/usr/lib/python3.7/test/test_long.py is in libpython3.7-testsuite 3.7.0~b3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 | import unittest
from test import support
import sys
import random
import math
import array
# SHIFT should match the value in longintrepr.h for best testing.
SHIFT = sys.int_info.bits_per_digit
BASE = 2 ** SHIFT
MASK = BASE - 1
KARATSUBA_CUTOFF = 70 # from longobject.c
# Max number of base BASE digits to use in test cases. Doubling
# this will more than double the runtime.
MAXDIGITS = 15
# build some special values
special = [0, 1, 2, BASE, BASE >> 1, 0x5555555555555555, 0xaaaaaaaaaaaaaaaa]
# some solid strings of one bits
p2 = 4 # 0 and 1 already added
for i in range(2*SHIFT):
special.append(p2 - 1)
p2 = p2 << 1
del p2
# add complements & negations
special += [~x for x in special] + [-x for x in special]
DBL_MAX = sys.float_info.max
DBL_MAX_EXP = sys.float_info.max_exp
DBL_MIN_EXP = sys.float_info.min_exp
DBL_MANT_DIG = sys.float_info.mant_dig
DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1)
# Pure Python version of correctly-rounded integer-to-float conversion.
def int_to_float(n):
"""
Correctly-rounded integer-to-float conversion.
"""
# Constants, depending only on the floating-point format in use.
# We use an extra 2 bits of precision for rounding purposes.
PRECISION = sys.float_info.mant_dig + 2
SHIFT_MAX = sys.float_info.max_exp - PRECISION
Q_MAX = 1 << PRECISION
ROUND_HALF_TO_EVEN_CORRECTION = [0, -1, -2, 1, 0, -1, 2, 1]
# Reduce to the case where n is positive.
if n == 0:
return 0.0
elif n < 0:
return -int_to_float(-n)
# Convert n to a 'floating-point' number q * 2**shift, where q is an
# integer with 'PRECISION' significant bits. When shifting n to create q,
# the least significant bit of q is treated as 'sticky'. That is, the
# least significant bit of q is set if either the corresponding bit of n
# was already set, or any one of the bits of n lost in the shift was set.
shift = n.bit_length() - PRECISION
q = n << -shift if shift < 0 else (n >> shift) | bool(n & ~(-1 << shift))
# Round half to even (actually rounds to the nearest multiple of 4,
# rounding ties to a multiple of 8).
q += ROUND_HALF_TO_EVEN_CORRECTION[q & 7]
# Detect overflow.
if shift + (q == Q_MAX) > SHIFT_MAX:
raise OverflowError("integer too large to convert to float")
# Checks: q is exactly representable, and q**2**shift doesn't overflow.
assert q % 4 == 0 and q // 4 <= 2**(sys.float_info.mant_dig)
assert q * 2**shift <= sys.float_info.max
# Some circularity here, since float(q) is doing an int-to-float
# conversion. But here q is of bounded size, and is exactly representable
# as a float. In a low-level C-like language, this operation would be a
# simple cast (e.g., from unsigned long long to double).
return math.ldexp(float(q), shift)
# pure Python version of correctly-rounded true division
def truediv(a, b):
"""Correctly-rounded true division for integers."""
negative = a^b < 0
a, b = abs(a), abs(b)
# exceptions: division by zero, overflow
if not b:
raise ZeroDivisionError("division by zero")
if a >= DBL_MIN_OVERFLOW * b:
raise OverflowError("int/int too large to represent as a float")
# find integer d satisfying 2**(d - 1) <= a/b < 2**d
d = a.bit_length() - b.bit_length()
if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b:
d += 1
# compute 2**-exp * a / b for suitable exp
exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG
a, b = a << max(-exp, 0), b << max(exp, 0)
q, r = divmod(a, b)
# round-half-to-even: fractional part is r/b, which is > 0.5 iff
# 2*r > b, and == 0.5 iff 2*r == b.
if 2*r > b or 2*r == b and q % 2 == 1:
q += 1
result = math.ldexp(q, exp)
return -result if negative else result
class LongTest(unittest.TestCase):
# Get quasi-random long consisting of ndigits digits (in base BASE).
# quasi == the most-significant digit will not be 0, and the number
# is constructed to contain long strings of 0 and 1 bits. These are
# more likely than random bits to provoke digit-boundary errors.
# The sign of the number is also random.
def getran(self, ndigits):
self.assertGreater(ndigits, 0)
nbits_hi = ndigits * SHIFT
nbits_lo = nbits_hi - SHIFT + 1
answer = 0
nbits = 0
r = int(random.random() * (SHIFT * 2)) | 1 # force 1 bits to start
while nbits < nbits_lo:
bits = (r >> 1) + 1
bits = min(bits, nbits_hi - nbits)
self.assertTrue(1 <= bits <= SHIFT)
nbits = nbits + bits
answer = answer << bits
if r & 1:
answer = answer | ((1 << bits) - 1)
r = int(random.random() * (SHIFT * 2))
self.assertTrue(nbits_lo <= nbits <= nbits_hi)
if random.random() < 0.5:
answer = -answer
return answer
# Get random long consisting of ndigits random digits (relative to base
# BASE). The sign bit is also random.
def getran2(ndigits):
answer = 0
for i in range(ndigits):
answer = (answer << SHIFT) | random.randint(0, MASK)
if random.random() < 0.5:
answer = -answer
return answer
def check_division(self, x, y):
eq = self.assertEqual
with self.subTest(x=x, y=y):
q, r = divmod(x, y)
q2, r2 = x//y, x%y
pab, pba = x*y, y*x
eq(pab, pba, "multiplication does not commute")
eq(q, q2, "divmod returns different quotient than /")
eq(r, r2, "divmod returns different mod than %")
eq(x, q*y + r, "x != q*y + r after divmod")
if y > 0:
self.assertTrue(0 <= r < y, "bad mod from divmod")
else:
self.assertTrue(y < r <= 0, "bad mod from divmod")
def test_division(self):
digits = list(range(1, MAXDIGITS+1)) + list(range(KARATSUBA_CUTOFF,
KARATSUBA_CUTOFF + 14))
digits.append(KARATSUBA_CUTOFF * 3)
for lenx in digits:
x = self.getran(lenx)
for leny in digits:
y = self.getran(leny) or 1
self.check_division(x, y)
# specific numbers chosen to exercise corner cases of the
# current long division implementation
# 30-bit cases involving a quotient digit estimate of BASE+1
self.check_division(1231948412290879395966702881,
1147341367131428698)
self.check_division(815427756481275430342312021515587883,
707270836069027745)
self.check_division(627976073697012820849443363563599041,
643588798496057020)
self.check_division(1115141373653752303710932756325578065,
1038556335171453937726882627)
# 30-bit cases that require the post-subtraction correction step
self.check_division(922498905405436751940989320930368494,
949985870686786135626943396)
self.check_division(768235853328091167204009652174031844,
1091555541180371554426545266)
# 15-bit cases involving a quotient digit estimate of BASE+1
self.check_division(20172188947443, 615611397)
self.check_division(1020908530270155025, 950795710)
self.check_division(128589565723112408, 736393718)
self.check_division(609919780285761575, 18613274546784)
# 15-bit cases that require the post-subtraction correction step
self.check_division(710031681576388032, 26769404391308)
self.check_division(1933622614268221, 30212853348836)
def test_karatsuba(self):
digits = list(range(1, 5)) + list(range(KARATSUBA_CUTOFF,
KARATSUBA_CUTOFF + 10))
digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100])
bits = [digit * SHIFT for digit in digits]
# Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) ==
# 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check.
for abits in bits:
a = (1 << abits) - 1
for bbits in bits:
if bbits < abits:
continue
with self.subTest(abits=abits, bbits=bbits):
b = (1 << bbits) - 1
x = a * b
y = ((1 << (abits + bbits)) -
(1 << abits) -
(1 << bbits) +
1)
self.assertEqual(x, y)
def check_bitop_identities_1(self, x):
eq = self.assertEqual
with self.subTest(x=x):
eq(x & 0, 0)
eq(x | 0, x)
eq(x ^ 0, x)
eq(x & -1, x)
eq(x | -1, -1)
eq(x ^ -1, ~x)
eq(x, ~~x)
eq(x & x, x)
eq(x | x, x)
eq(x ^ x, 0)
eq(x & ~x, 0)
eq(x | ~x, -1)
eq(x ^ ~x, -1)
eq(-x, 1 + ~x)
eq(-x, ~(x-1))
for n in range(2*SHIFT):
p2 = 2 ** n
with self.subTest(x=x, n=n, p2=p2):
eq(x << n >> n, x)
eq(x // p2, x >> n)
eq(x * p2, x << n)
eq(x & -p2, x >> n << n)
eq(x & -p2, x & ~(p2 - 1))
def check_bitop_identities_2(self, x, y):
eq = self.assertEqual
with self.subTest(x=x, y=y):
eq(x & y, y & x)
eq(x | y, y | x)
eq(x ^ y, y ^ x)
eq(x ^ y ^ x, y)
eq(x & y, ~(~x | ~y))
eq(x | y, ~(~x & ~y))
eq(x ^ y, (x | y) & ~(x & y))
eq(x ^ y, (x & ~y) | (~x & y))
eq(x ^ y, (x | y) & (~x | ~y))
def check_bitop_identities_3(self, x, y, z):
eq = self.assertEqual
with self.subTest(x=x, y=y, z=z):
eq((x & y) & z, x & (y & z))
eq((x | y) | z, x | (y | z))
eq((x ^ y) ^ z, x ^ (y ^ z))
eq(x & (y | z), (x & y) | (x & z))
eq(x | (y & z), (x | y) & (x | z))
def test_bitop_identities(self):
for x in special:
self.check_bitop_identities_1(x)
digits = range(1, MAXDIGITS+1)
for lenx in digits:
x = self.getran(lenx)
self.check_bitop_identities_1(x)
for leny in digits:
y = self.getran(leny)
self.check_bitop_identities_2(x, y)
self.check_bitop_identities_3(x, y, self.getran((lenx + leny)//2))
def slow_format(self, x, base):
digits = []
sign = 0
if x < 0:
sign, x = 1, -x
while x:
x, r = divmod(x, base)
digits.append(int(r))
digits.reverse()
digits = digits or [0]
return '-'[:sign] + \
{2: '0b', 8: '0o', 10: '', 16: '0x'}[base] + \
"".join("0123456789abcdef"[i] for i in digits)
def check_format_1(self, x):
for base, mapper in (2, bin), (8, oct), (10, str), (10, repr), (16, hex):
got = mapper(x)
with self.subTest(x=x, mapper=mapper.__name__):
expected = self.slow_format(x, base)
self.assertEqual(got, expected)
with self.subTest(got=got):
self.assertEqual(int(got, 0), x)
def test_format(self):
for x in special:
self.check_format_1(x)
for i in range(10):
for lenx in range(1, MAXDIGITS+1):
x = self.getran(lenx)
self.check_format_1(x)
def test_long(self):
# Check conversions from string
LL = [
('1' + '0'*20, 10**20),
('1' + '0'*100, 10**100)
]
for s, v in LL:
for sign in "", "+", "-":
for prefix in "", " ", "\t", " \t\t ":
ss = prefix + sign + s
vv = v
if sign == "-" and v is not ValueError:
vv = -v
try:
self.assertEqual(int(ss), vv)
except ValueError:
pass
# trailing L should no longer be accepted...
self.assertRaises(ValueError, int, '123L')
self.assertRaises(ValueError, int, '123l')
self.assertRaises(ValueError, int, '0L')
self.assertRaises(ValueError, int, '-37L')
self.assertRaises(ValueError, int, '0x32L', 16)
self.assertRaises(ValueError, int, '1L', 21)
# ... but it's just a normal digit if base >= 22
self.assertEqual(int('1L', 22), 43)
# tests with base 0
self.assertEqual(int('000', 0), 0)
self.assertEqual(int('0o123', 0), 83)
self.assertEqual(int('0x123', 0), 291)
self.assertEqual(int('0b100', 0), 4)
self.assertEqual(int(' 0O123 ', 0), 83)
self.assertEqual(int(' 0X123 ', 0), 291)
self.assertEqual(int(' 0B100 ', 0), 4)
self.assertEqual(int('0', 0), 0)
self.assertEqual(int('+0', 0), 0)
self.assertEqual(int('-0', 0), 0)
self.assertEqual(int('00', 0), 0)
self.assertRaises(ValueError, int, '08', 0)
self.assertRaises(ValueError, int, '-012395', 0)
# invalid bases
invalid_bases = [-909,
2**31-1, 2**31, -2**31, -2**31-1,
2**63-1, 2**63, -2**63, -2**63-1,
2**100, -2**100,
]
for base in invalid_bases:
self.assertRaises(ValueError, int, '42', base)
def test_conversion(self):
class JustLong:
# test that __long__ no longer used in 3.x
def __long__(self):
return 42
self.assertRaises(TypeError, int, JustLong())
class LongTrunc:
# __long__ should be ignored in 3.x
def __long__(self):
return 42
def __trunc__(self):
return 1729
self.assertEqual(int(LongTrunc()), 1729)
def check_float_conversion(self, n):
# Check that int -> float conversion behaviour matches
# that of the pure Python version above.
try:
actual = float(n)
except OverflowError:
actual = 'overflow'
try:
expected = int_to_float(n)
except OverflowError:
expected = 'overflow'
msg = ("Error in conversion of integer {} to float. "
"Got {}, expected {}.".format(n, actual, expected))
self.assertEqual(actual, expected, msg)
@support.requires_IEEE_754
def test_float_conversion(self):
exact_values = [0, 1, 2,
2**53-3,
2**53-2,
2**53-1,
2**53,
2**53+2,
2**54-4,
2**54-2,
2**54,
2**54+4]
for x in exact_values:
self.assertEqual(float(x), x)
self.assertEqual(float(-x), -x)
# test round-half-even
for x, y in [(1, 0), (2, 2), (3, 4), (4, 4), (5, 4), (6, 6), (7, 8)]:
for p in range(15):
self.assertEqual(int(float(2**p*(2**53+x))), 2**p*(2**53+y))
for x, y in [(0, 0), (1, 0), (2, 0), (3, 4), (4, 4), (5, 4), (6, 8),
(7, 8), (8, 8), (9, 8), (10, 8), (11, 12), (12, 12),
(13, 12), (14, 16), (15, 16)]:
for p in range(15):
self.assertEqual(int(float(2**p*(2**54+x))), 2**p*(2**54+y))
# behaviour near extremes of floating-point range
int_dbl_max = int(DBL_MAX)
top_power = 2**DBL_MAX_EXP
halfway = (int_dbl_max + top_power)//2
self.assertEqual(float(int_dbl_max), DBL_MAX)
self.assertEqual(float(int_dbl_max+1), DBL_MAX)
self.assertEqual(float(halfway-1), DBL_MAX)
self.assertRaises(OverflowError, float, halfway)
self.assertEqual(float(1-halfway), -DBL_MAX)
self.assertRaises(OverflowError, float, -halfway)
self.assertRaises(OverflowError, float, top_power-1)
self.assertRaises(OverflowError, float, top_power)
self.assertRaises(OverflowError, float, top_power+1)
self.assertRaises(OverflowError, float, 2*top_power-1)
self.assertRaises(OverflowError, float, 2*top_power)
self.assertRaises(OverflowError, float, top_power*top_power)
for p in range(100):
x = 2**p * (2**53 + 1) + 1
y = 2**p * (2**53 + 2)
self.assertEqual(int(float(x)), y)
x = 2**p * (2**53 + 1)
y = 2**p * 2**53
self.assertEqual(int(float(x)), y)
# Compare builtin float conversion with pure Python int_to_float
# function above.
test_values = [
int_dbl_max-1, int_dbl_max, int_dbl_max+1,
halfway-1, halfway, halfway + 1,
top_power-1, top_power, top_power+1,
2*top_power-1, 2*top_power, top_power*top_power,
]
test_values.extend(exact_values)
for p in range(-4, 8):
for x in range(-128, 128):
test_values.append(2**(p+53) + x)
for value in test_values:
self.check_float_conversion(value)
self.check_float_conversion(-value)
def test_float_overflow(self):
for x in -2.0, -1.0, 0.0, 1.0, 2.0:
self.assertEqual(float(int(x)), x)
shuge = '12345' * 120
huge = 1 << 30000
mhuge = -huge
namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math}
for test in ["float(huge)", "float(mhuge)",
"complex(huge)", "complex(mhuge)",
"complex(huge, 1)", "complex(mhuge, 1)",
"complex(1, huge)", "complex(1, mhuge)",
"1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.",
"1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.",
"1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.",
"1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.",
"1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.",
"1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.",
"math.sin(huge)", "math.sin(mhuge)",
"math.sqrt(huge)", "math.sqrt(mhuge)", # should do better
# math.floor() of an int returns an int now
##"math.floor(huge)", "math.floor(mhuge)",
]:
self.assertRaises(OverflowError, eval, test, namespace)
# XXX Perhaps float(shuge) can raise OverflowError on some box?
# The comparison should not.
self.assertNotEqual(float(shuge), int(shuge),
"float(shuge) should not equal int(shuge)")
def test_logs(self):
LOG10E = math.log10(math.e)
for exp in list(range(10)) + [100, 1000, 10000]:
value = 10 ** exp
log10 = math.log10(value)
self.assertAlmostEqual(log10, exp)
# log10(value) == exp, so log(value) == log10(value)/log10(e) ==
# exp/LOG10E
expected = exp / LOG10E
log = math.log(value)
self.assertAlmostEqual(log, expected)
for bad in -(1 << 10000), -2, 0:
self.assertRaises(ValueError, math.log, bad)
self.assertRaises(ValueError, math.log10, bad)
def test_mixed_compares(self):
eq = self.assertEqual
# We're mostly concerned with that mixing floats and ints does the
# right stuff, even when ints are too large to fit in a float.
# The safest way to check the results is to use an entirely different
# method, which we do here via a skeletal rational class (which
# represents all Python ints and floats exactly).
class Rat:
def __init__(self, value):
if isinstance(value, int):
self.n = value
self.d = 1
elif isinstance(value, float):
# Convert to exact rational equivalent.
f, e = math.frexp(abs(value))
assert f == 0 or 0.5 <= f < 1.0
# |value| = f * 2**e exactly
# Suck up CHUNK bits at a time; 28 is enough so that we suck
# up all bits in 2 iterations for all known binary double-
# precision formats, and small enough to fit in an int.
CHUNK = 28
top = 0
# invariant: |value| = (top + f) * 2**e exactly
while f:
f = math.ldexp(f, CHUNK)
digit = int(f)
assert digit >> CHUNK == 0
top = (top << CHUNK) | digit
f -= digit
assert 0.0 <= f < 1.0
e -= CHUNK
# Now |value| = top * 2**e exactly.
if e >= 0:
n = top << e
d = 1
else:
n = top
d = 1 << -e
if value < 0:
n = -n
self.n = n
self.d = d
assert float(n) / float(d) == value
else:
raise TypeError("can't deal with %r" % value)
def _cmp__(self, other):
if not isinstance(other, Rat):
other = Rat(other)
x, y = self.n * other.d, self.d * other.n
return (x > y) - (x < y)
def __eq__(self, other):
return self._cmp__(other) == 0
def __ge__(self, other):
return self._cmp__(other) >= 0
def __gt__(self, other):
return self._cmp__(other) > 0
def __le__(self, other):
return self._cmp__(other) <= 0
def __lt__(self, other):
return self._cmp__(other) < 0
cases = [0, 0.001, 0.99, 1.0, 1.5, 1e20, 1e200]
# 2**48 is an important boundary in the internals. 2**53 is an
# important boundary for IEEE double precision.
for t in 2.0**48, 2.0**50, 2.0**53:
cases.extend([t - 1.0, t - 0.3, t, t + 0.3, t + 1.0,
int(t-1), int(t), int(t+1)])
cases.extend([0, 1, 2, sys.maxsize, float(sys.maxsize)])
# 1 << 20000 should exceed all double formats. int(1e200) is to
# check that we get equality with 1e200 above.
t = int(1e200)
cases.extend([0, 1, 2, 1 << 20000, t-1, t, t+1])
cases.extend([-x for x in cases])
for x in cases:
Rx = Rat(x)
for y in cases:
Ry = Rat(y)
Rcmp = (Rx > Ry) - (Rx < Ry)
with self.subTest(x=x, y=y, Rcmp=Rcmp):
xycmp = (x > y) - (x < y)
eq(Rcmp, xycmp)
eq(x == y, Rcmp == 0)
eq(x != y, Rcmp != 0)
eq(x < y, Rcmp < 0)
eq(x <= y, Rcmp <= 0)
eq(x > y, Rcmp > 0)
eq(x >= y, Rcmp >= 0)
def test__format__(self):
self.assertEqual(format(123456789, 'd'), '123456789')
self.assertEqual(format(123456789, 'd'), '123456789')
self.assertEqual(format(123456789, ','), '123,456,789')
self.assertEqual(format(123456789, '_'), '123_456_789')
# sign and aligning are interdependent
self.assertEqual(format(1, "-"), '1')
self.assertEqual(format(-1, "-"), '-1')
self.assertEqual(format(1, "-3"), ' 1')
self.assertEqual(format(-1, "-3"), ' -1')
self.assertEqual(format(1, "+3"), ' +1')
self.assertEqual(format(-1, "+3"), ' -1')
self.assertEqual(format(1, " 3"), ' 1')
self.assertEqual(format(-1, " 3"), ' -1')
self.assertEqual(format(1, " "), ' 1')
self.assertEqual(format(-1, " "), '-1')
# hex
self.assertEqual(format(3, "x"), "3")
self.assertEqual(format(3, "X"), "3")
self.assertEqual(format(1234, "x"), "4d2")
self.assertEqual(format(-1234, "x"), "-4d2")
self.assertEqual(format(1234, "8x"), " 4d2")
self.assertEqual(format(-1234, "8x"), " -4d2")
self.assertEqual(format(1234, "x"), "4d2")
self.assertEqual(format(-1234, "x"), "-4d2")
self.assertEqual(format(-3, "x"), "-3")
self.assertEqual(format(-3, "X"), "-3")
self.assertEqual(format(int('be', 16), "x"), "be")
self.assertEqual(format(int('be', 16), "X"), "BE")
self.assertEqual(format(-int('be', 16), "x"), "-be")
self.assertEqual(format(-int('be', 16), "X"), "-BE")
self.assertRaises(ValueError, format, 1234567890, ',x')
self.assertEqual(format(1234567890, '_x'), '4996_02d2')
self.assertEqual(format(1234567890, '_X'), '4996_02D2')
# octal
self.assertEqual(format(3, "o"), "3")
self.assertEqual(format(-3, "o"), "-3")
self.assertEqual(format(1234, "o"), "2322")
self.assertEqual(format(-1234, "o"), "-2322")
self.assertEqual(format(1234, "-o"), "2322")
self.assertEqual(format(-1234, "-o"), "-2322")
self.assertEqual(format(1234, " o"), " 2322")
self.assertEqual(format(-1234, " o"), "-2322")
self.assertEqual(format(1234, "+o"), "+2322")
self.assertEqual(format(-1234, "+o"), "-2322")
self.assertRaises(ValueError, format, 1234567890, ',o')
self.assertEqual(format(1234567890, '_o'), '111_4540_1322')
# binary
self.assertEqual(format(3, "b"), "11")
self.assertEqual(format(-3, "b"), "-11")
self.assertEqual(format(1234, "b"), "10011010010")
self.assertEqual(format(-1234, "b"), "-10011010010")
self.assertEqual(format(1234, "-b"), "10011010010")
self.assertEqual(format(-1234, "-b"), "-10011010010")
self.assertEqual(format(1234, " b"), " 10011010010")
self.assertEqual(format(-1234, " b"), "-10011010010")
self.assertEqual(format(1234, "+b"), "+10011010010")
self.assertEqual(format(-1234, "+b"), "-10011010010")
self.assertRaises(ValueError, format, 1234567890, ',b')
self.assertEqual(format(12345, '_b'), '11_0000_0011_1001')
# make sure these are errors
self.assertRaises(ValueError, format, 3, "1.3") # precision disallowed
self.assertRaises(ValueError, format, 3, "_c") # underscore,
self.assertRaises(ValueError, format, 3, ",c") # comma, and
self.assertRaises(ValueError, format, 3, "+c") # sign not allowed
# with 'c'
self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, '_,')
self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, ',_')
self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, '_,d')
self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, ',_d')
# ensure that only int and float type specifiers work
for format_spec in ([chr(x) for x in range(ord('a'), ord('z')+1)] +
[chr(x) for x in range(ord('A'), ord('Z')+1)]):
if not format_spec in 'bcdoxXeEfFgGn%':
self.assertRaises(ValueError, format, 0, format_spec)
self.assertRaises(ValueError, format, 1, format_spec)
self.assertRaises(ValueError, format, -1, format_spec)
self.assertRaises(ValueError, format, 2**100, format_spec)
self.assertRaises(ValueError, format, -(2**100), format_spec)
# ensure that float type specifiers work; format converts
# the int to a float
for format_spec in 'eEfFgG%':
for value in [0, 1, -1, 100, -100, 1234567890, -1234567890]:
self.assertEqual(format(value, format_spec),
format(float(value), format_spec))
def test_nan_inf(self):
self.assertRaises(OverflowError, int, float('inf'))
self.assertRaises(OverflowError, int, float('-inf'))
self.assertRaises(ValueError, int, float('nan'))
def test_mod_division(self):
with self.assertRaises(ZeroDivisionError):
_ = 1 % 0
self.assertEqual(13 % 10, 3)
self.assertEqual(-13 % 10, 7)
self.assertEqual(13 % -10, -7)
self.assertEqual(-13 % -10, -3)
self.assertEqual(12 % 4, 0)
self.assertEqual(-12 % 4, 0)
self.assertEqual(12 % -4, 0)
self.assertEqual(-12 % -4, 0)
def test_true_division(self):
huge = 1 << 40000
mhuge = -huge
self.assertEqual(huge / huge, 1.0)
self.assertEqual(mhuge / mhuge, 1.0)
self.assertEqual(huge / mhuge, -1.0)
self.assertEqual(mhuge / huge, -1.0)
self.assertEqual(1 / huge, 0.0)
self.assertEqual(1 / huge, 0.0)
self.assertEqual(1 / mhuge, 0.0)
self.assertEqual(1 / mhuge, 0.0)
self.assertEqual((666 * huge + (huge >> 1)) / huge, 666.5)
self.assertEqual((666 * mhuge + (mhuge >> 1)) / mhuge, 666.5)
self.assertEqual((666 * huge + (huge >> 1)) / mhuge, -666.5)
self.assertEqual((666 * mhuge + (mhuge >> 1)) / huge, -666.5)
self.assertEqual(huge / (huge << 1), 0.5)
self.assertEqual((1000000 * huge) / huge, 1000000)
namespace = {'huge': huge, 'mhuge': mhuge}
for overflow in ["float(huge)", "float(mhuge)",
"huge / 1", "huge / 2", "huge / -1", "huge / -2",
"mhuge / 100", "mhuge / 200"]:
self.assertRaises(OverflowError, eval, overflow, namespace)
for underflow in ["1 / huge", "2 / huge", "-1 / huge", "-2 / huge",
"100 / mhuge", "200 / mhuge"]:
result = eval(underflow, namespace)
self.assertEqual(result, 0.0,
"expected underflow to 0 from %r" % underflow)
for zero in ["huge / 0", "mhuge / 0"]:
self.assertRaises(ZeroDivisionError, eval, zero, namespace)
def test_floordiv(self):
with self.assertRaises(ZeroDivisionError):
_ = 1 // 0
self.assertEqual(2 // 3, 0)
self.assertEqual(2 // -3, -1)
self.assertEqual(-2 // 3, -1)
self.assertEqual(-2 // -3, 0)
self.assertEqual(-11 // -3, 3)
self.assertEqual(-11 // 3, -4)
self.assertEqual(11 // -3, -4)
self.assertEqual(11 // 3, 3)
self.assertEqual(-12 // -3, 4)
self.assertEqual(-12 // 3, -4)
self.assertEqual(12 // -3, -4)
self.assertEqual(12 // 3, 4)
def check_truediv(self, a, b, skip_small=True):
"""Verify that the result of a/b is correctly rounded, by
comparing it with a pure Python implementation of correctly
rounded division. b should be nonzero."""
# skip check for small a and b: in this case, the current
# implementation converts the arguments to float directly and
# then applies a float division. This can give doubly-rounded
# results on x87-using machines (particularly 32-bit Linux).
if skip_small and max(abs(a), abs(b)) < 2**DBL_MANT_DIG:
return
try:
# use repr so that we can distinguish between -0.0 and 0.0
expected = repr(truediv(a, b))
except OverflowError:
expected = 'overflow'
except ZeroDivisionError:
expected = 'zerodivision'
try:
got = repr(a / b)
except OverflowError:
got = 'overflow'
except ZeroDivisionError:
got = 'zerodivision'
self.assertEqual(expected, got, "Incorrectly rounded division {}/{}: "
"expected {}, got {}".format(a, b, expected, got))
@support.requires_IEEE_754
def test_correctly_rounded_true_division(self):
# more stringent tests than those above, checking that the
# result of true division of ints is always correctly rounded.
# This test should probably be considered CPython-specific.
# Exercise all the code paths not involving Gb-sized ints.
# ... divisions involving zero
self.check_truediv(123, 0)
self.check_truediv(-456, 0)
self.check_truediv(0, 3)
self.check_truediv(0, -3)
self.check_truediv(0, 0)
# ... overflow or underflow by large margin
self.check_truediv(671 * 12345 * 2**DBL_MAX_EXP, 12345)
self.check_truediv(12345, 345678 * 2**(DBL_MANT_DIG - DBL_MIN_EXP))
# ... a much larger or smaller than b
self.check_truediv(12345*2**100, 98765)
self.check_truediv(12345*2**30, 98765*7**81)
# ... a / b near a boundary: one of 1, 2**DBL_MANT_DIG, 2**DBL_MIN_EXP,
# 2**DBL_MAX_EXP, 2**(DBL_MIN_EXP-DBL_MANT_DIG)
bases = (0, DBL_MANT_DIG, DBL_MIN_EXP,
DBL_MAX_EXP, DBL_MIN_EXP - DBL_MANT_DIG)
for base in bases:
for exp in range(base - 15, base + 15):
self.check_truediv(75312*2**max(exp, 0), 69187*2**max(-exp, 0))
self.check_truediv(69187*2**max(exp, 0), 75312*2**max(-exp, 0))
# overflow corner case
for m in [1, 2, 7, 17, 12345, 7**100,
-1, -2, -5, -23, -67891, -41**50]:
for n in range(-10, 10):
self.check_truediv(m*DBL_MIN_OVERFLOW + n, m)
self.check_truediv(m*DBL_MIN_OVERFLOW + n, -m)
# check detection of inexactness in shifting stage
for n in range(250):
# (2**DBL_MANT_DIG+1)/(2**DBL_MANT_DIG) lies halfway
# between two representable floats, and would usually be
# rounded down under round-half-to-even. The tiniest of
# additions to the numerator should cause it to be rounded
# up instead.
self.check_truediv((2**DBL_MANT_DIG + 1)*12345*2**200 + 2**n,
2**DBL_MANT_DIG*12345)
# 1/2731 is one of the smallest division cases that's subject
# to double rounding on IEEE 754 machines working internally with
# 64-bit precision. On such machines, the next check would fail,
# were it not explicitly skipped in check_truediv.
self.check_truediv(1, 2731)
# a particularly bad case for the old algorithm: gives an
# error of close to 3.5 ulps.
self.check_truediv(295147931372582273023, 295147932265116303360)
for i in range(1000):
self.check_truediv(10**(i+1), 10**i)
self.check_truediv(10**i, 10**(i+1))
# test round-half-to-even behaviour, normal result
for m in [1, 2, 4, 7, 8, 16, 17, 32, 12345, 7**100,
-1, -2, -5, -23, -67891, -41**50]:
for n in range(-10, 10):
self.check_truediv(2**DBL_MANT_DIG*m + n, m)
# test round-half-to-even, subnormal result
for n in range(-20, 20):
self.check_truediv(n, 2**1076)
# largeish random divisions: a/b where |a| <= |b| <=
# 2*|a|; |ans| is between 0.5 and 1.0, so error should
# always be bounded by 2**-54 with equality possible only
# if the least significant bit of q=ans*2**53 is zero.
for M in [10**10, 10**100, 10**1000]:
for i in range(1000):
a = random.randrange(1, M)
b = random.randrange(a, 2*a+1)
self.check_truediv(a, b)
self.check_truediv(-a, b)
self.check_truediv(a, -b)
self.check_truediv(-a, -b)
# and some (genuinely) random tests
for _ in range(10000):
a_bits = random.randrange(1000)
b_bits = random.randrange(1, 1000)
x = random.randrange(2**a_bits)
y = random.randrange(1, 2**b_bits)
self.check_truediv(x, y)
self.check_truediv(x, -y)
self.check_truediv(-x, y)
self.check_truediv(-x, -y)
def test_negative_shift_count(self):
with self.assertRaises(ValueError):
42 << -3
with self.assertRaises(ValueError):
42 << -(1 << 1000)
with self.assertRaises(ValueError):
42 >> -3
with self.assertRaises(ValueError):
42 >> -(1 << 1000)
def test_lshift_of_zero(self):
self.assertEqual(0 << 0, 0)
self.assertEqual(0 << 10, 0)
with self.assertRaises(ValueError):
0 << -1
self.assertEqual(0 << (1 << 1000), 0)
with self.assertRaises(ValueError):
0 << -(1 << 1000)
@support.cpython_only
def test_huge_lshift_of_zero(self):
# Shouldn't try to allocate memory for a huge shift. See issue #27870.
# Other implementations may have a different boundary for overflow,
# or not raise at all.
self.assertEqual(0 << sys.maxsize, 0)
self.assertEqual(0 << (sys.maxsize + 1), 0)
@support.cpython_only
@support.bigmemtest(sys.maxsize + 1000, memuse=2/15 * 2, dry_run=False)
def test_huge_lshift(self, size):
self.assertEqual(1 << (sys.maxsize + 1000), 1 << 1000 << sys.maxsize)
def test_huge_rshift(self):
self.assertEqual(42 >> (1 << 1000), 0)
self.assertEqual((-42) >> (1 << 1000), -1)
@support.cpython_only
@support.bigmemtest(sys.maxsize + 500, memuse=2/15, dry_run=False)
def test_huge_rshift_of_huge(self, size):
huge = ((1 << 500) + 11) << sys.maxsize
self.assertEqual(huge >> (sys.maxsize + 1), (1 << 499) + 5)
self.assertEqual(huge >> (sys.maxsize + 1000), 0)
def test_small_ints(self):
for i in range(-5, 257):
self.assertIs(i, i + 0)
self.assertIs(i, i * 1)
self.assertIs(i, i - 0)
self.assertIs(i, i // 1)
self.assertIs(i, i & -1)
self.assertIs(i, i | 0)
self.assertIs(i, i ^ 0)
self.assertIs(i, ~~i)
self.assertIs(i, i**1)
self.assertIs(i, int(str(i)))
self.assertIs(i, i<<2>>2, str(i))
# corner cases
i = 1 << 70
self.assertIs(i - i, 0)
self.assertIs(0 * i, 0)
def test_bit_length(self):
tiny = 1e-10
for x in range(-65000, 65000):
k = x.bit_length()
# Check equivalence with Python version
self.assertEqual(k, len(bin(x).lstrip('-0b')))
# Behaviour as specified in the docs
if x != 0:
self.assertTrue(2**(k-1) <= abs(x) < 2**k)
else:
self.assertEqual(k, 0)
# Alternative definition: x.bit_length() == 1 + floor(log_2(x))
if x != 0:
# When x is an exact power of 2, numeric errors can
# cause floor(log(x)/log(2)) to be one too small; for
# small x this can be fixed by adding a small quantity
# to the quotient before taking the floor.
self.assertEqual(k, 1 + math.floor(
math.log(abs(x))/math.log(2) + tiny))
self.assertEqual((0).bit_length(), 0)
self.assertEqual((1).bit_length(), 1)
self.assertEqual((-1).bit_length(), 1)
self.assertEqual((2).bit_length(), 2)
self.assertEqual((-2).bit_length(), 2)
for i in [2, 3, 15, 16, 17, 31, 32, 33, 63, 64, 234]:
a = 2**i
self.assertEqual((a-1).bit_length(), i)
self.assertEqual((1-a).bit_length(), i)
self.assertEqual((a).bit_length(), i+1)
self.assertEqual((-a).bit_length(), i+1)
self.assertEqual((a+1).bit_length(), i+1)
self.assertEqual((-a-1).bit_length(), i+1)
def test_round(self):
# check round-half-even algorithm. For round to nearest ten;
# rounding map is invariant under adding multiples of 20
test_dict = {0:0, 1:0, 2:0, 3:0, 4:0, 5:0,
6:10, 7:10, 8:10, 9:10, 10:10, 11:10, 12:10, 13:10, 14:10,
15:20, 16:20, 17:20, 18:20, 19:20}
for offset in range(-520, 520, 20):
for k, v in test_dict.items():
got = round(k+offset, -1)
expected = v+offset
self.assertEqual(got, expected)
self.assertIs(type(got), int)
# larger second argument
self.assertEqual(round(-150, -2), -200)
self.assertEqual(round(-149, -2), -100)
self.assertEqual(round(-51, -2), -100)
self.assertEqual(round(-50, -2), 0)
self.assertEqual(round(-49, -2), 0)
self.assertEqual(round(-1, -2), 0)
self.assertEqual(round(0, -2), 0)
self.assertEqual(round(1, -2), 0)
self.assertEqual(round(49, -2), 0)
self.assertEqual(round(50, -2), 0)
self.assertEqual(round(51, -2), 100)
self.assertEqual(round(149, -2), 100)
self.assertEqual(round(150, -2), 200)
self.assertEqual(round(250, -2), 200)
self.assertEqual(round(251, -2), 300)
self.assertEqual(round(172500, -3), 172000)
self.assertEqual(round(173500, -3), 174000)
self.assertEqual(round(31415926535, -1), 31415926540)
self.assertEqual(round(31415926535, -2), 31415926500)
self.assertEqual(round(31415926535, -3), 31415927000)
self.assertEqual(round(31415926535, -4), 31415930000)
self.assertEqual(round(31415926535, -5), 31415900000)
self.assertEqual(round(31415926535, -6), 31416000000)
self.assertEqual(round(31415926535, -7), 31420000000)
self.assertEqual(round(31415926535, -8), 31400000000)
self.assertEqual(round(31415926535, -9), 31000000000)
self.assertEqual(round(31415926535, -10), 30000000000)
self.assertEqual(round(31415926535, -11), 0)
self.assertEqual(round(31415926535, -12), 0)
self.assertEqual(round(31415926535, -999), 0)
# should get correct results even for huge inputs
for k in range(10, 100):
got = round(10**k + 324678, -3)
expect = 10**k + 325000
self.assertEqual(got, expect)
self.assertIs(type(got), int)
# nonnegative second argument: round(x, n) should just return x
for n in range(5):
for i in range(100):
x = random.randrange(-10000, 10000)
got = round(x, n)
self.assertEqual(got, x)
self.assertIs(type(got), int)
for huge_n in 2**31-1, 2**31, 2**63-1, 2**63, 2**100, 10**100:
self.assertEqual(round(8979323, huge_n), 8979323)
# omitted second argument
for i in range(100):
x = random.randrange(-10000, 10000)
got = round(x)
self.assertEqual(got, x)
self.assertIs(type(got), int)
# bad second argument
bad_exponents = ('brian', 2.0, 0j)
for e in bad_exponents:
self.assertRaises(TypeError, round, 3, e)
def test_to_bytes(self):
def check(tests, byteorder, signed=False):
for test, expected in tests.items():
try:
self.assertEqual(
test.to_bytes(len(expected), byteorder, signed=signed),
expected)
except Exception as err:
raise AssertionError(
"failed to convert {0} with byteorder={1} and signed={2}"
.format(test, byteorder, signed)) from err
# Convert integers to signed big-endian byte arrays.
tests1 = {
0: b'\x00',
1: b'\x01',
-1: b'\xff',
-127: b'\x81',
-128: b'\x80',
-129: b'\xff\x7f',
127: b'\x7f',
129: b'\x00\x81',
-255: b'\xff\x01',
-256: b'\xff\x00',
255: b'\x00\xff',
256: b'\x01\x00',
32767: b'\x7f\xff',
-32768: b'\xff\x80\x00',
65535: b'\x00\xff\xff',
-65536: b'\xff\x00\x00',
-8388608: b'\x80\x00\x00'
}
check(tests1, 'big', signed=True)
# Convert integers to signed little-endian byte arrays.
tests2 = {
0: b'\x00',
1: b'\x01',
-1: b'\xff',
-127: b'\x81',
-128: b'\x80',
-129: b'\x7f\xff',
127: b'\x7f',
129: b'\x81\x00',
-255: b'\x01\xff',
-256: b'\x00\xff',
255: b'\xff\x00',
256: b'\x00\x01',
32767: b'\xff\x7f',
-32768: b'\x00\x80',
65535: b'\xff\xff\x00',
-65536: b'\x00\x00\xff',
-8388608: b'\x00\x00\x80'
}
check(tests2, 'little', signed=True)
# Convert integers to unsigned big-endian byte arrays.
tests3 = {
0: b'\x00',
1: b'\x01',
127: b'\x7f',
128: b'\x80',
255: b'\xff',
256: b'\x01\x00',
32767: b'\x7f\xff',
32768: b'\x80\x00',
65535: b'\xff\xff',
65536: b'\x01\x00\x00'
}
check(tests3, 'big', signed=False)
# Convert integers to unsigned little-endian byte arrays.
tests4 = {
0: b'\x00',
1: b'\x01',
127: b'\x7f',
128: b'\x80',
255: b'\xff',
256: b'\x00\x01',
32767: b'\xff\x7f',
32768: b'\x00\x80',
65535: b'\xff\xff',
65536: b'\x00\x00\x01'
}
check(tests4, 'little', signed=False)
self.assertRaises(OverflowError, (256).to_bytes, 1, 'big', signed=False)
self.assertRaises(OverflowError, (256).to_bytes, 1, 'big', signed=True)
self.assertRaises(OverflowError, (256).to_bytes, 1, 'little', signed=False)
self.assertRaises(OverflowError, (256).to_bytes, 1, 'little', signed=True)
self.assertRaises(OverflowError, (-1).to_bytes, 2, 'big', signed=False)
self.assertRaises(OverflowError, (-1).to_bytes, 2, 'little', signed=False)
self.assertEqual((0).to_bytes(0, 'big'), b'')
self.assertEqual((1).to_bytes(5, 'big'), b'\x00\x00\x00\x00\x01')
self.assertEqual((0).to_bytes(5, 'big'), b'\x00\x00\x00\x00\x00')
self.assertEqual((-1).to_bytes(5, 'big', signed=True),
b'\xff\xff\xff\xff\xff')
self.assertRaises(OverflowError, (1).to_bytes, 0, 'big')
def test_from_bytes(self):
def check(tests, byteorder, signed=False):
for test, expected in tests.items():
try:
self.assertEqual(
int.from_bytes(test, byteorder, signed=signed),
expected)
except Exception as err:
raise AssertionError(
"failed to convert {0} with byteorder={1!r} and signed={2}"
.format(test, byteorder, signed)) from err
# Convert signed big-endian byte arrays to integers.
tests1 = {
b'': 0,
b'\x00': 0,
b'\x00\x00': 0,
b'\x01': 1,
b'\x00\x01': 1,
b'\xff': -1,
b'\xff\xff': -1,
b'\x81': -127,
b'\x80': -128,
b'\xff\x7f': -129,
b'\x7f': 127,
b'\x00\x81': 129,
b'\xff\x01': -255,
b'\xff\x00': -256,
b'\x00\xff': 255,
b'\x01\x00': 256,
b'\x7f\xff': 32767,
b'\x80\x00': -32768,
b'\x00\xff\xff': 65535,
b'\xff\x00\x00': -65536,
b'\x80\x00\x00': -8388608
}
check(tests1, 'big', signed=True)
# Convert signed little-endian byte arrays to integers.
tests2 = {
b'': 0,
b'\x00': 0,
b'\x00\x00': 0,
b'\x01': 1,
b'\x00\x01': 256,
b'\xff': -1,
b'\xff\xff': -1,
b'\x81': -127,
b'\x80': -128,
b'\x7f\xff': -129,
b'\x7f': 127,
b'\x81\x00': 129,
b'\x01\xff': -255,
b'\x00\xff': -256,
b'\xff\x00': 255,
b'\x00\x01': 256,
b'\xff\x7f': 32767,
b'\x00\x80': -32768,
b'\xff\xff\x00': 65535,
b'\x00\x00\xff': -65536,
b'\x00\x00\x80': -8388608
}
check(tests2, 'little', signed=True)
# Convert unsigned big-endian byte arrays to integers.
tests3 = {
b'': 0,
b'\x00': 0,
b'\x01': 1,
b'\x7f': 127,
b'\x80': 128,
b'\xff': 255,
b'\x01\x00': 256,
b'\x7f\xff': 32767,
b'\x80\x00': 32768,
b'\xff\xff': 65535,
b'\x01\x00\x00': 65536,
}
check(tests3, 'big', signed=False)
# Convert integers to unsigned little-endian byte arrays.
tests4 = {
b'': 0,
b'\x00': 0,
b'\x01': 1,
b'\x7f': 127,
b'\x80': 128,
b'\xff': 255,
b'\x00\x01': 256,
b'\xff\x7f': 32767,
b'\x00\x80': 32768,
b'\xff\xff': 65535,
b'\x00\x00\x01': 65536,
}
check(tests4, 'little', signed=False)
class myint(int):
pass
self.assertIs(type(myint.from_bytes(b'\x00', 'big')), myint)
self.assertEqual(myint.from_bytes(b'\x01', 'big'), 1)
self.assertIs(
type(myint.from_bytes(b'\x00', 'big', signed=False)), myint)
self.assertEqual(myint.from_bytes(b'\x01', 'big', signed=False), 1)
self.assertIs(type(myint.from_bytes(b'\x00', 'little')), myint)
self.assertEqual(myint.from_bytes(b'\x01', 'little'), 1)
self.assertIs(type(myint.from_bytes(
b'\x00', 'little', signed=False)), myint)
self.assertEqual(myint.from_bytes(b'\x01', 'little', signed=False), 1)
self.assertEqual(
int.from_bytes([255, 0, 0], 'big', signed=True), -65536)
self.assertEqual(
int.from_bytes((255, 0, 0), 'big', signed=True), -65536)
self.assertEqual(int.from_bytes(
bytearray(b'\xff\x00\x00'), 'big', signed=True), -65536)
self.assertEqual(int.from_bytes(
bytearray(b'\xff\x00\x00'), 'big', signed=True), -65536)
self.assertEqual(int.from_bytes(
array.array('B', b'\xff\x00\x00'), 'big', signed=True), -65536)
self.assertEqual(int.from_bytes(
memoryview(b'\xff\x00\x00'), 'big', signed=True), -65536)
self.assertRaises(ValueError, int.from_bytes, [256], 'big')
self.assertRaises(ValueError, int.from_bytes, [0], 'big\x00')
self.assertRaises(ValueError, int.from_bytes, [0], 'little\x00')
self.assertRaises(TypeError, int.from_bytes, "", 'big')
self.assertRaises(TypeError, int.from_bytes, "\x00", 'big')
self.assertRaises(TypeError, int.from_bytes, 0, 'big')
self.assertRaises(TypeError, int.from_bytes, 0, 'big', True)
self.assertRaises(TypeError, myint.from_bytes, "", 'big')
self.assertRaises(TypeError, myint.from_bytes, "\x00", 'big')
self.assertRaises(TypeError, myint.from_bytes, 0, 'big')
self.assertRaises(TypeError, int.from_bytes, 0, 'big', True)
class myint2(int):
def __new__(cls, value):
return int.__new__(cls, value + 1)
i = myint2.from_bytes(b'\x01', 'big')
self.assertIs(type(i), myint2)
self.assertEqual(i, 2)
class myint3(int):
def __init__(self, value):
self.foo = 'bar'
i = myint3.from_bytes(b'\x01', 'big')
self.assertIs(type(i), myint3)
self.assertEqual(i, 1)
self.assertEqual(getattr(i, 'foo', 'none'), 'bar')
def test_access_to_nonexistent_digit_0(self):
# http://bugs.python.org/issue14630: A bug in _PyLong_Copy meant that
# ob_digit[0] was being incorrectly accessed for instances of a
# subclass of int, with value 0.
class Integer(int):
def __new__(cls, value=0):
self = int.__new__(cls, value)
self.foo = 'foo'
return self
integers = [Integer(0) for i in range(1000)]
for n in map(int, integers):
self.assertEqual(n, 0)
def test_shift_bool(self):
# Issue #21422: ensure that bool << int and bool >> int return int
for value in (True, False):
for shift in (0, 2):
self.assertEqual(type(value << shift), int)
self.assertEqual(type(value >> shift), int)
if __name__ == "__main__":
unittest.main()
|