/usr/lib/python3.7/test/test_binop.py is in libpython3.7-testsuite 3.7.0~b3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 | """Tests for binary operators on subtypes of built-in types."""
import unittest
from operator import eq, le, ne
from abc import ABCMeta
def gcd(a, b):
"""Greatest common divisor using Euclid's algorithm."""
while a:
a, b = b%a, a
return b
def isint(x):
"""Test whether an object is an instance of int."""
return isinstance(x, int)
def isnum(x):
"""Test whether an object is an instance of a built-in numeric type."""
for T in int, float, complex:
if isinstance(x, T):
return 1
return 0
def isRat(x):
"""Test whether an object is an instance of the Rat class."""
return isinstance(x, Rat)
class Rat(object):
"""Rational number implemented as a normalized pair of ints."""
__slots__ = ['_Rat__num', '_Rat__den']
def __init__(self, num=0, den=1):
"""Constructor: Rat([num[, den]]).
The arguments must be ints, and default to (0, 1)."""
if not isint(num):
raise TypeError("Rat numerator must be int (%r)" % num)
if not isint(den):
raise TypeError("Rat denominator must be int (%r)" % den)
# But the zero is always on
if den == 0:
raise ZeroDivisionError("zero denominator")
g = gcd(den, num)
self.__num = int(num//g)
self.__den = int(den//g)
def _get_num(self):
"""Accessor function for read-only 'num' attribute of Rat."""
return self.__num
num = property(_get_num, None)
def _get_den(self):
"""Accessor function for read-only 'den' attribute of Rat."""
return self.__den
den = property(_get_den, None)
def __repr__(self):
"""Convert a Rat to a string resembling a Rat constructor call."""
return "Rat(%d, %d)" % (self.__num, self.__den)
def __str__(self):
"""Convert a Rat to a string resembling a decimal numeric value."""
return str(float(self))
def __float__(self):
"""Convert a Rat to a float."""
return self.__num*1.0/self.__den
def __int__(self):
"""Convert a Rat to an int; self.den must be 1."""
if self.__den == 1:
try:
return int(self.__num)
except OverflowError:
raise OverflowError("%s too large to convert to int" %
repr(self))
raise ValueError("can't convert %s to int" % repr(self))
def __add__(self, other):
"""Add two Rats, or a Rat and a number."""
if isint(other):
other = Rat(other)
if isRat(other):
return Rat(self.__num*other.__den + other.__num*self.__den,
self.__den*other.__den)
if isnum(other):
return float(self) + other
return NotImplemented
__radd__ = __add__
def __sub__(self, other):
"""Subtract two Rats, or a Rat and a number."""
if isint(other):
other = Rat(other)
if isRat(other):
return Rat(self.__num*other.__den - other.__num*self.__den,
self.__den*other.__den)
if isnum(other):
return float(self) - other
return NotImplemented
def __rsub__(self, other):
"""Subtract two Rats, or a Rat and a number (reversed args)."""
if isint(other):
other = Rat(other)
if isRat(other):
return Rat(other.__num*self.__den - self.__num*other.__den,
self.__den*other.__den)
if isnum(other):
return other - float(self)
return NotImplemented
def __mul__(self, other):
"""Multiply two Rats, or a Rat and a number."""
if isRat(other):
return Rat(self.__num*other.__num, self.__den*other.__den)
if isint(other):
return Rat(self.__num*other, self.__den)
if isnum(other):
return float(self)*other
return NotImplemented
__rmul__ = __mul__
def __truediv__(self, other):
"""Divide two Rats, or a Rat and a number."""
if isRat(other):
return Rat(self.__num*other.__den, self.__den*other.__num)
if isint(other):
return Rat(self.__num, self.__den*other)
if isnum(other):
return float(self) / other
return NotImplemented
def __rtruediv__(self, other):
"""Divide two Rats, or a Rat and a number (reversed args)."""
if isRat(other):
return Rat(other.__num*self.__den, other.__den*self.__num)
if isint(other):
return Rat(other*self.__den, self.__num)
if isnum(other):
return other / float(self)
return NotImplemented
def __floordiv__(self, other):
"""Divide two Rats, returning the floored result."""
if isint(other):
other = Rat(other)
elif not isRat(other):
return NotImplemented
x = self/other
return x.__num // x.__den
def __rfloordiv__(self, other):
"""Divide two Rats, returning the floored result (reversed args)."""
x = other/self
return x.__num // x.__den
def __divmod__(self, other):
"""Divide two Rats, returning quotient and remainder."""
if isint(other):
other = Rat(other)
elif not isRat(other):
return NotImplemented
x = self//other
return (x, self - other * x)
def __rdivmod__(self, other):
"""Divide two Rats, returning quotient and remainder (reversed args)."""
if isint(other):
other = Rat(other)
elif not isRat(other):
return NotImplemented
return divmod(other, self)
def __mod__(self, other):
"""Take one Rat modulo another."""
return divmod(self, other)[1]
def __rmod__(self, other):
"""Take one Rat modulo another (reversed args)."""
return divmod(other, self)[1]
def __eq__(self, other):
"""Compare two Rats for equality."""
if isint(other):
return self.__den == 1 and self.__num == other
if isRat(other):
return self.__num == other.__num and self.__den == other.__den
if isnum(other):
return float(self) == other
return NotImplemented
class RatTestCase(unittest.TestCase):
"""Unit tests for Rat class and its support utilities."""
def test_gcd(self):
self.assertEqual(gcd(10, 12), 2)
self.assertEqual(gcd(10, 15), 5)
self.assertEqual(gcd(10, 11), 1)
self.assertEqual(gcd(100, 15), 5)
self.assertEqual(gcd(-10, 2), -2)
self.assertEqual(gcd(10, -2), 2)
self.assertEqual(gcd(-10, -2), -2)
for i in range(1, 20):
for j in range(1, 20):
self.assertTrue(gcd(i, j) > 0)
self.assertTrue(gcd(-i, j) < 0)
self.assertTrue(gcd(i, -j) > 0)
self.assertTrue(gcd(-i, -j) < 0)
def test_constructor(self):
a = Rat(10, 15)
self.assertEqual(a.num, 2)
self.assertEqual(a.den, 3)
a = Rat(10, -15)
self.assertEqual(a.num, -2)
self.assertEqual(a.den, 3)
a = Rat(-10, 15)
self.assertEqual(a.num, -2)
self.assertEqual(a.den, 3)
a = Rat(-10, -15)
self.assertEqual(a.num, 2)
self.assertEqual(a.den, 3)
a = Rat(7)
self.assertEqual(a.num, 7)
self.assertEqual(a.den, 1)
try:
a = Rat(1, 0)
except ZeroDivisionError:
pass
else:
self.fail("Rat(1, 0) didn't raise ZeroDivisionError")
for bad in "0", 0.0, 0j, (), [], {}, None, Rat, unittest:
try:
a = Rat(bad)
except TypeError:
pass
else:
self.fail("Rat(%r) didn't raise TypeError" % bad)
try:
a = Rat(1, bad)
except TypeError:
pass
else:
self.fail("Rat(1, %r) didn't raise TypeError" % bad)
def test_add(self):
self.assertEqual(Rat(2, 3) + Rat(1, 3), 1)
self.assertEqual(Rat(2, 3) + 1, Rat(5, 3))
self.assertEqual(1 + Rat(2, 3), Rat(5, 3))
self.assertEqual(1.0 + Rat(1, 2), 1.5)
self.assertEqual(Rat(1, 2) + 1.0, 1.5)
def test_sub(self):
self.assertEqual(Rat(7, 2) - Rat(7, 5), Rat(21, 10))
self.assertEqual(Rat(7, 5) - 1, Rat(2, 5))
self.assertEqual(1 - Rat(3, 5), Rat(2, 5))
self.assertEqual(Rat(3, 2) - 1.0, 0.5)
self.assertEqual(1.0 - Rat(1, 2), 0.5)
def test_mul(self):
self.assertEqual(Rat(2, 3) * Rat(5, 7), Rat(10, 21))
self.assertEqual(Rat(10, 3) * 3, 10)
self.assertEqual(3 * Rat(10, 3), 10)
self.assertEqual(Rat(10, 5) * 0.5, 1.0)
self.assertEqual(0.5 * Rat(10, 5), 1.0)
def test_div(self):
self.assertEqual(Rat(10, 3) / Rat(5, 7), Rat(14, 3))
self.assertEqual(Rat(10, 3) / 3, Rat(10, 9))
self.assertEqual(2 / Rat(5), Rat(2, 5))
self.assertEqual(3.0 * Rat(1, 2), 1.5)
self.assertEqual(Rat(1, 2) * 3.0, 1.5)
def test_floordiv(self):
self.assertEqual(Rat(10) // Rat(4), 2)
self.assertEqual(Rat(10, 3) // Rat(4, 3), 2)
self.assertEqual(Rat(10) // 4, 2)
self.assertEqual(10 // Rat(4), 2)
def test_eq(self):
self.assertEqual(Rat(10), Rat(20, 2))
self.assertEqual(Rat(10), 10)
self.assertEqual(10, Rat(10))
self.assertEqual(Rat(10), 10.0)
self.assertEqual(10.0, Rat(10))
def test_true_div(self):
self.assertEqual(Rat(10, 3) / Rat(5, 7), Rat(14, 3))
self.assertEqual(Rat(10, 3) / 3, Rat(10, 9))
self.assertEqual(2 / Rat(5), Rat(2, 5))
self.assertEqual(3.0 * Rat(1, 2), 1.5)
self.assertEqual(Rat(1, 2) * 3.0, 1.5)
self.assertEqual(eval('1/2'), 0.5)
# XXX Ran out of steam; TO DO: divmod, div, future division
class OperationLogger:
"""Base class for classes with operation logging."""
def __init__(self, logger):
self.logger = logger
def log_operation(self, *args):
self.logger(*args)
def op_sequence(op, *classes):
"""Return the sequence of operations that results from applying
the operation `op` to instances of the given classes."""
log = []
instances = []
for c in classes:
instances.append(c(log.append))
try:
op(*instances)
except TypeError:
pass
return log
class A(OperationLogger):
def __eq__(self, other):
self.log_operation('A.__eq__')
return NotImplemented
def __le__(self, other):
self.log_operation('A.__le__')
return NotImplemented
def __ge__(self, other):
self.log_operation('A.__ge__')
return NotImplemented
class B(OperationLogger, metaclass=ABCMeta):
def __eq__(self, other):
self.log_operation('B.__eq__')
return NotImplemented
def __le__(self, other):
self.log_operation('B.__le__')
return NotImplemented
def __ge__(self, other):
self.log_operation('B.__ge__')
return NotImplemented
class C(B):
def __eq__(self, other):
self.log_operation('C.__eq__')
return NotImplemented
def __le__(self, other):
self.log_operation('C.__le__')
return NotImplemented
def __ge__(self, other):
self.log_operation('C.__ge__')
return NotImplemented
class V(OperationLogger):
"""Virtual subclass of B"""
def __eq__(self, other):
self.log_operation('V.__eq__')
return NotImplemented
def __le__(self, other):
self.log_operation('V.__le__')
return NotImplemented
def __ge__(self, other):
self.log_operation('V.__ge__')
return NotImplemented
B.register(V)
class OperationOrderTests(unittest.TestCase):
def test_comparison_orders(self):
self.assertEqual(op_sequence(eq, A, A), ['A.__eq__', 'A.__eq__'])
self.assertEqual(op_sequence(eq, A, B), ['A.__eq__', 'B.__eq__'])
self.assertEqual(op_sequence(eq, B, A), ['B.__eq__', 'A.__eq__'])
# C is a subclass of B, so C.__eq__ is called first
self.assertEqual(op_sequence(eq, B, C), ['C.__eq__', 'B.__eq__'])
self.assertEqual(op_sequence(eq, C, B), ['C.__eq__', 'B.__eq__'])
self.assertEqual(op_sequence(le, A, A), ['A.__le__', 'A.__ge__'])
self.assertEqual(op_sequence(le, A, B), ['A.__le__', 'B.__ge__'])
self.assertEqual(op_sequence(le, B, A), ['B.__le__', 'A.__ge__'])
self.assertEqual(op_sequence(le, B, C), ['C.__ge__', 'B.__le__'])
self.assertEqual(op_sequence(le, C, B), ['C.__le__', 'B.__ge__'])
self.assertTrue(issubclass(V, B))
self.assertEqual(op_sequence(eq, B, V), ['B.__eq__', 'V.__eq__'])
self.assertEqual(op_sequence(le, B, V), ['B.__le__', 'V.__ge__'])
class SupEq(object):
"""Class that can test equality"""
def __eq__(self, other):
return True
class S(SupEq):
"""Subclass of SupEq that should fail"""
__eq__ = None
class F(object):
"""Independent class that should fall back"""
class X(object):
"""Independent class that should fail"""
__eq__ = None
class SN(SupEq):
"""Subclass of SupEq that can test equality, but not non-equality"""
__ne__ = None
class XN:
"""Independent class that can test equality, but not non-equality"""
def __eq__(self, other):
return True
__ne__ = None
class FallbackBlockingTests(unittest.TestCase):
"""Unit tests for None method blocking"""
def test_fallback_rmethod_blocking(self):
e, f, s, x = SupEq(), F(), S(), X()
self.assertEqual(e, e)
self.assertEqual(e, f)
self.assertEqual(f, e)
# left operand is checked first
self.assertEqual(e, x)
self.assertRaises(TypeError, eq, x, e)
# S is a subclass, so it's always checked first
self.assertRaises(TypeError, eq, e, s)
self.assertRaises(TypeError, eq, s, e)
def test_fallback_ne_blocking(self):
e, sn, xn = SupEq(), SN(), XN()
self.assertFalse(e != e)
self.assertRaises(TypeError, ne, e, sn)
self.assertRaises(TypeError, ne, sn, e)
self.assertFalse(e != xn)
self.assertRaises(TypeError, ne, xn, e)
if __name__ == "__main__":
unittest.main()
|