instead of any start-rule. For example:
qr{
<grammar: List::Generic>
<rule: List>
<[MATCH=Item]>+ % <Separator>
<rule: Item>
\S++
<token: Separator>
\s* , \s*
}x;
This creates a grammar named C<List::Generic>, and installs it in the module's
internal caches, for future reference.
Note that there is no need (or reason) to assign the resulting regex to
a variable, as the named grammar cannot itself be matched against.
=head2 Using a named grammar
To make use of a named grammar, you need to incorporate it into another
grammar, by inheritance. To do that, use the C<< <extends:...> >>
directive, like so:
my $parser = qr{
<extends: List::Generic>
<List>
}x;
The C<< <extends:...> >> directive incorporates the rules defined in the
specified grammar into the current regex. You can then call any of those
rules in the start-pattern.
=head2 Overriding an inherited rule or token
Subrule dispatch within a grammar is always polymorphic. That is, when a
subrule is called, the most-derived rule of the same name within the
grammar's hierarchy is invoked.
So, to replace a particular rule within grammar, you simply need to inherit
that grammar and specify new, more-specific versions of any rules you
want to change. For example:
my $list_of_integers = qr{
<List>
# Inherit rules from base grammar...
<extends: List::Generic>
# Replace Item rule from List::Generic...
<rule: Item>
[+-]? \d++
}x;
You can also use C<< <extends:...> >> in other named grammars, to create
hierarchies:
qr{
<grammar: List::Integral>
<extends: List::Generic>
<token: Item>
[+-]? <MATCH=(<.Digit>+)>
<token: Digit>
\d
}x;
qr{
<grammar: List::ColonSeparated>
<extends: List::Generic>
<token: Separator>
\s* : \s*
}x;
qr{
<grammar: List::Integral::ColonSeparated>
<extends: List::Integral>
<extends: List::ColonSeparated>
}x;
As shown in the previous example, Regexp::Grammars allows you
to multiply inherit two (or more) base grammars. For example, the
C<List::Integral::ColonSeparated> grammar takes the definitions of
C<List> and C<Item> from the C<List::Integral> grammar, and the
definition of C<Separator> from C<List::ColonSeparated>.
Note that grammars dispatch subrule calls using C3 method lookup, rather
than Perl's older DFS lookup. That's why C<List::Integral::ColonSeparated>
correctly gets the more-specific C<Separator> rule defined in
C<List::ColonSeparated>, rather than the more-generic version defined in
C<List::Generic> (via C<List::Integral>). See C<perldoc mro> for more
discussion of the C3 dispatch algorithm.
=head2 Augmenting an inherited rule or token
Instead of replacing an inherited rule, you can augment it.
For example, if you need a grammar for lists of hexademical
numbers, you could inherit the behaviour of C<List::Integral>
and add the hex digits to its C<Digit> token:
my $list_of_hexadecimal = qr{
<List>
<extends: List::Integral>
<token: Digit>
<List::Integral::Digit>
| [A-Fa-f]
}x;
If you call a subrule using a fully qualified name (such as
C<< <List::Integral::Digit> >>), the grammar calls that
version of the rule, rather than the most-derived version.
=head2 Debugging named grammars
Named grammars are independent of each other, even when inherited. This
means that, if debugging is enabled in a derived grammar, it will not be
active in any rules inherited from a base grammar, unless the base
grammar also included a C<< <debug:...> >> directive.
This is a deliberate design decision, as activating the debugger adds a
significant amount of code to each grammar's implementation, which is
detrimental to the matching performance of the resulting regexes.
If you need to debug a named grammar, the best approach is to include a
C<< <debug: same> >> directive at the start of the grammar. The presence
of this directive will ensure the necessary extra debugging code is
included in the regex implementing the grammar, while setting C<same>
mode will ensure that the debugging mode isn't altered when the matcher
uses the inherited rules.
=head1 Common parsing techniques
=head2 Result distillation
Normally, calls to subrules produce nested result-hashes within the
current result-hash. Those nested hashes always have at least one
automatically supplied key (C<"">), whose value is the entire substring
that the subrule matched.
If there are no other nested captures within the subrule, there will be
no other keys in the result-hash. This would be annoying as a typical
nested grammar would then produce results consisting of hashes of
hashes, with each nested hash having only a single key (C<"">). This in
turn would make postprocessing the result-hash (in C<%/>) far more
complicated than it needs to be.
To avoid this behaviour, if a subrule's result-hash doesn't contain any keys
except C<"">, the module "flattens" the result-hash, by replacing it with
the value of its single key.
So, for example, the grammar:
mv \s* <from> \s* <to>
<rule: from> [\w/.-]+
<rule: to> [\w/.-]+
I<doesn't> return a result-hash like this:
{
"" => 'mv /usr/local/lib/libhuh.dylib /dev/null/badlib',
'from' => { "" => '/usr/local/lib/libhuh.dylib' },
'to' => { "" => '/dev/null/badlib' },
}
Instead, it returns:
{
"" => 'mv /usr/local/lib/libhuh.dylib /dev/null/badlib',
'from' => '/usr/local/lib/libhuh.dylib',
'to' => '/dev/null/badlib',
}
That is, because the C<'from'> and C<'to'> subhashes each have only a single
entry, they are each "flattened" to the value of that entry.
This flattening also occurs if a result-hash contains only "private" keys
(i.e. keys starting with underscores). For example:
mv \s* <from> \s* <to>
<rule: from> <_dir=path>? <_file=filename>
<rule: to> <_dir=path>? <_file=filename>
<token: path> [\w/.-]*/
<token: filename> [\w.-]+
Here, the C<from> rule produces a result like this:
from => {
"" => '/usr/local/bin/perl',
_dir => '/usr/local/bin/',
_file => 'perl',
}
which is automatically stripped of "private" keys, leaving:
from => {
"" => '/usr/local/bin/perl',
}
which is then automatically flattened to:
from => '/usr/local/bin/perl'
=head3 List result distillation
A special case of result distillation occurs in a separated
list, such as:
<rule: List>
<[Item]>+ % <[Sep=(,)]>
If this construct matches just a single item, the result hash will
contain a single entry consisting of a nested array with a single
value, like so:
{ Item => [ 'data' ] }
Instead of returning this annoyingly nested data structure, you can tell
Regexp::Grammars to flatten it to just the inner data with a special
directive:
<rule: List>
<[Item]>+ % <[Sep=(,)]>
<minimize:>
The C<< <minimize:> >> directive examines the result hash (i.e.
C<%MATCH>). If that hash contains only a single entry, which is a
reference to an array with a single value, then the directive assigns
that single value directly to C<$MATCH>, so that it will be returned
instead of the usual result hash.
This means that a normal separated list still results in a hash
containing all elements and separators, but a "degenerate" list of only
one item results in just that single item.
=head3 Manual result distillation
Regexp::Grammars also offers full manual control over the distillation
process. If you use the reserved word C<MATCH> as the alias for
a subrule call:
<MATCH=filename>
or a subpattern match:
<MATCH=( \w+ )>
or a code block:
<MATCH=(?{ 42 })>
then the current rule will treat the return value of that subrule,
pattern, or code block as its complete result, and return that value
instead of the usual result-hash it constructs. This is the case even if
the result has other entries that would normally also be returned.
For example, in a rule like:
<rule: term>
<MATCH=literal>
| <left_paren> <MATCH=expr> <right_paren>
The use of C<MATCH> aliases causes the rule to return either whatever
C<< <literal> >> returns, or whatever C<< <expr> >> returns (provided
it's between left and right parentheses).
Note that, in this second case, even though C<< <left_paren> >> and
C<< <right_paren> >> I<are> captured to the result-hash, they are
not returned, because the C<MATCH> alias overrides the normal "return
the result-hash" semantics and returns only what its associated
subrule (i.e. C<< <expr> >>) produces.
=head3 Programmatic result distillation
It's also possible to control what a rule returns from within a code block.
Regexp::Grammars provides a set of reserved variables that give direct
access to the result-hash.
The result-hash itself can be accessed as C<%MATCH> within any code block
inside a rule. For example:
<rule: sum>
<X=product> \+ <Y=product>
<MATCH=(?{ $MATCH{X} + $MATCH{Y} })>
Here, the rule matches a product (aliased C<'X'> in the result-hash),
then a literal C<'+'>, then another product (aliased to C<'Y'> in the
result-hash). The rule then executes the code block, which accesses the two
saved values (as C<$MATCH{X}> and C<$MATCH{Y}>), adding them together.
Because the block is itself aliased to C<MATCH>, the sum produced by the block
becomes the (only) result of the rule.
It is also possible to set the rule result from within a code block (instead
of aliasing it). The special "override" return value is represented by the
special variable C<$MATCH>. So the previous example could be rewritten:
<rule: sum>
<X=product> \+ <Y=product>
(?{ $MATCH = $MATCH{X} + $MATCH{Y} })
Both forms are identical in effect. Any assignment to C<$MATCH> overrides the
normal "return all subrule results" behaviour.
Assigning to C<$MATCH> directly is particularly handy if the result
may not always be "distillable", for example:
<rule: sum>
<X=product> \+ <Y=product>
(?{ if (!ref $MATCH{X} && !ref $MATCH{Y}) {
# Reduce to sum, if both terms are simple scalars...
$MATCH = $MATCH{X} + $MATCH{Y};
}
else {
# Return full syntax tree for non-simple case...
$MATCH{op} = '+';
}
})
Note that you can also partially override the subrule return behaviour.
Normally, the subrule returns the complete text it matched as its context
substring (i.e. under the "empty key") in its result-hash. That is, of
course, C<$MATCH{""}>, so you can override just that behaviour by
directly assigning to that entry.
For example, if you have a rule that matches key/value pairs from a
configuration file, you might prefer that any trailing comments not be
included in the "matched text" entry of the rule's result-hash. You could
hide such comments like so:
<rule: config_line>
<key> : <value> <comment>?
(?{
# Edit trailing comments out of "matched text" entry...
$MATCH = "$MATCH{key} : $MATCH{value}";
})
Some more examples of the uses of C<$MATCH>:
<rule: FuncDecl>
# Keyword Name Keep return the name (as a string)...
func <Identifier> ; (?{ $MATCH = $MATCH{'Identifier'} })
<rule: NumList>
# Numbers in square brackets...
\[
( \d+ (?: , \d+)* )
\]
# Return only the numbers...
(?{ $MATCH = $CAPTURE })
<token: Cmd>
# Match standard variants then standardize the keyword...
(?: mv | move | rename ) (?{ $MATCH = 'mv'; })
=head2 Parse-time data processing
Using code blocks in rules, it's often possible to fully process data as
you parse it. For example, the C<< <sum> >> rule shown in the previous section
might be part of a simple calculator, implemented entirely in a single
grammar. Such a calculator might look like this:
my $calculator = do{
use Regexp::Grammars;
qr{
<Answer>
<rule: Answer>
( <.Mult>+ % <.Op=([+-])> )
<MATCH= (?{ eval $CAPTURE })>
<rule: Mult>
( <.Pow>+ % <.Op=([*/%])> )
<MATCH= (?{ eval $CAPTURE })>
<rule: Pow>
<X=Term> \^ <Y=Pow>
<MATCH= (?{ $MATCH{X} ** $MATCH{Y}; })>
|
<MATCH=Term>
<rule: Term>
<MATCH=Literal>
| \( <MATCH=Answer> \)
<token: Literal>
<MATCH= ( [+-]? \d++ (?: \. \d++ )?+ )>
}xms
};
while (my $input = <>) {
if ($input =~ $calculator) {
say "--> $/{Answer}";
}
}
Because every rule computes a value using the results of the subrules
below it, and aliases that result to its C<MATCH>, each rule returns a
complete evaluation of the subexpression it matches, passing that back
to higher-level rules, which then do the same.
Hence, the result returned to the very top-level rule (i.e. to C<<
<Answer> >>) is the complete evaluation of the entire expression that
was matched. That means that, in the very process of having matched a
valid expression, the calculator has also computed the value of that
expression, which can then simply be printed directly.
It is often possible to have a grammar fully (or sometimes at least
partially) evaluate or transform the data it is parsing, and this
usually leads to very efficient and easy-to-maintain implementations.
The main limitation of this technique is that the data has to be in a
well-structured form, where subsets of the data can be evaluated using
only local information. In cases where the meaning of the data is
distributed through that data non-hierarchically, or relies on global
state, or on external information, it is often better to have the grammar
simply construct a complete syntax tree for the data first, and then evaluate
that syntax tree separately, after parsing is complete. The following section
describes a feature of Regexp::Grammars that can make this second style of
data processing simpler and more maintainable.
=head2 Object-oriented parsing
When a grammar has parsed successfully, the C<%/> variable will contain a
series of nested hashes (and possibly arrays) representing the hierarchical
structure of the parsed data.
Typically, the next step is to walk that tree, extracting or
converting or otherwise processing that information. If the tree has nodes of
many different types, it can be difficult to build a recursive subroutine that
can navigate it easily.
A much cleaner solution is possible if the nodes of the tree are proper
objects. In that case, you just define a C<process()> or C<traverse()> method
for eah of the classes, and have every node call that method on each of its
children. For example, if the parser were to return a tree of nodes
representing the contents of a LaTeX file, then you could define the following
methods:
sub Latex::file::explain
{
my ($self, $level) = @_;
for my $element (@{$self->{element}}) {
$element->explain($level);
}
}
sub Latex::element::explain {
my ($self, $level) = @_;
( $self->{command} || $self->{literal})->explain($level)
}
sub Latex::command::explain {
my ($self, $level) = @_;
say "\t"x$level, "Command:";
say "\t"x($level+1), "Name: $self->{name}";
if ($self->{options}) {
say "\t"x$level, "\tOptions:";
$self->{options}->explain($level+2)
}
for my $arg (@{$self->{arg}}) {
say "\t"x$level, "\tArg:";
$arg->explain($level+2)
}
}
sub Latex::options::explain {
my ($self, $level) = @_;
$_->explain($level) foreach @{$self->{option}};
}
sub Latex::literal::explain {
my ($self, $level, $label) = @_;
$label //= 'Literal';
say "\t"x$level, "$label: ", $self->{q{}};
}
and then simply write:
if ($text =~ $LaTeX_parser) {
$/{LaTeX_file}->explain();
}
and the chain of C<explain()> calls would cascade down the nodes of the tree,
each one invoking the appropriate C<explain()> method according to the type of
node encountered.
The only problem is that, by default, Regexp::Grammars returns a tree of
plain-old hashes, not LaTeX::Whatever objects. Fortunately, it's easy to
request that the result hashes be automatically blessed into the appropriate
classes, using the C<< <objrule:...> >> and C<< <objtoken:...> >> directives.
These directives are identical to the C<< <rule:...> >> and C<<
<token:...> >> directives (respectively), except that the rule or token
they create will also convert the hash it normally returns into an
object of a specified class. This conversion is done by passing the result
hash to the class's constructor:
$class->new(\%result_hash)
if the class has a constructor method named C<new()>, or else (if
the class doesn't provide a constructor) by directly blessing the
result hash:
bless \%result_hash, $class
Note that, even if object is constructed via its own constructor, the
module still expects the new object to be hash-based, and will fail if
the object is anything but a blessed hash. The module issues an
error in this case.
The generic syntax for these types of rules and tokens is:
<objrule: CLASS::NAME = RULENAME >
<objtoken: CLASS::NAME = TOKENNAME >
For example:
<objrule: LaTeX::Element=component>
# ...Defines a rule that can be called as <component>
# ...and which returns a hash-based LaTeX::Element object
<objtoken: LaTex::Literal=atom>
# ...Defines a token that can be called as <atom>
# ...and which returns a hash-based LaTeX::Literal object
Note that, just as in L<aliased subrule calls|"Renaming subrule results">,
the name by which something is referred to outside the grammar (in this
case, the class name) comes I<before> the C<=>, whereas the name that it
is referred to inside the grammar comes I<after> the C<=>.
You can freely mix object-returning and plain-old-hash-returning rules
and tokens within a single grammar, though you have to be careful not to
subsequently try to call a method on any of the unblessed nodes.
=head4 An important caveat regarding OO rules
Prior to Perl 5.14.0, Perl's regex engine was not fully re-entrant.
This means that in older versions of Perl, it is not possible to
re-invoke the regex engine when already inside the regex engine.
This means that you need to be careful that the C<new()>
constructors that are called by your object-rules do not themselves
use regexes in any way, unless you're running under Perl 5.14 or later
(in which case you can ignore what follows).
The two ways this is most likely to happen are:
=over
=item 1.
If you're using a class built on Moose, where one or more of the C<has>
uses a type constraint (such as C<'Int'>) that is implemented via regex
matching. For example:
has 'id' => (is => 'rw', isa => 'Int');
The workaround (for pre-5.14 Perls) is to replace the type
constraint with one that doesn't use a regex. For example:
has 'id' => (is => 'rw', isa => 'Num');
Alternatively, you could define your own type constraint that
avoids regexes:
use Moose::Util::TypeConstraints;
subtype 'Non::Regex::Int',
as 'Num',
where { int($_) == $_ };
no Moose::Util::TypeConstraints;
# and later...
has 'id' => (is => 'rw', isa => 'Non::Regex::Int');
=item 2.
If your class uses an C<AUTOLOAD()> method to implement its constructor
and that method uses the typical:
$AUTOLOAD =~ s/.*://;
technique. The workaround here is to achieve the same effect without a
regex. For example:
my $last_colon_pos = rindex($AUTOLOAD, ':');
substr $AUTOLOAD, 0, $last_colon_pos+1, q{};
=back
Note that this caveat against using nested regexes also applies to any
code blocks executed inside a rule or token (whether or not those rules
or tokens are object-oriented).
=head3 A naming shortcut
If an C<< <objrule:...> >> or C<< <objtoken:...> >> is defined with a
class name that is I<not> followed by C<=> and a rule name, then the
rule name is determined automatically from the classname.
Specifically, the final component of the classname (i.e. after the last
C<::>, if any) is used.
For example:
<objrule: LaTeX::Element>
# ...Defines a rule that can be called as <Element>
# ...and which returns a hash-based LaTeX::Element object
<objtoken: LaTex::Literal>
# ...Defines a token that can be called as <Literal>
# ...and which returns a hash-based LaTeX::Literal object
<objtoken: Comment>
# ...Defines a token that can be called as <Comment>
# ...and which returns a hash-based Comment object
=head1 Debugging
Regexp::Grammars provides a number of features specifically designed to help
debug both grammars and the data they parse.
All debugging messages are written to a log file (which, by default, is
just STDERR). However, you can specify a disk file explicitly by placing a
C<< <logfile:...> >> directive at the start of your grammar:
$grammar = qr{
<logfile: LaTeX_parser_log >
\A <LaTeX_file> \Z # Pattern to match
<rule: LaTeX_file>
# etc.
}x;
You can also explicitly specify that messages go to the terminal:
<logfile: - >
=head2 Debugging grammar creation with C<< <logfile:...> >>
Whenever a log file has been directly specified,
Regexp::Grammars automatically does verbose static analysis of your grammar.
That is, whenever it compiles a grammar containing an explicit
C<< <logfile:...> >> directive it logs a series of messages explaining how it
has interpreted the various components of that grammar. For example, the
following grammar:
<logfile: parser_log >
<cmd>
<rule: cmd>
mv <from=file> <to=file>
| cp <source> <[file]> <.comment>?
would produce the following analysis in the 'parser_log' file:
info | Processing the main regex before any rule definitions
| |
| |...Treating <cmd> as:
| | | match the subrule <cmd>
| | \ saving the match in $MATCH{'cmd'}
| |
| \___End of main regex
|
info | Defining a rule: <cmd>
| |...Returns: a hash
| |
| |...Treating ' mv ' as:
| | \ normal Perl regex syntax
| |
| |...Treating <from=file> as:
| | | match the subrule <file>
| | \ saving the match in $MATCH{'from'}
| |
| |...Treating <to=file> as:
| | | match the subrule <file>
| | \ saving the match in $MATCH{'to'}
| |
| |...Treating ' | cp ' as:
| | \ normal Perl regex syntax
| |
| |...Treating <source> as:
| | | match the subrule <source>
| | \ saving the match in $MATCH{'source'}
| |
| |...Treating <[file]> as:
| | | match the subrule <file>
| | \ appending the match to $MATCH{'file'}
| |
| |...Treating <.comment>? as:
| | | match the subrule <comment> if possible
| | \ but don't save anything
| |
| \___End of rule definition
This kind of static analysis is a useful starting point in debugging a
miscreant grammar, because it enables you to see what you actually
specified (as opposed to what you I<thought> you'd specified).
=head2 Debugging grammar execution with C<< <debug:...> >>
Regexp::Grammars also provides a simple interactive debugger, with which you
can observe the process of parsing and the data being collected in any
result-hash.
To initiate debugging, place a C<< <debug:...> >> directive anywhere in your
grammar. When parsing reaches that directive the debugger will be activated,
and the command specified in the directive immediately executed. The available
commands are:
<debug: on> - Enable debugging, stop when a rule matches
<debug: match> - Enable debugging, stop when a rule matches
<debug: try> - Enable debugging, stop when a rule is tried
<debug: run> - Enable debugging, run until the match completes
<debug: same> - Continue debugging (or not) as currently
<debug: off> - Disable debugging and continue parsing silently
<debug: continue> - Synonym for <debug: run>
<debug: step> - Synonym for <debug: try>
These directives can be placed anywhere within a grammar and take effect
when that point is reached in the parsing. Hence, adding a
C<< <debug:step> >> directive is very much like setting a breakpoint at that
point in the grammar. Indeed, a common debugging strategy is to turn
debugging on and off only around a suspect part of the grammar:
<rule: tricky> # This is where we think the problem is...
<debug:step>
<preamble> <text> <postscript>
<debug:off>
Once the debugger is active, it steps through the parse, reporting rules
that are tried, matches and failures, backtracking and restarts, and the
parser's location within both the grammar and the text being matched. That
report looks like this:
===============> Trying <grammar> from position 0
> cp file1 file2 |...Trying <cmd>
| |...Trying <cmd=(cp)>
| | \FAIL <cmd=(cp)>
| \FAIL <cmd>
\FAIL <grammar>
===============> Trying <grammar> from position 1
cp file1 file2 |...Trying <cmd>
| |...Trying <cmd=(cp)>
file1 file2 | | \_____<cmd=(cp)> matched 'cp'
file1 file2 | |...Trying <[file]>+
file2 | | \_____<[file]>+ matched 'file1'
| |...Trying <[file]>+
[eos] | | \_____<[file]>+ matched ' file2'
| |...Trying <[file]>+
| | \FAIL <[file]>+
| |...Trying <target>
| | |...Trying <file>
| | | \FAIL <file>
| | \FAIL <target>
<~~~~~~~~~~~~~~ | |...Backtracking 5 chars and trying new match
file2 | |...Trying <target>
| | |...Trying <file>
| | | \____ <file> matched 'file2'
[eos] | | \_____<target> matched 'file2'
| \_____<cmd> matched ' cp file1 file2'
\_____<grammar> matched ' cp file1 file2'
The first column indicates the point in the input at which the parser is
trying to match, as well as any backtracking or forward searching it may
need to do. The remainder of the columns track the parser's hierarchical
traversal of the grammar, indicating which rules are tried, which
succeed, and what they match.
Provided the logfile is a terminal (as it is by default), the debugger
also pauses at various points in the parsing process--before trying a
rule, after a rule succeeds, or at the end of the parse--according to
the most recent command issued. When it pauses, you can issue a new
command by entering a single letter:
m - to continue until the next subrule matches
t or s - to continue until the next subrule is tried
r or c - to continue to the end of the grammar
o - to switch off debugging
Note that these are the first letters of the corresponding
C<< <debug:...> >> commands, listed earlier. Just hitting ENTER while the
debugger is paused repeats the previous command.
While the debugger is paused you can also type a 'd', which will display
the result-hash for the current rule. This can be useful for detecting
which rule isn't returning the data you expected.
=head3 Resizing the context string
By default, the first column of the debugger output (which shows the
current matching position within the string) is limited to a width of
20 columns.
However, you can change that limit calling the
C<Regexp::Grammars::set_context_width()> subroutine. You have to specify
the fully qualified name, however, as Regexp::Grammars does not export
this (or any other) subroutine.
C<set_context_width()> expects a single argument: a positive integer
indicating the maximal allowable width for the context column. It issues
a warning if an invalid value is passed, and ignores it.
If called in a void context, C<set_context_width()> changes the context
width permanently throughout your application. If called in a scalar or
list context, C<set_context_width()> returns an object whose destructor
will cause the context width to revert to its previous value. This means
you can temporarily change the context width within a given block with
something like:
{
my $temporary = Regexp::Grammars::set_context_width(50);
if ($text =~ $parser) {
do_stuff_with( %/ );
}
} # <--- context width automagically reverts at this point
and the context width will change back to its previous value when
C<$temporary> goes out of scope at the end of the block.
=head2 User-defined logging with C<< <log:...> >>
Both static and interactive debugging send a series of predefined log messages
to whatever log file you have specified. It is also possible to send
additional, user-defined messages to the log, using the C<< <log:...> >>
directive.
This directive expects either a simple text or a codeblock as its single
argument. If the argument is a code block, that code is expected to
return the text of the message; if the argument is anything else, that
something else I<is> the literal message. For example:
<rule: ListElem>
<Elem= ( [a-z]\d+) >
<log: Checking for a suffix, too...>
<Suffix= ( : \d+ ) >?
<log: (?{ "ListElem: $MATCH{Elem} and $MATCH{Suffix}" })>
User-defined log messages implemented using a codeblock can also specify
a severity level. If the codeblock of a C<< <log:...> >> directive
returns two or more values, the first is treated as a log message
severity indicator, and the remaining values as separate lines of text
to be logged. For example:
<rule: ListElem>
<Elem= ( [a-z]\d+) >
<Suffix= ( : \d+ ) >?
<log: (?{
warn => "Elem was: $MATCH{Elem}",
"Suffix was $MATCH{Suffix}",
})>
When they are encountered, user-defined log messages are interspersed
between any automatic log messages (i.e. from the debugger), at the correct
level of nesting for the current rule.
=head2 Debugging non-grammars
I<[Note that, with the release in 2012 of the Regexp::Debugger module (on
CPAN) the techniques described below are unnecessary. If you need to
debug plain Perl regexes, use Regexp::Debugger instead.]>
It is possible to use Regexp::Grammars without creating I<any> subrule
definitions, simply to debug a recalcitrant regex. For example, if the
following regex wasn't working as expected:
my $balanced_brackets = qr{
\( # left delim
(?:
\\ # escape or
| (?R) # recurse or
| . # whatever
)*
\) # right delim
}xms;
you could instrument it with aliased subpatterns and then debug it
step-by-step, using Regexp::Grammars:
use Regexp::Grammars;
my $balanced_brackets = qr{
<debug:step>
<.left_delim= ( \( )>
(?:
<.escape= ( \\ )>
| <.recurse= ( (?R) )>
| <.whatever=( . )>
)*
<.right_delim= ( \) )>
}xms;
while (<>) {
say 'matched' if /$balanced_brackets/;
}
Note the use of L<amnesiac aliased subpatterns|"Amnesiac subrule calls">
to avoid needlessly building a result-hash. Alternatively, you could use
listifying aliases to preserve the matching structure as an additional
debugging aid:
use Regexp::Grammars;
my $balanced_brackets = qr{
<debug:step>
<[left_delim= ( \( )]>
(?:
<[escape= ( \\ )]>
| <[recurse= ( (?R) )]>
| <[whatever=( . )]>
)*
<[right_delim= ( \) )]>
}xms;
if ( '(a(bc)d)' =~ /$balanced_brackets/) {
use Data::Dumper 'Dumper';
warn Dumper \%/;
}
=head1 Handling errors when parsing
Assuming you have correctly debugged your grammar, the next source of problems
will probably be invalid input (especially if that input is being provided
interactively). So Regexp::Grammars also provides some support for detecting
when a parse is likely to fail...and informing the user why.
=head2 Requirements
The C<< <require:...> >> directive is useful for testing conditions
that it's not easy (or even possible) to check within the syntax of the
the regex itself. For example:
<rule: IPV4_Octet_Decimal>
# Up three digits...
<MATCH= ( \d{1,3}+ )>
# ...but less than 256...
<require: (?{ $MATCH <= 255 })>
A require expects a regex codeblock as its argument and succeeds if the final
value of that codeblock is true. If the final value is false, the directive
fails and the rule starts backtracking.
Note, in this example that the digits are matched with C< \d{1,3}+ >. The
trailing C<+> prevents the C<{1,3}> repetition from backtracking to a smaller
number of digits if the C<< <require:...> >> fails.
=head2 Handling failure
The module has limited support for error reporting from within a grammar,
in the form of the C<< <error:...> >> and C<< <warning:...> >> directives
and their shortcuts: C<< <...> >>, C<< <!!!> >>, and C<< <???> >>
=head3 Error messages
The C<< <error: MSG> >> directive queues a I<conditional> error message
within C<@!> and then fails to match (that is, it is equivalent to a
C<(?!)> when matching). For example:
<rule: ListElem>
<SerialNumber>
| <ClientName>
| <error: (?{ $errcount++ . ': Missing list element' })>
So a common code pattern when using grammars that do this kind of error
detection is:
if ($text =~ $grammar) {
# Do something with the data collected in %/
}
else {
say {*STDERR} $_ for @!; # i.e. report all errors
}
Each error message is conditional in the sense that, if any surrounding rule
subsequently matches, the message is automatically removed from C<@!>. This
implies that you can queue up as many error messages as you wish, but they
will only remain in C<@!> if the match ultimately fails. Moreover, only those
error messages originating from rules that actually contributed to the
eventual failure-to-match will remain in C<@!>.
If a code block is specified as the argument, the error message is whatever
final value is produced when the block is executed. Note that this final value
does not have to be a string (though it does have to be a scalar).
<rule: ListElem>
<SerialNumber>
| <ClientName>
| <error: (?{
# Return a hash, with the error information...
{ errnum => $errcount++, msg => 'Missing list element' }
})>
If anything else is specified as the argument, it is treated as a
literal error string (and may not contain an unbalanced C<< '<' >>
or C<< '>' >>, nor any interpolated variables).
However, if the literal error string begins with "Expected " or
"Expecting ", then the error string automatically has the following
"context suffix" appended:
, but found '$CONTEXT' instead
For example:
qr{ <Arithmetic_Expression> # ...Match arithmetic expression
| # Or else
<error: Expected a valid expression> # ...Report error, and fail
# Rule definitions here...
}xms;
On an invalid input this example might produce an error message like:
"Expected a valid expression, but found '(2+3]*7/' instead"
The value of the special $CONTEXT variable is found by looking ahead in
the string being matched against, to locate the next sequence of non-blank
characters after the current parsing position. This variable may also be
explicitly used within the C<< <error: (?{...})> >> form of the directive.
As a special case, if you omit the message entirely from the directive,
it is supplied automatically, derived from the name of the current rule.
For example, if the following rule were to fail to match:
<rule: Arithmetic_expression>
<Multiplicative_Expression>+ % ([+-])
| <error:>
the error message queued would be:
"Expected arithmetic expression, but found 'one plus two' instead"
Note however, that it is still essential to include the colon in the
directive. A common mistake is to write:
<rule: Arithmetic_expression>
<Multiplicative_Expression>+ % ([+-])
| <error>
which merely attempts to call C<< <rule: error> >> if the first
alternative fails.
=head3 Warning messages
Sometimes, you want to detect problems, but not invalidate the entire
parse as a result. For those occasions, the module provides a "less stringent"
form of error reporting: the C<< <warning:...> >> directive.
This directive is exactly the same as an C<< <error:...> >> in every respect
except that it does not induce a failure to match at the point it appears.
The directive is, therefore, useful for reporting I<non-fatal> problems
in a parse. For example:
qr{ \A # ...Match only at start of input
<ArithExpr> # ...Match a valid arithmetic expression
(?:
# Should be at end of input...
\s* \Z
|
# If not, report the fact but don't fail...
<warning: Expected end-of-input>
<warning: (?{ "Extra junk at index $INDEX: $CONTEXT" })>
)
# Rule definitions here...
}xms;
Note that, because they do not induce failure, two or more
C<< <warning:...> >> directives can be "stacked" in sequence,
as in the previous example.
=head3 Stubbing
The module also provides three useful shortcuts, specifically to
make it easy to declare, but not define, rules and tokens.
The C<< <...> >> and C<< <???> >> directives are equivalent to
the directive:
<error: Cannot match RULENAME (not implemented)>
The C<< <???> >> is equivalent to the directive:
<warning: Cannot match RULENAME (not implemented)>
For example, in the following grammar:
<grammar: List::Generic>
<rule: List>
<[Item]>+ % (\s*,\s*)
<rule: Item>
<...>
the C<Item> rule is declared but not defined. That means the grammar
will compile correctly, (the C<List> rule won't complain about a call to
a non-existent C<Item>), but if the C<Item> rule isn't overridden in
some derived grammar, a match-time error will occur when C<List> tries
to match the C<< <...> >> within C<Item>.
=head3 Localizing the (semi-)automatic error messages
Error directives of any of the following forms:
<error: Expecting identifier>
<error: >
<...>
<!!!>
or their warning equivalents:
<warning: Expecting identifier>
<warning: >
<???>
each autogenerate part or all of the actual error message they produce.
By default, that autogenerated message is always produced in English.
However, the module provides a mechanism by which you can
intercept I<every> error or warning that is queued to C<@!>
via these directives...and localize those messages.
To do this, you call C<Regexp::Grammars::set_error_translator()>
(with the full qualification, since Regexp::Grammars does not
export it...nor anything else, for that matter).
The C<set_error_translator()> subroutine expect as single
argument, which must be a reference to another subroutine.
This subroutine is then called whenever an error or warning
message is queued to C<@!>.
The subroutine is passed three arguments:
=over
=item *
the message string,
=item *
the name of the rule from which the error or warning was queued, and
=item *
the value of C<$CONTEXT> when the error or warning was encountered
=back
The subroutine is expected to return the final version of the message
that is actually to be appended to C<@!>. To accomplish this it may make
use of one of the many internationalization/localization modules
available in Perl, or it may do the conversion entirely by itself.
The first argument is always exactly what appeared as a message in the
original directive (regardless of whether that message is supposed to
trigger autogeneration, or is just a "regular" error message).
That is:
Directive 1st argument
<error: Expecting identifier> "Expecting identifier"
<warning: That's not a moon!> "That's not a moon!"
<error: > ""
<warning: > ""
<...> ""
<!!!> ""
<???> ""
The second argument always contains the name of the rule in which the
directive was encountered. For example, when invoked from within
C<< <rule: Frinstance> >> the following directives produce:
Directive 2nd argument
<error: Expecting identifier> "Frinstance"
<warning: That's not a moon!> "Frinstance"
<error: > "Frinstance"
<warning: > "Frinstance"
<...> "-Frinstance"
<!!!> "-Frinstance"
<???> "-Frinstance"
Note that the "unimplemented" markers pass the rule name with a
preceding C<'-'>. This allows your translator to distinguish between
"empty" messages (which should then be generated automatically) and the
"unimplemented" markers (which should report that the rule is not yet
properly defined).
If you call C<Regexp::Grammars::set_error_translator()> in a void
context, the error translator is permanently replaced (at least,
until the next call to C<set_error_translator()>).
However, if you call C<Regexp::Grammars::set_error_translator()> in a
scalar or list context, it returns an object whose destructor will
restore the previous translator. This allows you to install a
translator only within a given scope, like so:
{
my $temporary
= Regexp::Grammars::set_error_translator(\&my_translator);
if ($text =~ $parser) {
do_stuff_with( %/ );
}
else {
report_errors_in( @! );
}
} # <--- error translator automagically reverts at this point
B<Warning>: any error translation subroutine you install will be
called during the grammar's parsing phase (i.e. as the grammar's regex
is matching). You should therefore ensure that your translator does
not itself use regular expressions, as nested evaluations of regexes
inside other regexes are extremely problematical (i.e. almost always
disastrous) in Perl.
=head2 Restricting how long a parse runs
Like the core Perl 5 regex engine on which they are built, the grammars
implemented by Regexp::Grammars are essentially top-down parsers. This
means that they may occasionally require an exponentially long time to
parse a particular input. This usually occurs if a particular grammar
includes a lot of recursion or nested backtracking, especially if the
grammar is then matched against a long string.
The judicious use of non-backtracking repetitions (i.e. C<x*+> and
C<x++>) can significantly improve parsing performance in many such
cases. Likewise, carefully reordering any high-level alternatives
(so as to test simple common cases first) can substantially reduce
parsing times.
However, some languages are just intrinsically slow to parse using
top-down techniques (or, at least, may have slow-to-parse corner cases).
To help cope with this constraint, Regexp::Grammars provides a mechanism
by which you can limit the total effort that a given grammar will expend
in attempting to match. The C<< <timeout:...> >> directive allows you
to specify how long a grammar is allowed to continue trying to match
before giving up. It expects a single argument, which must be an
unsigned integer, and it treats this integer as the number of seconds
to continue attempting to match.
For example:
<timeout: 10> # Give up after 10 seconds
indicates that the grammar should keep attempting to match for another
10 seconds from the point where the directive is encountered during a
parse. If the complete grammar has not matched in that time, the entire
match is considered to have failed, the matching process is immediately
terminated, and a standard error message
(C<'Internal error: Timed out after 10 seconds (as requested)'>)
is returned in C<@!>.
A C<< <timeout:...> >> directive can be placed anywhere in a grammar,
but is most usually placed at the very start, so that the entire grammar
is governed by the specified time limit. The second most common alternative
is to place the timeout at the start of a particular subrule that is known
to be potentially very slow.
A common mistake is to put the timeout specification at the top level
of the grammar, but place it I<after> the actual subrule to be matched,
like so:
my $grammar = qr{
<Text_Corpus> # Subrule to be matched
<timeout: 10> # Useless use of timeout
<rule: Text_Corpus>
# et cetera...
}xms;
Since the parser will only reach the C<< <timeout: 10> >> directive
I<after> it has completely matched C<< <Text_Corpus> >>, the timeout is
only initiated at the very end of the matching process and so does not
limit that process in any useful way.
=head3 Immediate timeouts
As you might expect, a C<< <timeout: 0> >> directive tells the parser to
keep trying for only zero more seconds, and therefore will immediately
cause the entire surrounding grammar to fail (no matter how deeply
within that grammar the directive is encountered).
This can occasionally be exteremely useful. If you know that detecting a
particular datum means that the grammar will never match, no matter how
many other alternatives may subsequently be tried, you can short-circuit
the parser by injecting a C<< <timeout: 0> >> immediately after the
offending datum is detected.
For example, if your grammar only accepts certain versions of the
language being parsed, you could write:
<rule: Valid_Language_Version>
vers = <%AcceptableVersions>
|
vers = <bad_version=(\S++)>
<warning: (?{ "Cannot parse language version $MATCH{bad_version}" })>
<timeout: 0>
In fact, this C<< <warning: MSG> <timeout: 0> >> sequence
is sufficiently useful, sufficiently complex, and sufficiently easy
to get wrong, that Regexp::Grammars provides a handy shortcut for it:
the C<< <fatal:...> >> directive. A C<< <fatal:...> >> is exactly
equivalent to a C<< <warning:...> >> followed by a zero-timeout,
so the previous example could also be written:
<rule: Valid_Language_Version>
vers = <%AcceptableVersions>
|
vers = <bad_version=(\S++)>
<fatal: (?{ "Cannot parse language version $MATCH{bad_version}" })>
Like C<< <error:...> >> and C<< <warning:...> >>, C<< <fatal:...> >> also
provides its own failure context in C<$CONTEXT>, so the previous example
could be further simplified to:
<rule: Valid_Language_Version>
vers = <%AcceptableVersions>
|
vers = <fatal:(?{ "Cannot parse language version $CONTEXT" })>
Also like C<< <error:...> >>, C<< <fatal:...> >> can autogenerate an
error message if none is provided, so the example could be still further
reduced to:
<rule: Valid_Language_Version>
vers = <%AcceptableVersions>
|
vers = <fatal:>
In this last case, however, the error message returned in C<@!> would no
longer be:
Cannot parse language version 0.95
It would now be:
Expected valid language version, but found '0.95' instead
=head1 Scoping considerations
If you intend to use a grammar as part of a larger program that contains
other (non-grammatical) regexes, it is more efficient--and less
error-prone--to avoid having Regexp::Grammars process those regexes as
well. So it's often a good idea to declare your grammar in a C<do>
block, thereby restricting the scope of the module's effects.
For example:
my $grammar = do {
use Regexp::Grammars;
qr{
<file>
<rule: file>
<prelude>
<data>
<postlude>
<rule: prelude>
# etc.
}x;
};
Because the effects of Regexp::Grammars are lexically scoped, any regexes
defined outside that C<do> block will be unaffected by the module.
=head1 INTERFACE
=head2 Perl API
=over 4
=item C<use Regexp::Grammars;>
Causes all regexes in the current lexical scope to be compile-time processed
for grammar elements.
=item C<$str =~ $grammar>
=item C<$str =~ /$grammar/>
Attempt to match the grammar against the string, building a nested data
structure from it.
=item C<%/>
This hash is assigned the nested data structure created by any successful
match of a grammar regex.
=item C<@!>
This array is assigned the queue of error messages created by any
unsuccessful match attempt of a grammar regex.
=back
=head2 Grammar syntax
=head3 Directives
=over 4
=item C<< <rule: IDENTIFIER> >>
Define a rule whose name is specified by the supplied identifier.
Everything following the C<< <rule:...> >> directive
(up to the next C<< <rule:...> >> or C<< <token:...> >> directive) is
treated as part of the rule being defined.
Any whitespace in the rule is replaced by a call to the C<< <.ws> >>
subrule (which defaults to matching C<\s*>, but may be explicitly redefined).
=item C<< <token: IDENTIFIER> >>
Define a rule whose name is specified by the supplied identifier.
Everything following the C<< <token:...> >> directive (up to the next
C<< <rule:...> >> or C<< <token:...> >> directive) is treated as part
of the rule being defined.
Any whitespace in the rule is ignored (under the C</x> modifier), or
explicitly matched (if C</x> is not used).
=item C<< <objrule: IDENTIFIER> >>
=item C<< <objtoken: IDENTIFIER> >>
Identical to a C<< <rule: IDENTIFIER> >> or C<< <token: IDENTIFIER> >>
declaration, except that the rule or token will also bless the hash it
normally returns, converting it to an object of a class whose name is
the same as the rule or token itself.
=item C<< <require: (?{ CODE }) > >>
The code block is executed and if its final value is true, matching continues
from the same position. If the block's final value is false, the match fails at
that point and starts backtracking.
=item C<< <error: (?{ CODE }) > >>
=item C<< <error: LITERAL TEXT > >>
=item C<< <error: > >>
This directive queues a I<conditional> error message within the global
special variable C<@!> and then fails to match at that point (that is,
it is equivalent to a C<(?!)> or C<(*FAIL)> when matching).
=item C<< <fatal: (?{ CODE }) > >>
=item C<< <fatal: LITERAL TEXT > >>
=item C<< <fatal: > >>
This directive is exactly the same as an C<< <error:...> >> in every
respect except that it immediately causes the entire surrounding
grammar to fail, and parsing to immediate cease.
=item C<< <warning: (?{ CODE }) > >>
=item C<< <warning: LITERAL TEXT > >>
This directive is exactly the same as an C<< <error:...> >> in every
respect except that it does not induce a failure to match at the point
it appears. That is, it is equivalent to a C<(?=)> ["succeed and
continue matching"], rather than a C<(?!)> ["fail and backtrack"].
=item C<< <debug: COMMAND > >>
During the matching of grammar regexes send debugging and warning
information to the specified log file (see C<< <logfile: LOGFILE> >>).
The available C<COMMAND>'s are:
<debug: continue> ___ Debug until end of complete parse
<debug: run> _/
<debug: on> ___ Debug until next subrule match
<debug: match> _/
<debug: try> ___ Debug until next subrule call or match
<debug: step> _/
<debug: same> ___ Maintain current debugging mode
<debug: off> ___ No debugging
See also the C<$DEBUG> special variable.
=item C<< <logfile: LOGFILE> >>
=item C<< <logfile: - > >>
During the compilation of grammar regexes, send debugging and warning
information to the specified LOGFILE (or to C<*STDERR> if C<-> is
specified).
If the specified LOGFILE name contains a C<%t>, it is replaced with a
(sortable) "YYYYMMDD.HHMMSS" timestamp. For example:
<logfile: test-run-%t >
executed at around 9.30pm on the 21st of March 2009, would generate a
log file named: C<test-run-20090321.213056>
=item C<< <log: (?{ CODE }) > >>
=item C<< <log: LITERAL TEXT > >>
Append a message to the log file. If the argument is a code block,
that code is expected to return the text of the message; if the
argument is anything else, that something else I<is> the literal
message.
If the block returns two or more values, the first is treated as a log
message severity indicator, and the remaining values as separate lines
of text to be logged.
=item C<< <timeout: INT > >>
Restrict the match-time of the parse to the specified number of seconds.
Queues a error message and terminates the entire match process
if the parse does not complete within the nominated time limit.
=back
=head3 Subrule calls
=over 4
=item C<< <IDENTIFIER> >>
Call the subrule whose name is IDENTIFIER.
If it matches successfully, save the hash it returns in the current
scope's result-hash, under the key C<'IDENTIFIER'>.
=item C<< <IDENTIFIER_1=IDENTIFIER_2> >>
Call the subrule whose name is IDENTIFIER_1.
If it matches successfully, save the hash it returns in the current
scope's result-hash, under the key C<'IDENTIFIER_2'>.
In other words, the C<IDENTIFIER_1=> prefix changes the key under which the
result of calling a subrule is stored.
=item C<< <.IDENTIFIER> >>
Call the subrule whose name is IDENTIFIER.
Don't save the hash it returns.
In other words, the "dot" prefix disables saving of subrule results.
=item C<< <IDENTIFIER= ( PATTERN )> >>
Match the subpattern PATTERN.
If it matches successfully, capture the substring it matched and save
that substring in the current scope's result-hash, under the key
'IDENTIFIER'.
=item C<< <.IDENTIFIER= ( PATTERN )> >>
Match the subpattern PATTERN.
Don't save the substring it matched.
=item C<< <IDENTIFIER= %HASH> >>
Match a sequence of non-whitespace then verify that the sequence is a
key in the specified hash
If it matches successfully, capture the sequence it matched and save
that substring in the current scope's result-hash, under the key
'IDENTIFIER'.
=item C<< <%HASH> >>
Match a key from the hash.
Don't save the substring it matched.
=item C<< <IDENTIFIER= (?{ CODE })> >>
Execute the specified CODE.
Save the result (of the final expression that the CODE evaluates) in the
current scope's result-hash, under the key C<'IDENTIFIER'>.
=item C<< <[IDENTIFIER]> >>
Call the subrule whose name is IDENTIFIER.
If it matches successfully, append the hash it returns to a nested array
within the current scope's result-hash, under the key <'IDENTIFIER'>.
=item C<< <[IDENTIFIER_1=IDENTIFIER_2]> >>
Call the subrule whose name is IDENTIFIER_1.
If it matches successfully, append the hash it returns to a nested array
within the current scope's result-hash, under the key C<'IDENTIFIER_2'>.
=item C<< <ANY_SUBRULE>+ % <ANY_OTHER_SUBRULE> >>
=item C<< <ANY_SUBRULE>* % <ANY_OTHER_SUBRULE> >>
=item C<< <ANY_SUBRULE>+ % (PATTERN) >>
=item C<< <ANY_SUBRULE>* % (PATTERN) >>
Repeatedly call the first subrule.
Keep matching as long as the subrule matches, provided successive
matches are separated by matches of the second subrule or the pattern.
In other words, match a list of ANY_SUBRULE's separated by
ANY_OTHER_SUBRULE's or PATTERN's.
Note that, if a pattern is used to specify the separator, it must be
specified in some kind of matched parentheses. These may be capturing
[C<(...)>], non-capturing [C<(?:...)>], non-backtracking [C<< (?>...) >>],
or any other construct enclosed by an opening and closing paren.
=back
=head2 Special variables within grammar actions
=over 4
=item C<$CAPTURE>
=item C<$CONTEXT>
These are both aliases for the built-in read-only C<$^N> variable, which
always contains the substring matched by the nearest preceding C<(...)>
capture. C<$^N> still works perfectly well, but these are provided to
improve the readability of code blocks and error messages respectively.
=item C<$INDEX>
This variable contains the index at which the next match will be attempted
within the string being parsed. It is most commonly used in C<< <error:...> >>
or C<< <log:...> >> directives:
<rule: ListElem>
<log: (?{ "Trying words at index $INDEX" })>
<MATCH=( \w++ )>
|
<log: (?{ "Trying digits at index $INDEX" })>
<MATCH=( \d++ )>
|
<error: (?{ "Missing ListElem near index $INDEX" })>
=item C<%MATCH>
This variable contains all the saved results of any subrules called from the
current rule. In other words, subrule calls like:
<ListElem> <Separator= (,)>
stores their respective match results in C<$MATCH{'ListElem'}> and
C<$MATCH{'Separator'}>.
=item C<$MATCH>
This variable is an alias for C<$MATCH{"="}>. This is the C<%MATCH>
entry for the special "override value". If this entry is defined, its
value overrides the usual "return \%MATCH" semantics of a successful
rule.
=item C<%ARG>
This variable contains all the key/value pairs that were passed into
a particular subrule call.
<Keyword> <Command> <Terminator(:Keyword)>
the C<Terminator> rule could get access to the text matched by
C<< <Keyword> >> like so:
<token: Terminator>
end_ (??{ $ARG{'Keyword'} })
Note that to match against the calling subrules 'Keyword' value, it's
necessary to use either a deferred interpolation (C<(??{...})>) or
a qualified matchref:
<token: Terminator>
end_ <\:Keyword>
A common mistake is to attempt to directly interpolate the argument:
<token: Terminator>
end_ $ARG{'Keyword'}
This evaluates C<$ARG{'Keyword'}> when the grammar is
compiled, rather than when the rule is matched.
=item C<$_>
At the start of any code blocks inside any regex, the variable C<$_> contains
the complete string being matched against. The current matching position
within that string is given by: C<pos($_)>.
=item C<$DEBUG>
This variable stores the current debugging mode (which may be any of:
C<'off'>, C<'on'>, C<'run'>, C<'continue'>, C<'match'>, C<'step'>, or
C<'try'>). It is set automatically by the C<< <debug:...> >> command, but may
also be set manually in a code block (which can be useful for conditional
debugging). For example:
<rule: ListElem>
<Identifier>
# Conditionally debug if 'foobar' encountered...
(?{ $DEBUG = $MATCH{Identifier} eq 'foobar' ? 'step' : 'off' })
<Modifier>?
See also: the C<< <log: LOGFILE> >> and C<< <debug: DEBUG_CMD> >> directives.
=back
=head1 IMPORTANT CONSTRAINTS AND LIMITATIONS
=over 4
=item *
Prior to Perl 5.14, the Perl 5 regex engine as not reentrant. So any
attempt to perform a regex match inside a C<(?{ ... })> or C<(??{
... })> under Perl 5.12 or earlier will almost certainly lead to either
weird data corruption or a segfault.
The same calamities can also occur in any constructor called by
C<< <objrule:> >>. If the constructor invokes another regex in any
way, it will most likely fail catastrophically. In particular, this
means that Moose constructors will frequently crash and burn within
a Regex::Grammars grammar (for example, if the Moose-based class
declares an attribute type constraint such as 'Int', which Moose
checks using a regex).
=item *
The additional regex constructs this module provides are implemented by
rewriting regular expressions. This is a (safer) form of source
filtering, but still subject to all the same limitations and
fallibilities of any other macro-based solution.
=item *
In particular, rewriting the macros involves the insertion of (a lot of)
extra capturing parentheses. This means you can no longer assume that
particular capturing parens correspond to particular numeric variables:
i.e. to C<$1>, C<$2>, C<$3> etc. If you want to capture directly use
Perl 5.10's named capture construct:
(?<name> [^\W\d]\w* )
Better still, capture the data in its correct hierarchical context
using the module's "named subpattern" construct:
<name= ([^\W\d]\w*) >
=item *
No recursive descent parser--including those created with
Regexp::Grammars--can directly handle left-recursive grammars with rules
of the form:
<rule: List>
<List> , <ListElem>
If you find yourself attempting to write a left-recursive grammar (which
Perl 5.10 may or may not complain about, but will never successfully
parse with), then you probably need to use the "separated list"
construct instead:
<rule: List>
<[ListElem]>+ % (,)
=item *
Grammatical parsing with Regexp::Grammars can fail if your grammar
places "non-backtracking" directives (i.e. the C<< (?>...) >> block or
the C<?+>, C<*+>, or C<++> repetition specifiers) around a subrule call.
The problem appears to be that preventing the regex from backtracking
through the in-regex actions that Regexp::Grammars adds causes the
module's internal stack to fall out of sync with the regex match.
For the time being, you need to make sure that grammar rules don't appear
inside a "non-backtracking" directive.
=item *
Similarly, parsing with Regexp::Grammars will fail if your grammar
places a subrule call within a positive look-ahead, since
these don't play nicely with the data stack.
This seems to be an internal problem with perl itself.
Investigations, and attempts at a workaround, are proceeding.
For the time being, you need to make sure that grammar rules don't appear
inside a positive lookahead or use the
L<<< C<< <?RULENAME> >> construct | "Lookahead (zero-width) subrules" >>>
instead
=back
=head1 DIAGNOSTICS
Note that (because the author cannot find a way to throw exceptions from
within a regex) none of the following diagnostics actually throws an
exception.
Instead, these messages are simply written to the specified parser logfile
(or to C<*STDERR>, if no logfile is specified).
However, any fatal match-time message will immediately terminate the
parser matching and will still set C<$@> (as if an exception had been
thrown and caught at that point in the code). You then have the option
to check C<$@> immediately after matching with the grammar, and rethrow if
necessary:
if ($input =~ $grammar) {
process_data_in(\%/);
}
else {
die if $@;
}
=over
=item C<< Found call to %s, but no %s was defined in the grammar >>
You specified a call to a subrule for which there was no definition in
the grammar. Typically that's either because you forget to define the
rule, or because you misspelled either the definition or the subrule
call. For example:
<file>
<rule: fiel> <---- misspelled rule
<lines> <---- used but never defined
Regexp::Grammars converts any such subrule call attempt to an instant
catastrophic failure of the entire parse, so if your parser ever
actually tries to perform that call, Very Bad Things will happen.
=item C<< Entire parse terminated prematurely while attempting to call non-existent rule: %s >>
You ignored the previous error and actually tried to call to a subrule
for which there was no definition in the grammar. Very Bad Things are
now happening. The parser got very upset, took its ball, and went home.
See the preceding diagnostic for remedies.
This diagnostic should throw an exception, but can't. So it sets C<$@>
instead, allowing you to trap the error manually if you wish.
=item C<< Fatal error: <objrule: %s> returned a non-hash-based object >>
An <objrule:> was specified and returned a blessed object that wasn't
a hash. This will break the behaviour of the grammar, so the module
immediately reports the problem and gives up.
The solution is to use only hash-based classes with <objrule:>
=item C<< Can't match against <grammar: %s> >>
The regex you attempted to match against defined a pure grammar, using
the C<< <grammar:...> >> directive. Pure grammars have no start-pattern
and hence cannot be matched against directly.
You need to define a matchable grammar that inherits from your pure
grammar and then calls one of its rules. For example, instead of:
my $greeting = qr{
<grammar: Greeting>
<rule: greet>
Hi there
| Hello
| Yo!
}xms;
you need:
qr{
<grammar: Greeting>
<rule: greet>
Hi there
| Hello
| Yo!
}xms;
my $greeting = qr{
<extends: Greeting>
<greet>
}xms;
=item C<< Inheritance from unknown grammar requested by <%s> >>
You used an C<< <extends:...> >> directive to request that your
grammar inherit from another, but the grammar you asked to
inherit from doesn't exist.
Check the spelling of the grammar name, and that it's already been
defined somewhere earlier in your program.
=item C<< Redeclaration of <%s> will be ignored >>
You defined two or more rules or tokens with the same name.
The first one defined in the grammar will be used;
the rest will be ignored.
To get rid of the warning, get rid of the extra definitions
(or, at least, comment them out or rename the rules).
=item C<< Possible invalid subrule call %s >>
Your grammar contained something of the form:
<identifier
<.identifier
<[identifier
which you might have intended to be a subrule call, but which didn't
correctly parse as one. If it was supposed to be a Regexp::Grammars
subrule call, you need to check the syntax you used. If it wasn't
supposed to be a subrule call, you can silence the warning by rewriting
it and quoting the leading angle:
\<identifier
\<.identifier
\<[identifier
=item C<< Possible failed attempt to specify a directive: %s >>
Your grammar contained something of the form:
<identifier:...
but which wasn't a known directive like C<< <rule:...> >>
or C<< <debug:...> >>. If it was supposed to be a Regexp::Grammars
directive, check the spelling of the directive name. If it wasn't
supposed to be a directive, you can silence the warning by rewriting it
and quoting the leading angle:
\<identifier:
=item C<< Possible failed attempt to specify a subrule call %s >>
Your grammar contained something of the form:
<identifier...
but which wasn't a call to a known subrule like C<< <ident> >> or C<<
<name> >>. If it was supposed to be a Regexp::Grammars subrule call,
check the spelling of the rule name in the angles. If it wasn't supposed
to be a subrule call, you can silence the warning by rewriting it and
quoting the leading angle:
\<identifier...
=item C<< Repeated subrule %s will only capture its final match >>
You specified a subrule call with a repetition qualifier, such as:
<ListElem>*
or:
<ListElem>+
Because each subrule call saves its result in a hash entry of the same name,
each repeated match will overwrite the previous ones, so only the last match
will ultimately be saved. If you want to save all the matches, you need to
tell Regexp::Grammars to save the sequence of results as a nested array within
the hash entry, like so:
<[ListElem]>*
or:
<[ListElem]>+
If you really did intend to throw away every result but the final one, you can
silence the warning by placing the subrule call inside any kind of
parentheses. For example:
(<ListElem>)*
or:
(?: <ListElem> )+
=item C<< Unable to open log file '$filename' (%s) >>
You specified a C<< <logfile:...> >> directive but the
file whose name you specified could not be opened for
writing (for the reason given in the parens).
Did you misspell the filename, or get the permissions wrong
somewhere in the filepath?
=item C<< Non-backtracking subrule %s may not revert correctly during backtracking >>
Because of inherent limitations in the Perl regex engine,
non-backtracking constructs like C<++>, C<*+>, C<?+>,
and C<< (?>...) >> do not always work correctly when applied to
subrule calls, especially in earlier versions of Perl.
If the grammar doesn't work properly, replace the offending constructs
with regular backtracking versions instead. If the grammar does work,
you can silence the warning by enclosing the subrule call in any
kind of parentheses. For example, change:
<[ListElem]>++
to:
(?: <[ListElem]> )++
=item C<< Unexpected item before first subrule specification in definition of <grammar: %s> >>
Named grammar definitions must consist only of rule and token definitions.
They cannot have patterns before the first definitions.
You had some kind of pattern before the first definition, which will be
completely ignored within the grammar.
To silence the warning, either comment out or delete whatever is before
the first rule/token definition.
=item C<< No main regex specified before rule definitions >>
You specified an unnamed grammar (i.e. no C<< <grammar:...> >> directive),
but didn't specify anything for it to actually match, just some rules
that you don't actually call. For example:
my $grammar = qr{
<rule: list> \( <item> +% [,] \)
<token: item> <list> | \d+
}x;
You have to provide something before the first rule to start the matching
off. For example:
my $grammar = qr{
<list> # <--- This tells the grammar how to start matching
<rule: list> \( <item> +% [,] \)
<token: item> <list> | \d+
}x;
=item C<< Ignoring useless empty <ws:> directive >>
The C<< <ws:...> >> directive specifies what whitespace matches within the
current rule. An empty C<< <ws:> >> directive would cause whitespace
to match nothing at all, which is what happens in a token definition,
not in a rule definition.
Either put some subpattern inside the empty C<< <ws:...> >> or, if you
really do want whitespace to match nothing at all, remove the directive
completely and change the rule definition to a token definition.
=item C<< Ignoring useless <ws: %s > directive in a token definition >>
The C<< <ws:...> >> directive is used to specify what whitespace matches
within a rule. Since whitespace never matches anything inside tokens,
putting a C<< <ws:...> >> directive in a token is a waste of time.
Either remove the useless directive, or else change the surrounding
token definition to a rule definition.
=item C<< Quantifier that doesn't quantify anything: <%s> >>
You specified a rule or token something like:
<token: star> *
or:
<rule: add_op> plus | add | +
but the C<*> and C<+> in those examples are both regex meta-operators:
quantifiers that usually cause what precedes them to match repeatedly.
In these cases however, nothing is preceding the quantifier, so it's a
Perl syntax error.
You almost certainly need to escape the meta-characters in some way.
For example:
<token: star> \*
<rule: add_op> plus | add | [+]
=back
=head1 CONFIGURATION AND ENVIRONMENT
Regexp::Grammars requires no configuration files or environment variables.
=head1 DEPENDENCIES
This module only works under Perl 5.10 or later.
=head1 INCOMPATIBILITIES
This module is likely to be incompatible with any other module that
automagically rewrites regexes. For example it may conflict with
Regexp::DefaultFlags, Regexp::DeferredExecution, or Regexp::Extended.
=head1 BUGS
No bugs have been reported.
Please report any bugs or feature requests to
C<bug-regexp-grammars@rt.cpan.org>, or through the web interface at
L<http://rt.cpan.org>.
=head1 AUTHOR
Damian Conway C<< <DCONWAY@CPAN.org> >>
=head1 LICENCE AND COPYRIGHT
Copyright (c) 2009, Damian Conway C<< <DCONWAY@CPAN.org> >>. All rights reserved.
This module is free software; you can redistribute it and/or
modify it under the same terms as Perl itself. See L<perlartistic>.
=head1 DISCLAIMER OF WARRANTY
BECAUSE THIS SOFTWARE IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE SOFTWARE, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE SOFTWARE "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE SOFTWARE IS WITH
YOU. SHOULD THE SOFTWARE PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR, OR CORRECTION.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE SOFTWARE AS PERMITTED BY THE ABOVE LICENCE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE SOFTWARE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE SOFTWARE TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
|