/usr/lib/python2.7/test/decimaltestdata/dqFMA.decTest is in libpython2.7-testsuite 2.7.15~rc1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 | ------------------------------------------------------------------------
-- dqFMA.decTest -- decQuad Fused Multiply Add --
-- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
-- these testcases. --
-- --
-- These testcases are experimental ('beta' versions), and they --
-- may contain errors. They are offered on an as-is basis. In --
-- particular, achieving the same results as the tests here is not --
-- a guarantee that an implementation complies with any Standard --
-- or specification. The tests are not exhaustive. --
-- --
-- Please send comments, suggestions, and corrections to the author: --
-- Mike Cowlishaw, IBM Fellow --
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
version: 2.59
extended: 1
clamp: 1
precision: 34
maxExponent: 6144
minExponent: -6143
rounding: half_even
-- These tests comprese three parts:
-- 1. Sanity checks and other three-operand tests (especially those
-- where the fused operation makes a difference)
-- 2. Multiply tests (third operand is neutral zero [0E+emax])
-- 3. Addition tests (first operand is 1)
-- The multiply and addition tests are extensive because FMA may have
-- its own dedicated multiplication or addition routine(s), and they
-- also inherently check the left-to-right properties.
-- Sanity checks
dqfma0001 fma 1 1 1 -> 2
dqfma0002 fma 1 1 2 -> 3
dqfma0003 fma 2 2 3 -> 7
dqfma0004 fma 9 9 9 -> 90
dqfma0005 fma -1 1 1 -> 0
dqfma0006 fma -1 1 2 -> 1
dqfma0007 fma -2 2 3 -> -1
dqfma0008 fma -9 9 9 -> -72
dqfma0011 fma 1 -1 1 -> 0
dqfma0012 fma 1 -1 2 -> 1
dqfma0013 fma 2 -2 3 -> -1
dqfma0014 fma 9 -9 9 -> -72
dqfma0015 fma 1 1 -1 -> 0
dqfma0016 fma 1 1 -2 -> -1
dqfma0017 fma 2 2 -3 -> 1
dqfma0018 fma 9 9 -9 -> 72
-- non-integer exacts
dqfma0100 fma 25.2 63.6 -438 -> 1164.72
dqfma0101 fma 0.301 0.380 334 -> 334.114380
dqfma0102 fma 49.2 -4.8 23.3 -> -212.86
dqfma0103 fma 4.22 0.079 -94.6 -> -94.26662
dqfma0104 fma 903 0.797 0.887 -> 720.578
dqfma0105 fma 6.13 -161 65.9 -> -921.03
dqfma0106 fma 28.2 727 5.45 -> 20506.85
dqfma0107 fma 4 605 688 -> 3108
dqfma0108 fma 93.3 0.19 0.226 -> 17.953
dqfma0109 fma 0.169 -341 5.61 -> -52.019
dqfma0110 fma -72.2 30 -51.2 -> -2217.2
dqfma0111 fma -0.409 13 20.4 -> 15.083
dqfma0112 fma 317 77.0 19.0 -> 24428.0
dqfma0113 fma 47 6.58 1.62 -> 310.88
dqfma0114 fma 1.36 0.984 0.493 -> 1.83124
dqfma0115 fma 72.7 274 1.56 -> 19921.36
dqfma0116 fma 335 847 83 -> 283828
dqfma0117 fma 666 0.247 25.4 -> 189.902
dqfma0118 fma -3.87 3.06 78.0 -> 66.1578
dqfma0119 fma 0.742 192 35.6 -> 178.064
dqfma0120 fma -91.6 5.29 0.153 -> -484.411
-- cases where result is different from separate multiply + add; each
-- is preceded by the result of unfused multiply and add
-- [this is about 20% of all similar cases in general]
-- -> 4.500119002100000209469729375698778E+38
dqfma0202 fma 68537985861355864457.5694 6565875762972086605.85969 35892634447236753.172812 -> 4.500119002100000209469729375698779E+38 Inexact Rounded
-- -> 5.996248469584594346858881620185514E+41
dqfma0208 fma 89261822344727628571.9 6717595845654131383336.89 5061036497288796076266.11 -> 5.996248469584594346858881620185513E+41 Inexact Rounded
-- -> 1.899242968678256924021594770874070E+34
dqfma0210 fma 320506237232448685.495971 59257597764017967.984448 3205615239077711589912.85 -> 1.899242968678256924021594770874071E+34 Inexact Rounded
-- -> 7.078596978842809537929699954860309E+37
dqfma0215 fma 220247843259112263.17995 321392340287987979002.80 47533279819997167655440 -> 7.078596978842809537929699954860308E+37 Inexact Rounded
-- -> 1.224955667581427559754106862350743E+37
dqfma0226 fma 23880729790368880412.1449 512947333827064719.55407 217117438419590824502.963 -> 1.224955667581427559754106862350744E+37 Inexact Rounded
-- -> -2.530094043253148806272276368579144E+42
dqfma0229 fma 2539892357016099706.4126 -996142232667504817717435 53682082598315949425.937 -> -2.530094043253148806272276368579143E+42 Inexact Rounded
-- -> 1.713387085759711954319391412788454E+37
dqfma0233 fma 4546339491341624464.0804 3768717864169205581 83578980278690395184.620 -> 1.713387085759711954319391412788453E+37 Inexact Rounded
-- -> 4.062275663405823716411579117771547E+35
dqfma0235 fma 409242119433816131.42253 992633815166741501.477249 70179636544416756129546 -> 4.062275663405823716411579117771548E+35 Inexact Rounded
-- -> 6.002604327732568490562249875306823E+47
dqfma0258 fma 817941336593541742159684 733867339769310729266598 78563844650942419311830.8 -> 6.002604327732568490562249875306822E+47 Inexact Rounded
-- -> -2.027022514381452197510103395283874E+39
dqfma0264 fma 387617310169161270.737532 -5229442703414956061216.62 57665666816652967150473.5 -> -2.027022514381452197510103395283873E+39 Inexact Rounded
-- -> -7.856525039803554001144089842730361E+37
dqfma0267 fma -847655845720565274701.210 92685316564117739.83984 22780950041376424429.5686 -> -7.856525039803554001144089842730360E+37 Inexact Rounded
-- -> 1.695515562011520746125607502237559E+38
dqfma0268 fma 21590290365127685.3675 7853139227576541379426.8 -3275859437236180.761544 -> 1.695515562011520746125607502237558E+38 Inexact Rounded
-- -> -8.448422935783289219748115038014710E+38
dqfma0269 fma -974320636272862697.971586 867109103641860247440.756 -9775170775902454762.98 -> -8.448422935783289219748115038014709E+38 Inexact Rounded
-- Cases where multiply would overflow or underflow if separate
dqfma0300 fma 9e+6144 10 0 -> Infinity Overflow Inexact Rounded
dqfma0301 fma 1e+6144 10 0 -> Infinity Overflow Inexact Rounded
dqfma0302 fma 1e+6144 10 -1e+6144 -> 9.000000000000000000000000000000000E+6144 Clamped
dqfma0303 fma 1e+6144 10 -9e+6144 -> 1.000000000000000000000000000000000E+6144 Clamped
-- subnormal etc.
dqfma0305 fma 1e-6176 0.1 0 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
dqfma0306 fma 1e-6176 0.1 1 -> 1.000000000000000000000000000000000 Inexact Rounded
dqfma0307 fma 1e-6176 0.1 1e-6176 -> 1E-6176 Underflow Subnormal Inexact Rounded
-- Infinite combinations
dqfma0800 fma Inf Inf Inf -> Infinity
dqfma0801 fma Inf Inf -Inf -> NaN Invalid_operation
dqfma0802 fma Inf -Inf Inf -> NaN Invalid_operation
dqfma0803 fma Inf -Inf -Inf -> -Infinity
dqfma0804 fma -Inf Inf Inf -> NaN Invalid_operation
dqfma0805 fma -Inf Inf -Inf -> -Infinity
dqfma0806 fma -Inf -Inf Inf -> Infinity
dqfma0807 fma -Inf -Inf -Inf -> NaN Invalid_operation
-- Triple NaN propagation
dqfma0900 fma NaN2 NaN3 NaN5 -> NaN2
dqfma0901 fma 0 NaN3 NaN5 -> NaN3
dqfma0902 fma 0 0 NaN5 -> NaN5
-- first sNaN wins (consider qNaN from earlier sNaN being
-- overridden by an sNaN in third operand)
dqfma0903 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
dqfma0904 fma 0 sNaN2 sNaN3 -> NaN2 Invalid_operation
dqfma0905 fma 0 0 sNaN3 -> NaN3 Invalid_operation
dqfma0906 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
dqfma0907 fma NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation
dqfma0908 fma NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation
-- MULTIPLICATION TESTS ------------------------------------------------
rounding: half_even
-- sanity checks
dqfma2000 fma 2 2 0e+6144 -> 4
dqfma2001 fma 2 3 0e+6144 -> 6
dqfma2002 fma 5 1 0e+6144 -> 5
dqfma2003 fma 5 2 0e+6144 -> 10
dqfma2004 fma 1.20 2 0e+6144 -> 2.40
dqfma2005 fma 1.20 0 0e+6144 -> 0.00
dqfma2006 fma 1.20 -2 0e+6144 -> -2.40
dqfma2007 fma -1.20 2 0e+6144 -> -2.40
dqfma2008 fma -1.20 0 0e+6144 -> 0.00
dqfma2009 fma -1.20 -2 0e+6144 -> 2.40
dqfma2010 fma 5.09 7.1 0e+6144 -> 36.139
dqfma2011 fma 2.5 4 0e+6144 -> 10.0
dqfma2012 fma 2.50 4 0e+6144 -> 10.00
dqfma2013 fma 1.23456789 1.0000000000000000000000000000 0e+6144 -> 1.234567890000000000000000000000000 Rounded
dqfma2015 fma 2.50 4 0e+6144 -> 10.00
dqfma2016 fma 9.99999999999999999 9.99999999999999999 0e+6144 -> 99.99999999999999980000000000000000 Inexact Rounded
dqfma2017 fma 9.99999999999999999 -9.99999999999999999 0e+6144 -> -99.99999999999999980000000000000000 Inexact Rounded
dqfma2018 fma -9.99999999999999999 9.99999999999999999 0e+6144 -> -99.99999999999999980000000000000000 Inexact Rounded
dqfma2019 fma -9.99999999999999999 -9.99999999999999999 0e+6144 -> 99.99999999999999980000000000000000 Inexact Rounded
-- zeros, etc.
dqfma2021 fma 0 0 0e+6144 -> 0
dqfma2022 fma 0 -0 0e+6144 -> 0
dqfma2023 fma -0 0 0e+6144 -> 0
dqfma2024 fma -0 -0 0e+6144 -> 0
dqfma2025 fma -0.0 -0.0 0e+6144 -> 0.00
dqfma2026 fma -0.0 -0.0 0e+6144 -> 0.00
dqfma2027 fma -0.0 -0.0 0e+6144 -> 0.00
dqfma2028 fma -0.0 -0.0 0e+6144 -> 0.00
dqfma2030 fma 5.00 1E-3 0e+6144 -> 0.00500
dqfma2031 fma 00.00 0.000 0e+6144 -> 0.00000
dqfma2032 fma 00.00 0E-3 0e+6144 -> 0.00000 -- rhs is 0
dqfma2033 fma 0E-3 00.00 0e+6144 -> 0.00000 -- lhs is 0
dqfma2034 fma -5.00 1E-3 0e+6144 -> -0.00500
dqfma2035 fma -00.00 0.000 0e+6144 -> 0.00000
dqfma2036 fma -00.00 0E-3 0e+6144 -> 0.00000 -- rhs is 0
dqfma2037 fma -0E-3 00.00 0e+6144 -> 0.00000 -- lhs is 0
dqfma2038 fma 5.00 -1E-3 0e+6144 -> -0.00500
dqfma2039 fma 00.00 -0.000 0e+6144 -> 0.00000
dqfma2040 fma 00.00 -0E-3 0e+6144 -> 0.00000 -- rhs is 0
dqfma2041 fma 0E-3 -00.00 0e+6144 -> 0.00000 -- lhs is 0
dqfma2042 fma -5.00 -1E-3 0e+6144 -> 0.00500
dqfma2043 fma -00.00 -0.000 0e+6144 -> 0.00000
dqfma2044 fma -00.00 -0E-3 0e+6144 -> 0.00000 -- rhs is 0
dqfma2045 fma -0E-3 -00.00 0e+6144 -> 0.00000 -- lhs is 0
-- examples from decarith
dqfma2050 fma 1.20 3 0e+6144 -> 3.60
dqfma2051 fma 7 3 0e+6144 -> 21
dqfma2052 fma 0.9 0.8 0e+6144 -> 0.72
dqfma2053 fma 0.9 -0 0e+6144 -> 0.0
dqfma2054 fma 654321 654321 0e+6144 -> 428135971041
dqfma2060 fma 123.45 1e7 0e+6144 -> 1.2345E+9
dqfma2061 fma 123.45 1e8 0e+6144 -> 1.2345E+10
dqfma2062 fma 123.45 1e+9 0e+6144 -> 1.2345E+11
dqfma2063 fma 123.45 1e10 0e+6144 -> 1.2345E+12
dqfma2064 fma 123.45 1e11 0e+6144 -> 1.2345E+13
dqfma2065 fma 123.45 1e12 0e+6144 -> 1.2345E+14
dqfma2066 fma 123.45 1e13 0e+6144 -> 1.2345E+15
-- test some intermediate lengths
-- 1234567890123456
dqfma2080 fma 0.1 1230123456456789 0e+6144 -> 123012345645678.9
dqfma2084 fma 0.1 1230123456456789 0e+6144 -> 123012345645678.9
dqfma2090 fma 1230123456456789 0.1 0e+6144 -> 123012345645678.9
dqfma2094 fma 1230123456456789 0.1 0e+6144 -> 123012345645678.9
-- test some more edge cases and carries
dqfma2101 fma 9 9 0e+6144 -> 81
dqfma2102 fma 9 90 0e+6144 -> 810
dqfma2103 fma 9 900 0e+6144 -> 8100
dqfma2104 fma 9 9000 0e+6144 -> 81000
dqfma2105 fma 9 90000 0e+6144 -> 810000
dqfma2106 fma 9 900000 0e+6144 -> 8100000
dqfma2107 fma 9 9000000 0e+6144 -> 81000000
dqfma2108 fma 9 90000000 0e+6144 -> 810000000
dqfma2109 fma 9 900000000 0e+6144 -> 8100000000
dqfma2110 fma 9 9000000000 0e+6144 -> 81000000000
dqfma2111 fma 9 90000000000 0e+6144 -> 810000000000
dqfma2112 fma 9 900000000000 0e+6144 -> 8100000000000
dqfma2113 fma 9 9000000000000 0e+6144 -> 81000000000000
dqfma2114 fma 9 90000000000000 0e+6144 -> 810000000000000
dqfma2115 fma 9 900000000000000 0e+6144 -> 8100000000000000
--dqfma2116 fma 9 9000000000000000 0e+6144 -> 81000000000000000
--dqfma2117 fma 9 90000000000000000 0e+6144 -> 810000000000000000
--dqfma2118 fma 9 900000000000000000 0e+6144 -> 8100000000000000000
--dqfma2119 fma 9 9000000000000000000 0e+6144 -> 81000000000000000000
--dqfma2120 fma 9 90000000000000000000 0e+6144 -> 810000000000000000000
--dqfma2121 fma 9 900000000000000000000 0e+6144 -> 8100000000000000000000
--dqfma2122 fma 9 9000000000000000000000 0e+6144 -> 81000000000000000000000
--dqfma2123 fma 9 90000000000000000000000 0e+6144 -> 810000000000000000000000
-- test some more edge cases without carries
dqfma2131 fma 3 3 0e+6144 -> 9
dqfma2132 fma 3 30 0e+6144 -> 90
dqfma2133 fma 3 300 0e+6144 -> 900
dqfma2134 fma 3 3000 0e+6144 -> 9000
dqfma2135 fma 3 30000 0e+6144 -> 90000
dqfma2136 fma 3 300000 0e+6144 -> 900000
dqfma2137 fma 3 3000000 0e+6144 -> 9000000
dqfma2138 fma 3 30000000 0e+6144 -> 90000000
dqfma2139 fma 3 300000000 0e+6144 -> 900000000
dqfma2140 fma 3 3000000000 0e+6144 -> 9000000000
dqfma2141 fma 3 30000000000 0e+6144 -> 90000000000
dqfma2142 fma 3 300000000000 0e+6144 -> 900000000000
dqfma2143 fma 3 3000000000000 0e+6144 -> 9000000000000
dqfma2144 fma 3 30000000000000 0e+6144 -> 90000000000000
dqfma2145 fma 3 300000000000000 0e+6144 -> 900000000000000
dqfma2146 fma 3 3000000000000000 0e+6144 -> 9000000000000000
dqfma2147 fma 3 30000000000000000 0e+6144 -> 90000000000000000
dqfma2148 fma 3 300000000000000000 0e+6144 -> 900000000000000000
dqfma2149 fma 3 3000000000000000000 0e+6144 -> 9000000000000000000
dqfma2150 fma 3 30000000000000000000 0e+6144 -> 90000000000000000000
dqfma2151 fma 3 300000000000000000000 0e+6144 -> 900000000000000000000
dqfma2152 fma 3 3000000000000000000000 0e+6144 -> 9000000000000000000000
dqfma2153 fma 3 30000000000000000000000 0e+6144 -> 90000000000000000000000
dqfma2263 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0e+6144 -> 145433.2908011933696719165119928296 Inexact Rounded
-- test some edge cases with exact rounding
dqfma2301 fma 900000000000000000 9 0e+6144 -> 8100000000000000000
dqfma2302 fma 900000000000000000 90 0e+6144 -> 81000000000000000000
dqfma2303 fma 900000000000000000 900 0e+6144 -> 810000000000000000000
dqfma2304 fma 900000000000000000 9000 0e+6144 -> 8100000000000000000000
dqfma2305 fma 900000000000000000 90000 0e+6144 -> 81000000000000000000000
dqfma2306 fma 900000000000000000 900000 0e+6144 -> 810000000000000000000000
dqfma2307 fma 900000000000000000 9000000 0e+6144 -> 8100000000000000000000000
dqfma2308 fma 900000000000000000 90000000 0e+6144 -> 81000000000000000000000000
dqfma2309 fma 900000000000000000 900000000 0e+6144 -> 810000000000000000000000000
dqfma2310 fma 900000000000000000 9000000000 0e+6144 -> 8100000000000000000000000000
dqfma2311 fma 900000000000000000 90000000000 0e+6144 -> 81000000000000000000000000000
dqfma2312 fma 900000000000000000 900000000000 0e+6144 -> 810000000000000000000000000000
dqfma2313 fma 900000000000000000 9000000000000 0e+6144 -> 8100000000000000000000000000000
dqfma2314 fma 900000000000000000 90000000000000 0e+6144 -> 81000000000000000000000000000000
dqfma2315 fma 900000000000000000 900000000000000 0e+6144 -> 810000000000000000000000000000000
dqfma2316 fma 900000000000000000 9000000000000000 0e+6144 -> 8100000000000000000000000000000000
dqfma2317 fma 9000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+34 Rounded
dqfma2318 fma 90000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+35 Rounded
dqfma2319 fma 900000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+36 Rounded
dqfma2320 fma 9000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+37 Rounded
dqfma2321 fma 90000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+38 Rounded
dqfma2322 fma 900000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+39 Rounded
dqfma2323 fma 9000000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+40 Rounded
-- tryzeros cases
dqfma2504 fma 0E-4260 1000E-4260 0e+6144 -> 0E-6176 Clamped
dqfma2505 fma 100E+4260 0E+4260 0e+6144 -> 0E+6111 Clamped
-- mixed with zeros
dqfma2541 fma 0 -1 0e+6144 -> 0
dqfma2542 fma -0 -1 0e+6144 -> 0
dqfma2543 fma 0 1 0e+6144 -> 0
dqfma2544 fma -0 1 0e+6144 -> 0
dqfma2545 fma -1 0 0e+6144 -> 0
dqfma2546 fma -1 -0 0e+6144 -> 0
dqfma2547 fma 1 0 0e+6144 -> 0
dqfma2548 fma 1 -0 0e+6144 -> 0
dqfma2551 fma 0.0 -1 0e+6144 -> 0.0
dqfma2552 fma -0.0 -1 0e+6144 -> 0.0
dqfma2553 fma 0.0 1 0e+6144 -> 0.0
dqfma2554 fma -0.0 1 0e+6144 -> 0.0
dqfma2555 fma -1.0 0 0e+6144 -> 0.0
dqfma2556 fma -1.0 -0 0e+6144 -> 0.0
dqfma2557 fma 1.0 0 0e+6144 -> 0.0
dqfma2558 fma 1.0 -0 0e+6144 -> 0.0
dqfma2561 fma 0 -1.0 0e+6144 -> 0.0
dqfma2562 fma -0 -1.0 0e+6144 -> 0.0
dqfma2563 fma 0 1.0 0e+6144 -> 0.0
dqfma2564 fma -0 1.0 0e+6144 -> 0.0
dqfma2565 fma -1 0.0 0e+6144 -> 0.0
dqfma2566 fma -1 -0.0 0e+6144 -> 0.0
dqfma2567 fma 1 0.0 0e+6144 -> 0.0
dqfma2568 fma 1 -0.0 0e+6144 -> 0.0
dqfma2571 fma 0.0 -1.0 0e+6144 -> 0.00
dqfma2572 fma -0.0 -1.0 0e+6144 -> 0.00
dqfma2573 fma 0.0 1.0 0e+6144 -> 0.00
dqfma2574 fma -0.0 1.0 0e+6144 -> 0.00
dqfma2575 fma -1.0 0.0 0e+6144 -> 0.00
dqfma2576 fma -1.0 -0.0 0e+6144 -> 0.00
dqfma2577 fma 1.0 0.0 0e+6144 -> 0.00
dqfma2578 fma 1.0 -0.0 0e+6144 -> 0.00
dqfma2579 fma 1.0 0.0 0e+6144 -> 0.00
dqfma2530 fma -1.0 -0.0 0e+6144 -> 0.00
dqfma2531 fma -1.0 0.0 0e+6144 -> 0.00
dqfma2532 fma 1.0 -0.0 -0e+6144 -> -0.00
dqfma2533 fma 1.0 0.0 -0e+6144 -> 0.00
dqfma2534 fma -1.0 -0.0 -0e+6144 -> 0.00
dqfma2535 fma -1.0 0.0 -0e+6144 -> -0.00
-- Specials
dqfma2580 fma Inf -Inf 0e+6144 -> -Infinity
dqfma2581 fma Inf -1000 0e+6144 -> -Infinity
dqfma2582 fma Inf -1 0e+6144 -> -Infinity
dqfma2583 fma Inf -0 0e+6144 -> NaN Invalid_operation
dqfma2584 fma Inf 0 0e+6144 -> NaN Invalid_operation
dqfma2585 fma Inf 1 0e+6144 -> Infinity
dqfma2586 fma Inf 1000 0e+6144 -> Infinity
dqfma2587 fma Inf Inf 0e+6144 -> Infinity
dqfma2588 fma -1000 Inf 0e+6144 -> -Infinity
dqfma2589 fma -Inf Inf 0e+6144 -> -Infinity
dqfma2590 fma -1 Inf 0e+6144 -> -Infinity
dqfma2591 fma -0 Inf 0e+6144 -> NaN Invalid_operation
dqfma2592 fma 0 Inf 0e+6144 -> NaN Invalid_operation
dqfma2593 fma 1 Inf 0e+6144 -> Infinity
dqfma2594 fma 1000 Inf 0e+6144 -> Infinity
dqfma2595 fma Inf Inf 0e+6144 -> Infinity
dqfma2600 fma -Inf -Inf 0e+6144 -> Infinity
dqfma2601 fma -Inf -1000 0e+6144 -> Infinity
dqfma2602 fma -Inf -1 0e+6144 -> Infinity
dqfma2603 fma -Inf -0 0e+6144 -> NaN Invalid_operation
dqfma2604 fma -Inf 0 0e+6144 -> NaN Invalid_operation
dqfma2605 fma -Inf 1 0e+6144 -> -Infinity
dqfma2606 fma -Inf 1000 0e+6144 -> -Infinity
dqfma2607 fma -Inf Inf 0e+6144 -> -Infinity
dqfma2608 fma -1000 Inf 0e+6144 -> -Infinity
dqfma2609 fma -Inf -Inf 0e+6144 -> Infinity
dqfma2610 fma -1 -Inf 0e+6144 -> Infinity
dqfma2611 fma -0 -Inf 0e+6144 -> NaN Invalid_operation
dqfma2612 fma 0 -Inf 0e+6144 -> NaN Invalid_operation
dqfma2613 fma 1 -Inf 0e+6144 -> -Infinity
dqfma2614 fma 1000 -Inf 0e+6144 -> -Infinity
dqfma2615 fma Inf -Inf 0e+6144 -> -Infinity
dqfma2621 fma NaN -Inf 0e+6144 -> NaN
dqfma2622 fma NaN -1000 0e+6144 -> NaN
dqfma2623 fma NaN -1 0e+6144 -> NaN
dqfma2624 fma NaN -0 0e+6144 -> NaN
dqfma2625 fma NaN 0 0e+6144 -> NaN
dqfma2626 fma NaN 1 0e+6144 -> NaN
dqfma2627 fma NaN 1000 0e+6144 -> NaN
dqfma2628 fma NaN Inf 0e+6144 -> NaN
dqfma2629 fma NaN NaN 0e+6144 -> NaN
dqfma2630 fma -Inf NaN 0e+6144 -> NaN
dqfma2631 fma -1000 NaN 0e+6144 -> NaN
dqfma2632 fma -1 NaN 0e+6144 -> NaN
dqfma2633 fma -0 NaN 0e+6144 -> NaN
dqfma2634 fma 0 NaN 0e+6144 -> NaN
dqfma2635 fma 1 NaN 0e+6144 -> NaN
dqfma2636 fma 1000 NaN 0e+6144 -> NaN
dqfma2637 fma Inf NaN 0e+6144 -> NaN
dqfma2641 fma sNaN -Inf 0e+6144 -> NaN Invalid_operation
dqfma2642 fma sNaN -1000 0e+6144 -> NaN Invalid_operation
dqfma2643 fma sNaN -1 0e+6144 -> NaN Invalid_operation
dqfma2644 fma sNaN -0 0e+6144 -> NaN Invalid_operation
dqfma2645 fma sNaN 0 0e+6144 -> NaN Invalid_operation
dqfma2646 fma sNaN 1 0e+6144 -> NaN Invalid_operation
dqfma2647 fma sNaN 1000 0e+6144 -> NaN Invalid_operation
dqfma2648 fma sNaN NaN 0e+6144 -> NaN Invalid_operation
dqfma2649 fma sNaN sNaN 0e+6144 -> NaN Invalid_operation
dqfma2650 fma NaN sNaN 0e+6144 -> NaN Invalid_operation
dqfma2651 fma -Inf sNaN 0e+6144 -> NaN Invalid_operation
dqfma2652 fma -1000 sNaN 0e+6144 -> NaN Invalid_operation
dqfma2653 fma -1 sNaN 0e+6144 -> NaN Invalid_operation
dqfma2654 fma -0 sNaN 0e+6144 -> NaN Invalid_operation
dqfma2655 fma 0 sNaN 0e+6144 -> NaN Invalid_operation
dqfma2656 fma 1 sNaN 0e+6144 -> NaN Invalid_operation
dqfma2657 fma 1000 sNaN 0e+6144 -> NaN Invalid_operation
dqfma2658 fma Inf sNaN 0e+6144 -> NaN Invalid_operation
dqfma2659 fma NaN sNaN 0e+6144 -> NaN Invalid_operation
-- propagating NaNs
dqfma2661 fma NaN9 -Inf 0e+6144 -> NaN9
dqfma2662 fma NaN8 999 0e+6144 -> NaN8
dqfma2663 fma NaN71 Inf 0e+6144 -> NaN71
dqfma2664 fma NaN6 NaN5 0e+6144 -> NaN6
dqfma2665 fma -Inf NaN4 0e+6144 -> NaN4
dqfma2666 fma -999 NaN33 0e+6144 -> NaN33
dqfma2667 fma Inf NaN2 0e+6144 -> NaN2
dqfma2671 fma sNaN99 -Inf 0e+6144 -> NaN99 Invalid_operation
dqfma2672 fma sNaN98 -11 0e+6144 -> NaN98 Invalid_operation
dqfma2673 fma sNaN97 NaN 0e+6144 -> NaN97 Invalid_operation
dqfma2674 fma sNaN16 sNaN94 0e+6144 -> NaN16 Invalid_operation
dqfma2675 fma NaN95 sNaN93 0e+6144 -> NaN93 Invalid_operation
dqfma2676 fma -Inf sNaN92 0e+6144 -> NaN92 Invalid_operation
dqfma2677 fma 088 sNaN91 0e+6144 -> NaN91 Invalid_operation
dqfma2678 fma Inf sNaN90 0e+6144 -> NaN90 Invalid_operation
dqfma2679 fma NaN sNaN89 0e+6144 -> NaN89 Invalid_operation
dqfma2681 fma -NaN9 -Inf 0e+6144 -> -NaN9
dqfma2682 fma -NaN8 999 0e+6144 -> -NaN8
dqfma2683 fma -NaN71 Inf 0e+6144 -> -NaN71
dqfma2684 fma -NaN6 -NaN5 0e+6144 -> -NaN6
dqfma2685 fma -Inf -NaN4 0e+6144 -> -NaN4
dqfma2686 fma -999 -NaN33 0e+6144 -> -NaN33
dqfma2687 fma Inf -NaN2 0e+6144 -> -NaN2
dqfma2691 fma -sNaN99 -Inf 0e+6144 -> -NaN99 Invalid_operation
dqfma2692 fma -sNaN98 -11 0e+6144 -> -NaN98 Invalid_operation
dqfma2693 fma -sNaN97 NaN 0e+6144 -> -NaN97 Invalid_operation
dqfma2694 fma -sNaN16 -sNaN94 0e+6144 -> -NaN16 Invalid_operation
dqfma2695 fma -NaN95 -sNaN93 0e+6144 -> -NaN93 Invalid_operation
dqfma2696 fma -Inf -sNaN92 0e+6144 -> -NaN92 Invalid_operation
dqfma2697 fma 088 -sNaN91 0e+6144 -> -NaN91 Invalid_operation
dqfma2698 fma Inf -sNaN90 0e+6144 -> -NaN90 Invalid_operation
dqfma2699 fma -NaN -sNaN89 0e+6144 -> -NaN89 Invalid_operation
dqfma2701 fma -NaN -Inf 0e+6144 -> -NaN
dqfma2702 fma -NaN 999 0e+6144 -> -NaN
dqfma2703 fma -NaN Inf 0e+6144 -> -NaN
dqfma2704 fma -NaN -NaN 0e+6144 -> -NaN
dqfma2705 fma -Inf -NaN0 0e+6144 -> -NaN
dqfma2706 fma -999 -NaN 0e+6144 -> -NaN
dqfma2707 fma Inf -NaN 0e+6144 -> -NaN
dqfma2711 fma -sNaN -Inf 0e+6144 -> -NaN Invalid_operation
dqfma2712 fma -sNaN -11 0e+6144 -> -NaN Invalid_operation
dqfma2713 fma -sNaN00 NaN 0e+6144 -> -NaN Invalid_operation
dqfma2714 fma -sNaN -sNaN 0e+6144 -> -NaN Invalid_operation
dqfma2715 fma -NaN -sNaN 0e+6144 -> -NaN Invalid_operation
dqfma2716 fma -Inf -sNaN 0e+6144 -> -NaN Invalid_operation
dqfma2717 fma 088 -sNaN 0e+6144 -> -NaN Invalid_operation
dqfma2718 fma Inf -sNaN 0e+6144 -> -NaN Invalid_operation
dqfma2719 fma -NaN -sNaN 0e+6144 -> -NaN Invalid_operation
-- overflow and underflow tests .. note subnormal results
-- signs
dqfma2751 fma 1e+4277 1e+3311 0e+6144 -> Infinity Overflow Inexact Rounded
dqfma2752 fma 1e+4277 -1e+3311 0e+6144 -> -Infinity Overflow Inexact Rounded
dqfma2753 fma -1e+4277 1e+3311 0e+6144 -> -Infinity Overflow Inexact Rounded
dqfma2754 fma -1e+4277 -1e+3311 0e+6144 -> Infinity Overflow Inexact Rounded
dqfma2755 fma 1e-4277 1e-3311 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
dqfma2756 fma 1e-4277 -1e-3311 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
dqfma2757 fma -1e-4277 1e-3311 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
dqfma2758 fma -1e-4277 -1e-3311 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
-- 'subnormal' boundary (all hard underflow or overflow in base arithemtic)
dqfma2760 fma 1e-6069 1e-101 0e+6144 -> 1E-6170 Subnormal
dqfma2761 fma 1e-6069 1e-102 0e+6144 -> 1E-6171 Subnormal
dqfma2762 fma 1e-6069 1e-103 0e+6144 -> 1E-6172 Subnormal
dqfma2763 fma 1e-6069 1e-104 0e+6144 -> 1E-6173 Subnormal
dqfma2764 fma 1e-6069 1e-105 0e+6144 -> 1E-6174 Subnormal
dqfma2765 fma 1e-6069 1e-106 0e+6144 -> 1E-6175 Subnormal
dqfma2766 fma 1e-6069 1e-107 0e+6144 -> 1E-6176 Subnormal
dqfma2767 fma 1e-6069 1e-108 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
dqfma2768 fma 1e-6069 1e-109 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
dqfma2769 fma 1e-6069 1e-110 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
-- [no equivalent of 'subnormal' for overflow]
dqfma2770 fma 1e+40 1e+6101 0e+6144 -> 1.000000000000000000000000000000E+6141 Clamped
dqfma2771 fma 1e+40 1e+6102 0e+6144 -> 1.0000000000000000000000000000000E+6142 Clamped
dqfma2772 fma 1e+40 1e+6103 0e+6144 -> 1.00000000000000000000000000000000E+6143 Clamped
dqfma2773 fma 1e+40 1e+6104 0e+6144 -> 1.000000000000000000000000000000000E+6144 Clamped
dqfma2774 fma 1e+40 1e+6105 0e+6144 -> Infinity Overflow Inexact Rounded
dqfma2775 fma 1e+40 1e+6106 0e+6144 -> Infinity Overflow Inexact Rounded
dqfma2776 fma 1e+40 1e+6107 0e+6144 -> Infinity Overflow Inexact Rounded
dqfma2777 fma 1e+40 1e+6108 0e+6144 -> Infinity Overflow Inexact Rounded
dqfma2778 fma 1e+40 1e+6109 0e+6144 -> Infinity Overflow Inexact Rounded
dqfma2779 fma 1e+40 1e+6110 0e+6144 -> Infinity Overflow Inexact Rounded
dqfma2801 fma 1.0000E-6172 1 0e+6144 -> 1.0000E-6172 Subnormal
dqfma2802 fma 1.000E-6172 1e-1 0e+6144 -> 1.000E-6173 Subnormal
dqfma2803 fma 1.00E-6172 1e-2 0e+6144 -> 1.00E-6174 Subnormal
dqfma2804 fma 1.0E-6172 1e-3 0e+6144 -> 1.0E-6175 Subnormal
dqfma2805 fma 1.0E-6172 1e-4 0e+6144 -> 1E-6176 Subnormal Rounded
dqfma2806 fma 1.3E-6172 1e-4 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
dqfma2807 fma 1.5E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
dqfma2808 fma 1.7E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
dqfma2809 fma 2.3E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
dqfma2810 fma 2.5E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
dqfma2811 fma 2.7E-6172 1e-4 0e+6144 -> 3E-6176 Underflow Subnormal Inexact Rounded
dqfma2812 fma 1.49E-6172 1e-4 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
dqfma2813 fma 1.50E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
dqfma2814 fma 1.51E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
dqfma2815 fma 2.49E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
dqfma2816 fma 2.50E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
dqfma2817 fma 2.51E-6172 1e-4 0e+6144 -> 3E-6176 Underflow Subnormal Inexact Rounded
dqfma2818 fma 1E-6172 1e-4 0e+6144 -> 1E-6176 Subnormal
dqfma2819 fma 3E-6172 1e-5 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
dqfma2820 fma 5E-6172 1e-5 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
dqfma2821 fma 7E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
dqfma2822 fma 9E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
dqfma2823 fma 9.9E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
dqfma2824 fma 1E-6172 -1e-4 0e+6144 -> -1E-6176 Subnormal
dqfma2825 fma 3E-6172 -1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
dqfma2826 fma -5E-6172 1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
dqfma2827 fma 7E-6172 -1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded
dqfma2828 fma -9E-6172 1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded
dqfma2829 fma 9.9E-6172 -1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded
dqfma2830 fma 3.0E-6172 -1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
dqfma2831 fma 1.0E-5977 1e-200 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
dqfma2832 fma 1.0E-5977 1e-199 0e+6144 -> 1E-6176 Subnormal Rounded
dqfma2833 fma 1.0E-5977 1e-198 0e+6144 -> 1.0E-6175 Subnormal
dqfma2834 fma 2.0E-5977 2e-198 0e+6144 -> 4.0E-6175 Subnormal
dqfma2835 fma 4.0E-5977 4e-198 0e+6144 -> 1.60E-6174 Subnormal
dqfma2836 fma 10.0E-5977 10e-198 0e+6144 -> 1.000E-6173 Subnormal
dqfma2837 fma 30.0E-5977 30e-198 0e+6144 -> 9.000E-6173 Subnormal
dqfma2838 fma 40.0E-5982 40e-166 0e+6144 -> 1.6000E-6145 Subnormal
dqfma2839 fma 40.0E-5982 40e-165 0e+6144 -> 1.6000E-6144 Subnormal
dqfma2840 fma 40.0E-5982 40e-164 0e+6144 -> 1.6000E-6143
-- Long operand overflow may be a different path
dqfma2870 fma 100 9.999E+6143 0e+6144 -> Infinity Inexact Overflow Rounded
dqfma2871 fma 100 -9.999E+6143 0e+6144 -> -Infinity Inexact Overflow Rounded
dqfma2872 fma 9.999E+6143 100 0e+6144 -> Infinity Inexact Overflow Rounded
dqfma2873 fma -9.999E+6143 100 0e+6144 -> -Infinity Inexact Overflow Rounded
-- check for double-rounded subnormals
dqfma2881 fma 1.2347E-6133 1.2347E-40 0e+6144 -> 1.524E-6173 Inexact Rounded Subnormal Underflow
dqfma2882 fma 1.234E-6133 1.234E-40 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
dqfma2883 fma 1.23E-6133 1.23E-40 0e+6144 -> 1.513E-6173 Inexact Rounded Subnormal Underflow
dqfma2884 fma 1.2E-6133 1.2E-40 0e+6144 -> 1.44E-6173 Subnormal
dqfma2885 fma 1.2E-6133 1.2E-41 0e+6144 -> 1.44E-6174 Subnormal
dqfma2886 fma 1.2E-6133 1.2E-42 0e+6144 -> 1.4E-6175 Subnormal Inexact Rounded Underflow
dqfma2887 fma 1.2E-6133 1.3E-42 0e+6144 -> 1.6E-6175 Subnormal Inexact Rounded Underflow
dqfma2888 fma 1.3E-6133 1.3E-42 0e+6144 -> 1.7E-6175 Subnormal Inexact Rounded Underflow
dqfma2889 fma 1.3E-6133 1.3E-43 0e+6144 -> 2E-6176 Subnormal Inexact Rounded Underflow
dqfma2890 fma 1.3E-6134 1.3E-43 0e+6144 -> 0E-6176 Clamped Subnormal Inexact Rounded Underflow
dqfma2891 fma 1.2345E-39 1.234E-6133 0e+6144 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow
dqfma2892 fma 1.23456E-39 1.234E-6133 0e+6144 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow
dqfma2893 fma 1.2345E-40 1.234E-6133 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
dqfma2894 fma 1.23456E-40 1.234E-6133 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
dqfma2895 fma 1.2345E-41 1.234E-6133 0e+6144 -> 1.52E-6174 Inexact Rounded Subnormal Underflow
dqfma2896 fma 1.23456E-41 1.234E-6133 0e+6144 -> 1.52E-6174 Inexact Rounded Subnormal Underflow
-- Now explore the case where we get a normal result with Underflow
-- prove operands are exact
dqfma2906 fma 9.999999999999999999999999999999999E-6143 1 0e+6144 -> 9.999999999999999999999999999999999E-6143
dqfma2907 fma 1 0.09999999999999999999999999999999999 0e+6144 -> 0.09999999999999999999999999999999999
-- the next rounds to Nmin
dqfma2908 fma 9.999999999999999999999999999999999E-6143 0.09999999999999999999999999999999999 0e+6144 -> 1.000000000000000000000000000000000E-6143 Underflow Inexact Subnormal Rounded
-- hugest
dqfma2909 fma 9999999999999999999999999999999999 9999999999999999999999999999999999 0e+6144 -> 9.999999999999999999999999999999998E+67 Inexact Rounded
-- Examples from SQL proposal (Krishna Kulkarni)
precision: 34
rounding: half_up
maxExponent: 6144
minExponent: -6143
dqfma21001 fma 130E-2 120E-2 0e+6144 -> 1.5600
dqfma21002 fma 130E-2 12E-1 0e+6144 -> 1.560
dqfma21003 fma 130E-2 1E0 0e+6144 -> 1.30
dqfma21004 fma 1E2 1E4 0e+6144 -> 1E+6
-- Null tests
dqfma2990 fma 10 # 0e+6144 -> NaN Invalid_operation
dqfma2991 fma # 10 0e+6144 -> NaN Invalid_operation
-- ADDITION TESTS ------------------------------------------------------
rounding: half_even
-- [first group are 'quick confidence check']
dqadd3001 fma 1 1 1 -> 2
dqadd3002 fma 1 2 3 -> 5
dqadd3003 fma 1 '5.75' '3.3' -> 9.05
dqadd3004 fma 1 '5' '-3' -> 2
dqadd3005 fma 1 '-5' '-3' -> -8
dqadd3006 fma 1 '-7' '2.5' -> -4.5
dqadd3007 fma 1 '0.7' '0.3' -> 1.0
dqadd3008 fma 1 '1.25' '1.25' -> 2.50
dqadd3009 fma 1 '1.23456789' '1.00000000' -> '2.23456789'
dqadd3010 fma 1 '1.23456789' '1.00000011' -> '2.23456800'
-- 1234567890123456 1234567890123456
dqadd3011 fma 1 '0.4444444444444444444444444444444446' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Inexact Rounded
dqadd3012 fma 1 '0.4444444444444444444444444444444445' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Rounded
dqadd3013 fma 1 '0.4444444444444444444444444444444444' '0.5555555555555555555555555555555555' -> '0.9999999999999999999999999999999999'
dqadd3014 fma 1 '4444444444444444444444444444444444' '0.49' -> '4444444444444444444444444444444444' Inexact Rounded
dqadd3015 fma 1 '4444444444444444444444444444444444' '0.499' -> '4444444444444444444444444444444444' Inexact Rounded
dqadd3016 fma 1 '4444444444444444444444444444444444' '0.4999' -> '4444444444444444444444444444444444' Inexact Rounded
dqadd3017 fma 1 '4444444444444444444444444444444444' '0.5000' -> '4444444444444444444444444444444444' Inexact Rounded
dqadd3018 fma 1 '4444444444444444444444444444444444' '0.5001' -> '4444444444444444444444444444444445' Inexact Rounded
dqadd3019 fma 1 '4444444444444444444444444444444444' '0.501' -> '4444444444444444444444444444444445' Inexact Rounded
dqadd3020 fma 1 '4444444444444444444444444444444444' '0.51' -> '4444444444444444444444444444444445' Inexact Rounded
dqadd3021 fma 1 0 1 -> 1
dqadd3022 fma 1 1 1 -> 2
dqadd3023 fma 1 2 1 -> 3
dqadd3024 fma 1 3 1 -> 4
dqadd3025 fma 1 4 1 -> 5
dqadd3026 fma 1 5 1 -> 6
dqadd3027 fma 1 6 1 -> 7
dqadd3028 fma 1 7 1 -> 8
dqadd3029 fma 1 8 1 -> 9
dqadd3030 fma 1 9 1 -> 10
-- some carrying effects
dqadd3031 fma 1 '0.9998' '0.0000' -> '0.9998'
dqadd3032 fma 1 '0.9998' '0.0001' -> '0.9999'
dqadd3033 fma 1 '0.9998' '0.0002' -> '1.0000'
dqadd3034 fma 1 '0.9998' '0.0003' -> '1.0001'
dqadd3035 fma 1 '70' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
dqadd3036 fma 1 '700' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
dqadd3037 fma 1 '7000' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
dqadd3038 fma 1 '70000' '10000e+34' -> '1.000000000000000000000000000000001E+38' Inexact Rounded
dqadd3039 fma 1 '700000' '10000e+34' -> '1.000000000000000000000000000000007E+38' Rounded
-- symmetry:
dqadd3040 fma 1 '10000e+34' '70' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
dqadd3041 fma 1 '10000e+34' '700' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
dqadd3042 fma 1 '10000e+34' '7000' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
dqadd3044 fma 1 '10000e+34' '70000' -> '1.000000000000000000000000000000001E+38' Inexact Rounded
dqadd3045 fma 1 '10000e+34' '700000' -> '1.000000000000000000000000000000007E+38' Rounded
-- same, without rounding
dqadd3046 fma 1 '10000e+9' '7' -> '10000000000007'
dqadd3047 fma 1 '10000e+9' '70' -> '10000000000070'
dqadd3048 fma 1 '10000e+9' '700' -> '10000000000700'
dqadd3049 fma 1 '10000e+9' '7000' -> '10000000007000'
dqadd3050 fma 1 '10000e+9' '70000' -> '10000000070000'
dqadd3051 fma 1 '10000e+9' '700000' -> '10000000700000'
dqadd3052 fma 1 '10000e+9' '7000000' -> '10000007000000'
-- examples from decarith
dqadd3053 fma 1 '12' '7.00' -> '19.00'
dqadd3054 fma 1 '1.3' '-1.07' -> '0.23'
dqadd3055 fma 1 '1.3' '-1.30' -> '0.00'
dqadd3056 fma 1 '1.3' '-2.07' -> '-0.77'
dqadd3057 fma 1 '1E+2' '1E+4' -> '1.01E+4'
-- leading zero preservation
dqadd3061 fma 1 1 '0.0001' -> '1.0001'
dqadd3062 fma 1 1 '0.00001' -> '1.00001'
dqadd3063 fma 1 1 '0.000001' -> '1.000001'
dqadd3064 fma 1 1 '0.0000001' -> '1.0000001'
dqadd3065 fma 1 1 '0.00000001' -> '1.00000001'
-- some funny zeros [in case of bad signum]
dqadd3070 fma 1 1 0 -> 1
dqadd3071 fma 1 1 0. -> 1
dqadd3072 fma 1 1 .0 -> 1.0
dqadd3073 fma 1 1 0.0 -> 1.0
dqadd3074 fma 1 1 0.00 -> 1.00
dqadd3075 fma 1 0 1 -> 1
dqadd3076 fma 1 0. 1 -> 1
dqadd3077 fma 1 .0 1 -> 1.0
dqadd3078 fma 1 0.0 1 -> 1.0
dqadd3079 fma 1 0.00 1 -> 1.00
-- some carries
dqadd3080 fma 1 999999998 1 -> 999999999
dqadd3081 fma 1 999999999 1 -> 1000000000
dqadd3082 fma 1 99999999 1 -> 100000000
dqadd3083 fma 1 9999999 1 -> 10000000
dqadd3084 fma 1 999999 1 -> 1000000
dqadd3085 fma 1 99999 1 -> 100000
dqadd3086 fma 1 9999 1 -> 10000
dqadd3087 fma 1 999 1 -> 1000
dqadd3088 fma 1 99 1 -> 100
dqadd3089 fma 1 9 1 -> 10
-- more LHS swaps
dqadd3090 fma 1 '-56267E-10' 0 -> '-0.0000056267'
dqadd3091 fma 1 '-56267E-6' 0 -> '-0.056267'
dqadd3092 fma 1 '-56267E-5' 0 -> '-0.56267'
dqadd3093 fma 1 '-56267E-4' 0 -> '-5.6267'
dqadd3094 fma 1 '-56267E-3' 0 -> '-56.267'
dqadd3095 fma 1 '-56267E-2' 0 -> '-562.67'
dqadd3096 fma 1 '-56267E-1' 0 -> '-5626.7'
dqadd3097 fma 1 '-56267E-0' 0 -> '-56267'
dqadd3098 fma 1 '-5E-10' 0 -> '-5E-10'
dqadd3099 fma 1 '-5E-7' 0 -> '-5E-7'
dqadd3100 fma 1 '-5E-6' 0 -> '-0.000005'
dqadd3101 fma 1 '-5E-5' 0 -> '-0.00005'
dqadd3102 fma 1 '-5E-4' 0 -> '-0.0005'
dqadd3103 fma 1 '-5E-1' 0 -> '-0.5'
dqadd3104 fma 1 '-5E0' 0 -> '-5'
dqadd3105 fma 1 '-5E1' 0 -> '-50'
dqadd3106 fma 1 '-5E5' 0 -> '-500000'
dqadd3107 fma 1 '-5E33' 0 -> '-5000000000000000000000000000000000'
dqadd3108 fma 1 '-5E34' 0 -> '-5.000000000000000000000000000000000E+34' Rounded
dqadd3109 fma 1 '-5E35' 0 -> '-5.000000000000000000000000000000000E+35' Rounded
dqadd3110 fma 1 '-5E36' 0 -> '-5.000000000000000000000000000000000E+36' Rounded
dqadd3111 fma 1 '-5E100' 0 -> '-5.000000000000000000000000000000000E+100' Rounded
-- more RHS swaps
dqadd3113 fma 1 0 '-56267E-10' -> '-0.0000056267'
dqadd3114 fma 1 0 '-56267E-6' -> '-0.056267'
dqadd3116 fma 1 0 '-56267E-5' -> '-0.56267'
dqadd3117 fma 1 0 '-56267E-4' -> '-5.6267'
dqadd3119 fma 1 0 '-56267E-3' -> '-56.267'
dqadd3120 fma 1 0 '-56267E-2' -> '-562.67'
dqadd3121 fma 1 0 '-56267E-1' -> '-5626.7'
dqadd3122 fma 1 0 '-56267E-0' -> '-56267'
dqadd3123 fma 1 0 '-5E-10' -> '-5E-10'
dqadd3124 fma 1 0 '-5E-7' -> '-5E-7'
dqadd3125 fma 1 0 '-5E-6' -> '-0.000005'
dqadd3126 fma 1 0 '-5E-5' -> '-0.00005'
dqadd3127 fma 1 0 '-5E-4' -> '-0.0005'
dqadd3128 fma 1 0 '-5E-1' -> '-0.5'
dqadd3129 fma 1 0 '-5E0' -> '-5'
dqadd3130 fma 1 0 '-5E1' -> '-50'
dqadd3131 fma 1 0 '-5E5' -> '-500000'
dqadd3132 fma 1 0 '-5E33' -> '-5000000000000000000000000000000000'
dqadd3133 fma 1 0 '-5E34' -> '-5.000000000000000000000000000000000E+34' Rounded
dqadd3134 fma 1 0 '-5E35' -> '-5.000000000000000000000000000000000E+35' Rounded
dqadd3135 fma 1 0 '-5E36' -> '-5.000000000000000000000000000000000E+36' Rounded
dqadd3136 fma 1 0 '-5E100' -> '-5.000000000000000000000000000000000E+100' Rounded
-- related
dqadd3137 fma 1 1 '0E-39' -> '1.000000000000000000000000000000000' Rounded
dqadd3138 fma 1 -1 '0E-39' -> '-1.000000000000000000000000000000000' Rounded
dqadd3139 fma 1 '0E-39' 1 -> '1.000000000000000000000000000000000' Rounded
dqadd3140 fma 1 '0E-39' -1 -> '-1.000000000000000000000000000000000' Rounded
dqadd3141 fma 1 1E+29 0.0000 -> '100000000000000000000000000000.0000'
dqadd3142 fma 1 1E+29 0.00000 -> '100000000000000000000000000000.0000' Rounded
dqadd3143 fma 1 0.000 1E+30 -> '1000000000000000000000000000000.000'
dqadd3144 fma 1 0.0000 1E+30 -> '1000000000000000000000000000000.000' Rounded
-- [some of the next group are really constructor tests]
dqadd3146 fma 1 '00.0' 0 -> '0.0'
dqadd3147 fma 1 '0.00' 0 -> '0.00'
dqadd3148 fma 1 0 '0.00' -> '0.00'
dqadd3149 fma 1 0 '00.0' -> '0.0'
dqadd3150 fma 1 '00.0' '0.00' -> '0.00'
dqadd3151 fma 1 '0.00' '00.0' -> '0.00'
dqadd3152 fma 1 '3' '.3' -> '3.3'
dqadd3153 fma 1 '3.' '.3' -> '3.3'
dqadd3154 fma 1 '3.0' '.3' -> '3.3'
dqadd3155 fma 1 '3.00' '.3' -> '3.30'
dqadd3156 fma 1 '3' '3' -> '6'
dqadd3157 fma 1 '3' '+3' -> '6'
dqadd3158 fma 1 '3' '-3' -> '0'
dqadd3159 fma 1 '0.3' '-0.3' -> '0.0'
dqadd3160 fma 1 '0.03' '-0.03' -> '0.00'
-- try borderline precision, with carries, etc.
dqadd3161 fma 1 '1E+12' '-1' -> '999999999999'
dqadd3162 fma 1 '1E+12' '1.11' -> '1000000000001.11'
dqadd3163 fma 1 '1.11' '1E+12' -> '1000000000001.11'
dqadd3164 fma 1 '-1' '1E+12' -> '999999999999'
dqadd3165 fma 1 '7E+12' '-1' -> '6999999999999'
dqadd3166 fma 1 '7E+12' '1.11' -> '7000000000001.11'
dqadd3167 fma 1 '1.11' '7E+12' -> '7000000000001.11'
dqadd3168 fma 1 '-1' '7E+12' -> '6999999999999'
rounding: half_up
dqadd3170 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555567' -> '5.000000000000000000000000000000001' Inexact Rounded
dqadd3171 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555566' -> '5.000000000000000000000000000000001' Inexact Rounded
dqadd3172 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555565' -> '5.000000000000000000000000000000001' Inexact Rounded
dqadd3173 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555564' -> '5.000000000000000000000000000000000' Inexact Rounded
dqadd3174 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555553' -> '4.999999999999999999999999999999999' Inexact Rounded
dqadd3175 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555552' -> '4.999999999999999999999999999999999' Inexact Rounded
dqadd3176 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555551' -> '4.999999999999999999999999999999999' Inexact Rounded
dqadd3177 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555550' -> '4.999999999999999999999999999999999' Rounded
dqadd3178 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555545' -> '4.999999999999999999999999999999999' Inexact Rounded
dqadd3179 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555544' -> '4.999999999999999999999999999999998' Inexact Rounded
dqadd3180 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555543' -> '4.999999999999999999999999999999998' Inexact Rounded
dqadd3181 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555542' -> '4.999999999999999999999999999999998' Inexact Rounded
dqadd3182 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555541' -> '4.999999999999999999999999999999998' Inexact Rounded
dqadd3183 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555540' -> '4.999999999999999999999999999999998' Rounded
-- and some more, including residue effects and different roundings
rounding: half_up
dqadd3200 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789'
dqadd3201 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3202 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3203 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3204 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3205 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3206 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3207 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3208 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3209 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3210 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3211 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3212 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3213 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3214 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3215 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3216 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790'
dqadd3217 fma 1 '1231234567890123456784560123456789' 1.000000001 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3218 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3219 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded
rounding: half_even
dqadd3220 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789'
dqadd3221 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3222 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3223 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3224 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3225 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3226 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3227 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3228 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3229 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3230 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3231 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3232 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3233 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3234 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3235 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3236 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790'
dqadd3237 fma 1 '1231234567890123456784560123456789' 1.00000001 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3238 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3239 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded
-- critical few with even bottom digit...
dqadd3240 fma 1 '1231234567890123456784560123456788' 0.499999999 -> '1231234567890123456784560123456788' Inexact Rounded
dqadd3241 fma 1 '1231234567890123456784560123456788' 0.5 -> '1231234567890123456784560123456788' Inexact Rounded
dqadd3242 fma 1 '1231234567890123456784560123456788' 0.500000001 -> '1231234567890123456784560123456789' Inexact Rounded
rounding: down
dqadd3250 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789'
dqadd3251 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3252 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3253 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3254 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3255 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3256 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3257 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3258 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3259 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3260 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3261 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3262 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3263 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3264 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3265 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456789' Inexact Rounded
dqadd3266 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790'
dqadd3267 fma 1 '1231234567890123456784560123456789' 1.00000001 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3268 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded
dqadd3269 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded
-- 1 in last place tests
rounding: half_up
dqadd3301 fma 1 -1 1 -> 0
dqadd3302 fma 1 0 1 -> 1
dqadd3303 fma 1 1 1 -> 2
dqadd3304 fma 1 12 1 -> 13
dqadd3305 fma 1 98 1 -> 99
dqadd3306 fma 1 99 1 -> 100
dqadd3307 fma 1 100 1 -> 101
dqadd3308 fma 1 101 1 -> 102
dqadd3309 fma 1 -1 -1 -> -2
dqadd3310 fma 1 0 -1 -> -1
dqadd3311 fma 1 1 -1 -> 0
dqadd3312 fma 1 12 -1 -> 11
dqadd3313 fma 1 98 -1 -> 97
dqadd3314 fma 1 99 -1 -> 98
dqadd3315 fma 1 100 -1 -> 99
dqadd3316 fma 1 101 -1 -> 100
dqadd3321 fma 1 -0.01 0.01 -> 0.00
dqadd3322 fma 1 0.00 0.01 -> 0.01
dqadd3323 fma 1 0.01 0.01 -> 0.02
dqadd3324 fma 1 0.12 0.01 -> 0.13
dqadd3325 fma 1 0.98 0.01 -> 0.99
dqadd3326 fma 1 0.99 0.01 -> 1.00
dqadd3327 fma 1 1.00 0.01 -> 1.01
dqadd3328 fma 1 1.01 0.01 -> 1.02
dqadd3329 fma 1 -0.01 -0.01 -> -0.02
dqadd3330 fma 1 0.00 -0.01 -> -0.01
dqadd3331 fma 1 0.01 -0.01 -> 0.00
dqadd3332 fma 1 0.12 -0.01 -> 0.11
dqadd3333 fma 1 0.98 -0.01 -> 0.97
dqadd3334 fma 1 0.99 -0.01 -> 0.98
dqadd3335 fma 1 1.00 -0.01 -> 0.99
dqadd3336 fma 1 1.01 -0.01 -> 1.00
-- some more cases where adding 0 affects the coefficient
dqadd3340 fma 1 1E+3 0 -> 1000
dqadd3341 fma 1 1E+33 0 -> 1000000000000000000000000000000000
dqadd3342 fma 1 1E+34 0 -> 1.000000000000000000000000000000000E+34 Rounded
dqadd3343 fma 1 1E+35 0 -> 1.000000000000000000000000000000000E+35 Rounded
-- which simply follow from these cases ...
dqadd3344 fma 1 1E+3 1 -> 1001
dqadd3345 fma 1 1E+33 1 -> 1000000000000000000000000000000001
dqadd3346 fma 1 1E+34 1 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd3347 fma 1 1E+35 1 -> 1.000000000000000000000000000000000E+35 Inexact Rounded
dqadd3348 fma 1 1E+3 7 -> 1007
dqadd3349 fma 1 1E+33 7 -> 1000000000000000000000000000000007
dqadd3350 fma 1 1E+34 7 -> 1.000000000000000000000000000000001E+34 Inexact Rounded
dqadd3351 fma 1 1E+35 7 -> 1.000000000000000000000000000000000E+35 Inexact Rounded
-- tryzeros cases
rounding: half_up
dqadd3360 fma 1 0E+50 10000E+1 -> 1.0000E+5
dqadd3361 fma 1 0E-50 10000E+1 -> 100000.0000000000000000000000000000 Rounded
dqadd3362 fma 1 10000E+1 0E-50 -> 100000.0000000000000000000000000000 Rounded
dqadd3363 fma 1 10000E+1 10000E-50 -> 100000.0000000000000000000000000000 Rounded Inexact
dqadd3364 fma 1 9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> 0E+6111
-- 1 234567890123456789012345678901234
-- a curiosity from JSR 13 testing
rounding: half_down
dqadd3370 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814
dqadd3371 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact
rounding: half_up
dqadd3372 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814
dqadd3373 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact
rounding: half_even
dqadd3374 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814
dqadd3375 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact
-- ulp replacement tests
dqadd3400 fma 1 1 77e-32 -> 1.00000000000000000000000000000077
dqadd3401 fma 1 1 77e-33 -> 1.000000000000000000000000000000077
dqadd3402 fma 1 1 77e-34 -> 1.000000000000000000000000000000008 Inexact Rounded
dqadd3403 fma 1 1 77e-35 -> 1.000000000000000000000000000000001 Inexact Rounded
dqadd3404 fma 1 1 77e-36 -> 1.000000000000000000000000000000000 Inexact Rounded
dqadd3405 fma 1 1 77e-37 -> 1.000000000000000000000000000000000 Inexact Rounded
dqadd3406 fma 1 1 77e-299 -> 1.000000000000000000000000000000000 Inexact Rounded
dqadd3410 fma 1 10 77e-32 -> 10.00000000000000000000000000000077
dqadd3411 fma 1 10 77e-33 -> 10.00000000000000000000000000000008 Inexact Rounded
dqadd3412 fma 1 10 77e-34 -> 10.00000000000000000000000000000001 Inexact Rounded
dqadd3413 fma 1 10 77e-35 -> 10.00000000000000000000000000000000 Inexact Rounded
dqadd3414 fma 1 10 77e-36 -> 10.00000000000000000000000000000000 Inexact Rounded
dqadd3415 fma 1 10 77e-37 -> 10.00000000000000000000000000000000 Inexact Rounded
dqadd3416 fma 1 10 77e-299 -> 10.00000000000000000000000000000000 Inexact Rounded
dqadd3420 fma 1 77e-32 1 -> 1.00000000000000000000000000000077
dqadd3421 fma 1 77e-33 1 -> 1.000000000000000000000000000000077
dqadd3422 fma 1 77e-34 1 -> 1.000000000000000000000000000000008 Inexact Rounded
dqadd3423 fma 1 77e-35 1 -> 1.000000000000000000000000000000001 Inexact Rounded
dqadd3424 fma 1 77e-36 1 -> 1.000000000000000000000000000000000 Inexact Rounded
dqadd3425 fma 1 77e-37 1 -> 1.000000000000000000000000000000000 Inexact Rounded
dqadd3426 fma 1 77e-299 1 -> 1.000000000000000000000000000000000 Inexact Rounded
dqadd3430 fma 1 77e-32 10 -> 10.00000000000000000000000000000077
dqadd3431 fma 1 77e-33 10 -> 10.00000000000000000000000000000008 Inexact Rounded
dqadd3432 fma 1 77e-34 10 -> 10.00000000000000000000000000000001 Inexact Rounded
dqadd3433 fma 1 77e-35 10 -> 10.00000000000000000000000000000000 Inexact Rounded
dqadd3434 fma 1 77e-36 10 -> 10.00000000000000000000000000000000 Inexact Rounded
dqadd3435 fma 1 77e-37 10 -> 10.00000000000000000000000000000000 Inexact Rounded
dqadd3436 fma 1 77e-299 10 -> 10.00000000000000000000000000000000 Inexact Rounded
-- negative ulps
dqadd36440 fma 1 1 -77e-32 -> 0.99999999999999999999999999999923
dqadd36441 fma 1 1 -77e-33 -> 0.999999999999999999999999999999923
dqadd36442 fma 1 1 -77e-34 -> 0.9999999999999999999999999999999923
dqadd36443 fma 1 1 -77e-35 -> 0.9999999999999999999999999999999992 Inexact Rounded
dqadd36444 fma 1 1 -77e-36 -> 0.9999999999999999999999999999999999 Inexact Rounded
dqadd36445 fma 1 1 -77e-37 -> 1.000000000000000000000000000000000 Inexact Rounded
dqadd36446 fma 1 1 -77e-99 -> 1.000000000000000000000000000000000 Inexact Rounded
dqadd36450 fma 1 10 -77e-32 -> 9.99999999999999999999999999999923
dqadd36451 fma 1 10 -77e-33 -> 9.999999999999999999999999999999923
dqadd36452 fma 1 10 -77e-34 -> 9.999999999999999999999999999999992 Inexact Rounded
dqadd36453 fma 1 10 -77e-35 -> 9.999999999999999999999999999999999 Inexact Rounded
dqadd36454 fma 1 10 -77e-36 -> 10.00000000000000000000000000000000 Inexact Rounded
dqadd36455 fma 1 10 -77e-37 -> 10.00000000000000000000000000000000 Inexact Rounded
dqadd36456 fma 1 10 -77e-99 -> 10.00000000000000000000000000000000 Inexact Rounded
dqadd36460 fma 1 -77e-32 1 -> 0.99999999999999999999999999999923
dqadd36461 fma 1 -77e-33 1 -> 0.999999999999999999999999999999923
dqadd36462 fma 1 -77e-34 1 -> 0.9999999999999999999999999999999923
dqadd36463 fma 1 -77e-35 1 -> 0.9999999999999999999999999999999992 Inexact Rounded
dqadd36464 fma 1 -77e-36 1 -> 0.9999999999999999999999999999999999 Inexact Rounded
dqadd36465 fma 1 -77e-37 1 -> 1.000000000000000000000000000000000 Inexact Rounded
dqadd36466 fma 1 -77e-99 1 -> 1.000000000000000000000000000000000 Inexact Rounded
dqadd36470 fma 1 -77e-32 10 -> 9.99999999999999999999999999999923
dqadd36471 fma 1 -77e-33 10 -> 9.999999999999999999999999999999923
dqadd36472 fma 1 -77e-34 10 -> 9.999999999999999999999999999999992 Inexact Rounded
dqadd36473 fma 1 -77e-35 10 -> 9.999999999999999999999999999999999 Inexact Rounded
dqadd36474 fma 1 -77e-36 10 -> 10.00000000000000000000000000000000 Inexact Rounded
dqadd36475 fma 1 -77e-37 10 -> 10.00000000000000000000000000000000 Inexact Rounded
dqadd36476 fma 1 -77e-99 10 -> 10.00000000000000000000000000000000 Inexact Rounded
-- negative ulps
dqadd36480 fma 1 -1 77e-32 -> -0.99999999999999999999999999999923
dqadd36481 fma 1 -1 77e-33 -> -0.999999999999999999999999999999923
dqadd36482 fma 1 -1 77e-34 -> -0.9999999999999999999999999999999923
dqadd36483 fma 1 -1 77e-35 -> -0.9999999999999999999999999999999992 Inexact Rounded
dqadd36484 fma 1 -1 77e-36 -> -0.9999999999999999999999999999999999 Inexact Rounded
dqadd36485 fma 1 -1 77e-37 -> -1.000000000000000000000000000000000 Inexact Rounded
dqadd36486 fma 1 -1 77e-99 -> -1.000000000000000000000000000000000 Inexact Rounded
dqadd36490 fma 1 -10 77e-32 -> -9.99999999999999999999999999999923
dqadd36491 fma 1 -10 77e-33 -> -9.999999999999999999999999999999923
dqadd36492 fma 1 -10 77e-34 -> -9.999999999999999999999999999999992 Inexact Rounded
dqadd36493 fma 1 -10 77e-35 -> -9.999999999999999999999999999999999 Inexact Rounded
dqadd36494 fma 1 -10 77e-36 -> -10.00000000000000000000000000000000 Inexact Rounded
dqadd36495 fma 1 -10 77e-37 -> -10.00000000000000000000000000000000 Inexact Rounded
dqadd36496 fma 1 -10 77e-99 -> -10.00000000000000000000000000000000 Inexact Rounded
dqadd36500 fma 1 77e-32 -1 -> -0.99999999999999999999999999999923
dqadd36501 fma 1 77e-33 -1 -> -0.999999999999999999999999999999923
dqadd36502 fma 1 77e-34 -1 -> -0.9999999999999999999999999999999923
dqadd36503 fma 1 77e-35 -1 -> -0.9999999999999999999999999999999992 Inexact Rounded
dqadd36504 fma 1 77e-36 -1 -> -0.9999999999999999999999999999999999 Inexact Rounded
dqadd36505 fma 1 77e-37 -1 -> -1.000000000000000000000000000000000 Inexact Rounded
dqadd36506 fma 1 77e-99 -1 -> -1.000000000000000000000000000000000 Inexact Rounded
dqadd36510 fma 1 77e-32 -10 -> -9.99999999999999999999999999999923
dqadd36511 fma 1 77e-33 -10 -> -9.999999999999999999999999999999923
dqadd36512 fma 1 77e-34 -10 -> -9.999999999999999999999999999999992 Inexact Rounded
dqadd36513 fma 1 77e-35 -10 -> -9.999999999999999999999999999999999 Inexact Rounded
dqadd36514 fma 1 77e-36 -10 -> -10.00000000000000000000000000000000 Inexact Rounded
dqadd36515 fma 1 77e-37 -10 -> -10.00000000000000000000000000000000 Inexact Rounded
dqadd36516 fma 1 77e-99 -10 -> -10.00000000000000000000000000000000 Inexact Rounded
-- and some more residue effects and different roundings
rounding: half_up
dqadd36540 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789'
dqadd36541 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd36542 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd36543 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd36544 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd36545 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd36546 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd36547 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd36548 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36549 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36550 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36551 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36552 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36553 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36554 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36555 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36556 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790'
dqadd36557 fma 1 '9876543219876543216543210123456789' 1.000000001 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36558 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36559 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded
rounding: half_even
dqadd36560 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789'
dqadd36561 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd36562 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd36563 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd36564 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd36565 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd36566 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd36567 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd36568 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36569 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36570 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36571 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36572 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36573 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36574 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36575 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36576 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790'
dqadd36577 fma 1 '9876543219876543216543210123456789' 1.00000001 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36578 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd36579 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded
-- critical few with even bottom digit...
dqadd37540 fma 1 '9876543219876543216543210123456788' 0.499999999 -> '9876543219876543216543210123456788' Inexact Rounded
dqadd37541 fma 1 '9876543219876543216543210123456788' 0.5 -> '9876543219876543216543210123456788' Inexact Rounded
dqadd37542 fma 1 '9876543219876543216543210123456788' 0.500000001 -> '9876543219876543216543210123456789' Inexact Rounded
rounding: down
dqadd37550 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789'
dqadd37551 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd37552 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd37553 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd37554 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd37555 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd37556 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd37557 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd37558 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd37559 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd37560 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd37561 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd37562 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd37563 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd37564 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd37565 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456789' Inexact Rounded
dqadd37566 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790'
dqadd37567 fma 1 '9876543219876543216543210123456789' 1.00000001 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd37568 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded
dqadd37569 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded
-- more zeros, etc.
rounding: half_even
dqadd37701 fma 1 5.00 1.00E-3 -> 5.00100
dqadd37702 fma 1 00.00 0.000 -> 0.000
dqadd37703 fma 1 00.00 0E-3 -> 0.000
dqadd37704 fma 1 0E-3 00.00 -> 0.000
dqadd37710 fma 1 0E+3 00.00 -> 0.00
dqadd37711 fma 1 0E+3 00.0 -> 0.0
dqadd37712 fma 1 0E+3 00. -> 0
dqadd37713 fma 1 0E+3 00.E+1 -> 0E+1
dqadd37714 fma 1 0E+3 00.E+2 -> 0E+2
dqadd37715 fma 1 0E+3 00.E+3 -> 0E+3
dqadd37716 fma 1 0E+3 00.E+4 -> 0E+3
dqadd37717 fma 1 0E+3 00.E+5 -> 0E+3
dqadd37718 fma 1 0E+3 -00.0 -> 0.0
dqadd37719 fma 1 0E+3 -00. -> 0
dqadd37731 fma 1 0E+3 -00.E+1 -> 0E+1
dqadd37720 fma 1 00.00 0E+3 -> 0.00
dqadd37721 fma 1 00.0 0E+3 -> 0.0
dqadd37722 fma 1 00. 0E+3 -> 0
dqadd37723 fma 1 00.E+1 0E+3 -> 0E+1
dqadd37724 fma 1 00.E+2 0E+3 -> 0E+2
dqadd37725 fma 1 00.E+3 0E+3 -> 0E+3
dqadd37726 fma 1 00.E+4 0E+3 -> 0E+3
dqadd37727 fma 1 00.E+5 0E+3 -> 0E+3
dqadd37728 fma 1 -00.00 0E+3 -> 0.00
dqadd37729 fma 1 -00.0 0E+3 -> 0.0
dqadd37730 fma 1 -00. 0E+3 -> 0
dqadd37732 fma 1 0 0 -> 0
dqadd37733 fma 1 0 -0 -> 0
dqadd37734 fma 1 -0 0 -> 0
dqadd37735 fma 1 -0 -0 -> -0 -- IEEE 854 special case
dqadd37736 fma 1 1 -1 -> 0
dqadd37737 fma 1 -1 -1 -> -2
dqadd37738 fma 1 1 1 -> 2
dqadd37739 fma 1 -1 1 -> 0
dqadd37741 fma 1 0 -1 -> -1
dqadd37742 fma 1 -0 -1 -> -1
dqadd37743 fma 1 0 1 -> 1
dqadd37744 fma 1 -0 1 -> 1
dqadd37745 fma 1 -1 0 -> -1
dqadd37746 fma 1 -1 -0 -> -1
dqadd37747 fma 1 1 0 -> 1
dqadd37748 fma 1 1 -0 -> 1
dqadd37751 fma 1 0.0 -1 -> -1.0
dqadd37752 fma 1 -0.0 -1 -> -1.0
dqadd37753 fma 1 0.0 1 -> 1.0
dqadd37754 fma 1 -0.0 1 -> 1.0
dqadd37755 fma 1 -1.0 0 -> -1.0
dqadd37756 fma 1 -1.0 -0 -> -1.0
dqadd37757 fma 1 1.0 0 -> 1.0
dqadd37758 fma 1 1.0 -0 -> 1.0
dqadd37761 fma 1 0 -1.0 -> -1.0
dqadd37762 fma 1 -0 -1.0 -> -1.0
dqadd37763 fma 1 0 1.0 -> 1.0
dqadd37764 fma 1 -0 1.0 -> 1.0
dqadd37765 fma 1 -1 0.0 -> -1.0
dqadd37766 fma 1 -1 -0.0 -> -1.0
dqadd37767 fma 1 1 0.0 -> 1.0
dqadd37768 fma 1 1 -0.0 -> 1.0
dqadd37771 fma 1 0.0 -1.0 -> -1.0
dqadd37772 fma 1 -0.0 -1.0 -> -1.0
dqadd37773 fma 1 0.0 1.0 -> 1.0
dqadd37774 fma 1 -0.0 1.0 -> 1.0
dqadd37775 fma 1 -1.0 0.0 -> -1.0
dqadd37776 fma 1 -1.0 -0.0 -> -1.0
dqadd37777 fma 1 1.0 0.0 -> 1.0
dqadd37778 fma 1 1.0 -0.0 -> 1.0
-- Specials
dqadd37780 fma 1 -Inf -Inf -> -Infinity
dqadd37781 fma 1 -Inf -1000 -> -Infinity
dqadd37782 fma 1 -Inf -1 -> -Infinity
dqadd37783 fma 1 -Inf -0 -> -Infinity
dqadd37784 fma 1 -Inf 0 -> -Infinity
dqadd37785 fma 1 -Inf 1 -> -Infinity
dqadd37786 fma 1 -Inf 1000 -> -Infinity
dqadd37787 fma 1 -1000 -Inf -> -Infinity
dqadd37788 fma 1 -Inf -Inf -> -Infinity
dqadd37789 fma 1 -1 -Inf -> -Infinity
dqadd37790 fma 1 -0 -Inf -> -Infinity
dqadd37791 fma 1 0 -Inf -> -Infinity
dqadd37792 fma 1 1 -Inf -> -Infinity
dqadd37793 fma 1 1000 -Inf -> -Infinity
dqadd37794 fma 1 Inf -Inf -> NaN Invalid_operation
dqadd37800 fma 1 Inf -Inf -> NaN Invalid_operation
dqadd37801 fma 1 Inf -1000 -> Infinity
dqadd37802 fma 1 Inf -1 -> Infinity
dqadd37803 fma 1 Inf -0 -> Infinity
dqadd37804 fma 1 Inf 0 -> Infinity
dqadd37805 fma 1 Inf 1 -> Infinity
dqadd37806 fma 1 Inf 1000 -> Infinity
dqadd37807 fma 1 Inf Inf -> Infinity
dqadd37808 fma 1 -1000 Inf -> Infinity
dqadd37809 fma 1 -Inf Inf -> NaN Invalid_operation
dqadd37810 fma 1 -1 Inf -> Infinity
dqadd37811 fma 1 -0 Inf -> Infinity
dqadd37812 fma 1 0 Inf -> Infinity
dqadd37813 fma 1 1 Inf -> Infinity
dqadd37814 fma 1 1000 Inf -> Infinity
dqadd37815 fma 1 Inf Inf -> Infinity
dqadd37821 fma 1 NaN -Inf -> NaN
dqadd37822 fma 1 NaN -1000 -> NaN
dqadd37823 fma 1 NaN -1 -> NaN
dqadd37824 fma 1 NaN -0 -> NaN
dqadd37825 fma 1 NaN 0 -> NaN
dqadd37826 fma 1 NaN 1 -> NaN
dqadd37827 fma 1 NaN 1000 -> NaN
dqadd37828 fma 1 NaN Inf -> NaN
dqadd37829 fma 1 NaN NaN -> NaN
dqadd37830 fma 1 -Inf NaN -> NaN
dqadd37831 fma 1 -1000 NaN -> NaN
dqadd37832 fma 1 -1 NaN -> NaN
dqadd37833 fma 1 -0 NaN -> NaN
dqadd37834 fma 1 0 NaN -> NaN
dqadd37835 fma 1 1 NaN -> NaN
dqadd37836 fma 1 1000 NaN -> NaN
dqadd37837 fma 1 Inf NaN -> NaN
dqadd37841 fma 1 sNaN -Inf -> NaN Invalid_operation
dqadd37842 fma 1 sNaN -1000 -> NaN Invalid_operation
dqadd37843 fma 1 sNaN -1 -> NaN Invalid_operation
dqadd37844 fma 1 sNaN -0 -> NaN Invalid_operation
dqadd37845 fma 1 sNaN 0 -> NaN Invalid_operation
dqadd37846 fma 1 sNaN 1 -> NaN Invalid_operation
dqadd37847 fma 1 sNaN 1000 -> NaN Invalid_operation
dqadd37848 fma 1 sNaN NaN -> NaN Invalid_operation
dqadd37849 fma 1 sNaN sNaN -> NaN Invalid_operation
dqadd37850 fma 1 NaN sNaN -> NaN Invalid_operation
dqadd37851 fma 1 -Inf sNaN -> NaN Invalid_operation
dqadd37852 fma 1 -1000 sNaN -> NaN Invalid_operation
dqadd37853 fma 1 -1 sNaN -> NaN Invalid_operation
dqadd37854 fma 1 -0 sNaN -> NaN Invalid_operation
dqadd37855 fma 1 0 sNaN -> NaN Invalid_operation
dqadd37856 fma 1 1 sNaN -> NaN Invalid_operation
dqadd37857 fma 1 1000 sNaN -> NaN Invalid_operation
dqadd37858 fma 1 Inf sNaN -> NaN Invalid_operation
dqadd37859 fma 1 NaN sNaN -> NaN Invalid_operation
-- propagating NaNs
dqadd37861 fma 1 NaN1 -Inf -> NaN1
dqadd37862 fma 1 +NaN2 -1000 -> NaN2
dqadd37863 fma 1 NaN3 1000 -> NaN3
dqadd37864 fma 1 NaN4 Inf -> NaN4
dqadd37865 fma 1 NaN5 +NaN6 -> NaN5
dqadd37866 fma 1 -Inf NaN7 -> NaN7
dqadd37867 fma 1 -1000 NaN8 -> NaN8
dqadd37868 fma 1 1000 NaN9 -> NaN9
dqadd37869 fma 1 Inf +NaN10 -> NaN10
dqadd37871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation
dqadd37872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation
dqadd37873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation
dqadd37874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation
dqadd37875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation
dqadd37876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation
dqadd37877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation
dqadd37878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation
dqadd37879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation
dqadd37880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation
dqadd37881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation
dqadd37882 fma 1 -NaN26 NaN28 -> -NaN26
dqadd37883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation
dqadd37884 fma 1 1000 -NaN30 -> -NaN30
dqadd37885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation
-- Here we explore near the boundary of rounding a subnormal to Nmin
dqadd37575 fma 1 1E-6143 -1E-6176 -> 9.99999999999999999999999999999999E-6144 Subnormal
dqadd37576 fma 1 -1E-6143 +1E-6176 -> -9.99999999999999999999999999999999E-6144 Subnormal
-- check overflow edge case
-- 1234567890123456
dqadd37972 apply 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144
dqadd37973 fma 1 9.999999999999999999999999999999999E+6144 1 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
dqadd37974 fma 1 9999999999999999999999999999999999E+6111 1 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
dqadd37975 fma 1 9999999999999999999999999999999999E+6111 1E+6111 -> Infinity Overflow Inexact Rounded
dqadd37976 fma 1 9999999999999999999999999999999999E+6111 9E+6110 -> Infinity Overflow Inexact Rounded
dqadd37977 fma 1 9999999999999999999999999999999999E+6111 8E+6110 -> Infinity Overflow Inexact Rounded
dqadd37978 fma 1 9999999999999999999999999999999999E+6111 7E+6110 -> Infinity Overflow Inexact Rounded
dqadd37979 fma 1 9999999999999999999999999999999999E+6111 6E+6110 -> Infinity Overflow Inexact Rounded
dqadd37980 fma 1 9999999999999999999999999999999999E+6111 5E+6110 -> Infinity Overflow Inexact Rounded
dqadd37981 fma 1 9999999999999999999999999999999999E+6111 4E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
dqadd37982 fma 1 9999999999999999999999999999999999E+6111 3E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
dqadd37983 fma 1 9999999999999999999999999999999999E+6111 2E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
dqadd37984 fma 1 9999999999999999999999999999999999E+6111 1E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
dqadd37985 apply -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144
dqadd37986 fma 1 -9.999999999999999999999999999999999E+6144 -1 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
dqadd37987 fma 1 -9999999999999999999999999999999999E+6111 -1 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
dqadd37988 fma 1 -9999999999999999999999999999999999E+6111 -1E+6111 -> -Infinity Overflow Inexact Rounded
dqadd37989 fma 1 -9999999999999999999999999999999999E+6111 -9E+6110 -> -Infinity Overflow Inexact Rounded
dqadd37990 fma 1 -9999999999999999999999999999999999E+6111 -8E+6110 -> -Infinity Overflow Inexact Rounded
dqadd37991 fma 1 -9999999999999999999999999999999999E+6111 -7E+6110 -> -Infinity Overflow Inexact Rounded
dqadd37992 fma 1 -9999999999999999999999999999999999E+6111 -6E+6110 -> -Infinity Overflow Inexact Rounded
dqadd37993 fma 1 -9999999999999999999999999999999999E+6111 -5E+6110 -> -Infinity Overflow Inexact Rounded
dqadd37994 fma 1 -9999999999999999999999999999999999E+6111 -4E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
dqadd37995 fma 1 -9999999999999999999999999999999999E+6111 -3E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
dqadd37996 fma 1 -9999999999999999999999999999999999E+6111 -2E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
dqadd37997 fma 1 -9999999999999999999999999999999999E+6111 -1E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
-- And for round down full and subnormal results
rounding: down
dqadd371100 fma 1 1e+2 -1e-6143 -> 99.99999999999999999999999999999999 Rounded Inexact
dqadd371101 fma 1 1e+1 -1e-6143 -> 9.999999999999999999999999999999999 Rounded Inexact
dqadd371103 fma 1 +1 -1e-6143 -> 0.9999999999999999999999999999999999 Rounded Inexact
dqadd371104 fma 1 1e-1 -1e-6143 -> 0.09999999999999999999999999999999999 Rounded Inexact
dqadd371105 fma 1 1e-2 -1e-6143 -> 0.009999999999999999999999999999999999 Rounded Inexact
dqadd371106 fma 1 1e-3 -1e-6143 -> 0.0009999999999999999999999999999999999 Rounded Inexact
dqadd371107 fma 1 1e-4 -1e-6143 -> 0.00009999999999999999999999999999999999 Rounded Inexact
dqadd371108 fma 1 1e-5 -1e-6143 -> 0.000009999999999999999999999999999999999 Rounded Inexact
dqadd371109 fma 1 1e-6 -1e-6143 -> 9.999999999999999999999999999999999E-7 Rounded Inexact
rounding: ceiling
dqadd371110 fma 1 -1e+2 +1e-6143 -> -99.99999999999999999999999999999999 Rounded Inexact
dqadd371111 fma 1 -1e+1 +1e-6143 -> -9.999999999999999999999999999999999 Rounded Inexact
dqadd371113 fma 1 -1 +1e-6143 -> -0.9999999999999999999999999999999999 Rounded Inexact
dqadd371114 fma 1 -1e-1 +1e-6143 -> -0.09999999999999999999999999999999999 Rounded Inexact
dqadd371115 fma 1 -1e-2 +1e-6143 -> -0.009999999999999999999999999999999999 Rounded Inexact
dqadd371116 fma 1 -1e-3 +1e-6143 -> -0.0009999999999999999999999999999999999 Rounded Inexact
dqadd371117 fma 1 -1e-4 +1e-6143 -> -0.00009999999999999999999999999999999999 Rounded Inexact
dqadd371118 fma 1 -1e-5 +1e-6143 -> -0.000009999999999999999999999999999999999 Rounded Inexact
dqadd371119 fma 1 -1e-6 +1e-6143 -> -9.999999999999999999999999999999999E-7 Rounded Inexact
-- tests based on Gunnar Degnbol's edge case
rounding: half_even
dqadd371300 fma 1 1E34 -0.5 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371310 fma 1 1E34 -0.51 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371311 fma 1 1E34 -0.501 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371312 fma 1 1E34 -0.5001 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371313 fma 1 1E34 -0.50001 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371314 fma 1 1E34 -0.500001 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371315 fma 1 1E34 -0.5000001 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371316 fma 1 1E34 -0.50000001 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371317 fma 1 1E34 -0.500000001 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371318 fma 1 1E34 -0.5000000001 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371319 fma 1 1E34 -0.50000000001 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371320 fma 1 1E34 -0.500000000001 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371321 fma 1 1E34 -0.5000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371322 fma 1 1E34 -0.50000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371323 fma 1 1E34 -0.500000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371324 fma 1 1E34 -0.5000000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371325 fma 1 1E34 -0.5000000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371326 fma 1 1E34 -0.500000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371327 fma 1 1E34 -0.50000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371328 fma 1 1E34 -0.5000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371329 fma 1 1E34 -0.500000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371330 fma 1 1E34 -0.50000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371331 fma 1 1E34 -0.5000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371332 fma 1 1E34 -0.500000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371333 fma 1 1E34 -0.50000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371334 fma 1 1E34 -0.5000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371335 fma 1 1E34 -0.500000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371336 fma 1 1E34 -0.50000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371337 fma 1 1E34 -0.5000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371338 fma 1 1E34 -0.500 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371339 fma 1 1E34 -0.50 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371340 fma 1 1E34 -5000000.000010001 -> 9999999999999999999999999995000000 Inexact Rounded
dqadd371341 fma 1 1E34 -5000000.000000001 -> 9999999999999999999999999995000000 Inexact Rounded
dqadd371349 fma 1 9999999999999999999999999999999999 0.4 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371350 fma 1 9999999999999999999999999999999999 0.49 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371351 fma 1 9999999999999999999999999999999999 0.499 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371352 fma 1 9999999999999999999999999999999999 0.4999 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371353 fma 1 9999999999999999999999999999999999 0.49999 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371354 fma 1 9999999999999999999999999999999999 0.499999 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371355 fma 1 9999999999999999999999999999999999 0.4999999 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371356 fma 1 9999999999999999999999999999999999 0.49999999 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371357 fma 1 9999999999999999999999999999999999 0.499999999 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371358 fma 1 9999999999999999999999999999999999 0.4999999999 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371359 fma 1 9999999999999999999999999999999999 0.49999999999 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371360 fma 1 9999999999999999999999999999999999 0.499999999999 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371361 fma 1 9999999999999999999999999999999999 0.4999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371362 fma 1 9999999999999999999999999999999999 0.49999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371363 fma 1 9999999999999999999999999999999999 0.499999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371364 fma 1 9999999999999999999999999999999999 0.4999999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
dqadd371365 fma 1 9999999999999999999999999999999999 0.5000000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371367 fma 1 9999999999999999999999999999999999 0.500000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371368 fma 1 9999999999999999999999999999999999 0.50000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371369 fma 1 9999999999999999999999999999999999 0.5000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371370 fma 1 9999999999999999999999999999999999 0.500000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371371 fma 1 9999999999999999999999999999999999 0.50000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371372 fma 1 9999999999999999999999999999999999 0.5000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371373 fma 1 9999999999999999999999999999999999 0.500000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371374 fma 1 9999999999999999999999999999999999 0.50000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371375 fma 1 9999999999999999999999999999999999 0.5000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371376 fma 1 9999999999999999999999999999999999 0.500000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371377 fma 1 9999999999999999999999999999999999 0.50000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371378 fma 1 9999999999999999999999999999999999 0.5000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371379 fma 1 9999999999999999999999999999999999 0.500 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371380 fma 1 9999999999999999999999999999999999 0.50 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371381 fma 1 9999999999999999999999999999999999 0.5 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371382 fma 1 9999999999999999999999999999999999 0.5000000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371383 fma 1 9999999999999999999999999999999999 0.500000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371384 fma 1 9999999999999999999999999999999999 0.50000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371385 fma 1 9999999999999999999999999999999999 0.5000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371386 fma 1 9999999999999999999999999999999999 0.500000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371387 fma 1 9999999999999999999999999999999999 0.50000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371388 fma 1 9999999999999999999999999999999999 0.5000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371389 fma 1 9999999999999999999999999999999999 0.500000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371390 fma 1 9999999999999999999999999999999999 0.50000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371391 fma 1 9999999999999999999999999999999999 0.5000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371392 fma 1 9999999999999999999999999999999999 0.500001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371393 fma 1 9999999999999999999999999999999999 0.50001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371394 fma 1 9999999999999999999999999999999999 0.5001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371395 fma 1 9999999999999999999999999999999999 0.501 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
dqadd371396 fma 1 9999999999999999999999999999999999 0.51 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
-- More GD edge cases, where difference between the unadjusted
-- exponents is larger than the maximum precision and one side is 0
dqadd371420 fma 1 0 1.123456789987654321123456789012345 -> 1.123456789987654321123456789012345
dqadd371421 fma 1 0 1.123456789987654321123456789012345E-1 -> 0.1123456789987654321123456789012345
dqadd371422 fma 1 0 1.123456789987654321123456789012345E-2 -> 0.01123456789987654321123456789012345
dqadd371423 fma 1 0 1.123456789987654321123456789012345E-3 -> 0.001123456789987654321123456789012345
dqadd371424 fma 1 0 1.123456789987654321123456789012345E-4 -> 0.0001123456789987654321123456789012345
dqadd371425 fma 1 0 1.123456789987654321123456789012345E-5 -> 0.00001123456789987654321123456789012345
dqadd371426 fma 1 0 1.123456789987654321123456789012345E-6 -> 0.000001123456789987654321123456789012345
dqadd371427 fma 1 0 1.123456789987654321123456789012345E-7 -> 1.123456789987654321123456789012345E-7
dqadd371428 fma 1 0 1.123456789987654321123456789012345E-8 -> 1.123456789987654321123456789012345E-8
dqadd371429 fma 1 0 1.123456789987654321123456789012345E-9 -> 1.123456789987654321123456789012345E-9
dqadd371430 fma 1 0 1.123456789987654321123456789012345E-10 -> 1.123456789987654321123456789012345E-10
dqadd371431 fma 1 0 1.123456789987654321123456789012345E-11 -> 1.123456789987654321123456789012345E-11
dqadd371432 fma 1 0 1.123456789987654321123456789012345E-12 -> 1.123456789987654321123456789012345E-12
dqadd371433 fma 1 0 1.123456789987654321123456789012345E-13 -> 1.123456789987654321123456789012345E-13
dqadd371434 fma 1 0 1.123456789987654321123456789012345E-14 -> 1.123456789987654321123456789012345E-14
dqadd371435 fma 1 0 1.123456789987654321123456789012345E-15 -> 1.123456789987654321123456789012345E-15
dqadd371436 fma 1 0 1.123456789987654321123456789012345E-16 -> 1.123456789987654321123456789012345E-16
dqadd371437 fma 1 0 1.123456789987654321123456789012345E-17 -> 1.123456789987654321123456789012345E-17
dqadd371438 fma 1 0 1.123456789987654321123456789012345E-18 -> 1.123456789987654321123456789012345E-18
dqadd371439 fma 1 0 1.123456789987654321123456789012345E-19 -> 1.123456789987654321123456789012345E-19
dqadd371440 fma 1 0 1.123456789987654321123456789012345E-20 -> 1.123456789987654321123456789012345E-20
dqadd371441 fma 1 0 1.123456789987654321123456789012345E-21 -> 1.123456789987654321123456789012345E-21
dqadd371442 fma 1 0 1.123456789987654321123456789012345E-22 -> 1.123456789987654321123456789012345E-22
dqadd371443 fma 1 0 1.123456789987654321123456789012345E-23 -> 1.123456789987654321123456789012345E-23
dqadd371444 fma 1 0 1.123456789987654321123456789012345E-24 -> 1.123456789987654321123456789012345E-24
dqadd371445 fma 1 0 1.123456789987654321123456789012345E-25 -> 1.123456789987654321123456789012345E-25
dqadd371446 fma 1 0 1.123456789987654321123456789012345E-26 -> 1.123456789987654321123456789012345E-26
dqadd371447 fma 1 0 1.123456789987654321123456789012345E-27 -> 1.123456789987654321123456789012345E-27
dqadd371448 fma 1 0 1.123456789987654321123456789012345E-28 -> 1.123456789987654321123456789012345E-28
dqadd371449 fma 1 0 1.123456789987654321123456789012345E-29 -> 1.123456789987654321123456789012345E-29
dqadd371450 fma 1 0 1.123456789987654321123456789012345E-30 -> 1.123456789987654321123456789012345E-30
dqadd371451 fma 1 0 1.123456789987654321123456789012345E-31 -> 1.123456789987654321123456789012345E-31
dqadd371452 fma 1 0 1.123456789987654321123456789012345E-32 -> 1.123456789987654321123456789012345E-32
dqadd371453 fma 1 0 1.123456789987654321123456789012345E-33 -> 1.123456789987654321123456789012345E-33
dqadd371454 fma 1 0 1.123456789987654321123456789012345E-34 -> 1.123456789987654321123456789012345E-34
dqadd371455 fma 1 0 1.123456789987654321123456789012345E-35 -> 1.123456789987654321123456789012345E-35
dqadd371456 fma 1 0 1.123456789987654321123456789012345E-36 -> 1.123456789987654321123456789012345E-36
-- same, reversed 0
dqadd371460 fma 1 1.123456789987654321123456789012345 0 -> 1.123456789987654321123456789012345
dqadd371461 fma 1 1.123456789987654321123456789012345E-1 0 -> 0.1123456789987654321123456789012345
dqadd371462 fma 1 1.123456789987654321123456789012345E-2 0 -> 0.01123456789987654321123456789012345
dqadd371463 fma 1 1.123456789987654321123456789012345E-3 0 -> 0.001123456789987654321123456789012345
dqadd371464 fma 1 1.123456789987654321123456789012345E-4 0 -> 0.0001123456789987654321123456789012345
dqadd371465 fma 1 1.123456789987654321123456789012345E-5 0 -> 0.00001123456789987654321123456789012345
dqadd371466 fma 1 1.123456789987654321123456789012345E-6 0 -> 0.000001123456789987654321123456789012345
dqadd371467 fma 1 1.123456789987654321123456789012345E-7 0 -> 1.123456789987654321123456789012345E-7
dqadd371468 fma 1 1.123456789987654321123456789012345E-8 0 -> 1.123456789987654321123456789012345E-8
dqadd371469 fma 1 1.123456789987654321123456789012345E-9 0 -> 1.123456789987654321123456789012345E-9
dqadd371470 fma 1 1.123456789987654321123456789012345E-10 0 -> 1.123456789987654321123456789012345E-10
dqadd371471 fma 1 1.123456789987654321123456789012345E-11 0 -> 1.123456789987654321123456789012345E-11
dqadd371472 fma 1 1.123456789987654321123456789012345E-12 0 -> 1.123456789987654321123456789012345E-12
dqadd371473 fma 1 1.123456789987654321123456789012345E-13 0 -> 1.123456789987654321123456789012345E-13
dqadd371474 fma 1 1.123456789987654321123456789012345E-14 0 -> 1.123456789987654321123456789012345E-14
dqadd371475 fma 1 1.123456789987654321123456789012345E-15 0 -> 1.123456789987654321123456789012345E-15
dqadd371476 fma 1 1.123456789987654321123456789012345E-16 0 -> 1.123456789987654321123456789012345E-16
dqadd371477 fma 1 1.123456789987654321123456789012345E-17 0 -> 1.123456789987654321123456789012345E-17
dqadd371478 fma 1 1.123456789987654321123456789012345E-18 0 -> 1.123456789987654321123456789012345E-18
dqadd371479 fma 1 1.123456789987654321123456789012345E-19 0 -> 1.123456789987654321123456789012345E-19
dqadd371480 fma 1 1.123456789987654321123456789012345E-20 0 -> 1.123456789987654321123456789012345E-20
dqadd371481 fma 1 1.123456789987654321123456789012345E-21 0 -> 1.123456789987654321123456789012345E-21
dqadd371482 fma 1 1.123456789987654321123456789012345E-22 0 -> 1.123456789987654321123456789012345E-22
dqadd371483 fma 1 1.123456789987654321123456789012345E-23 0 -> 1.123456789987654321123456789012345E-23
dqadd371484 fma 1 1.123456789987654321123456789012345E-24 0 -> 1.123456789987654321123456789012345E-24
dqadd371485 fma 1 1.123456789987654321123456789012345E-25 0 -> 1.123456789987654321123456789012345E-25
dqadd371486 fma 1 1.123456789987654321123456789012345E-26 0 -> 1.123456789987654321123456789012345E-26
dqadd371487 fma 1 1.123456789987654321123456789012345E-27 0 -> 1.123456789987654321123456789012345E-27
dqadd371488 fma 1 1.123456789987654321123456789012345E-28 0 -> 1.123456789987654321123456789012345E-28
dqadd371489 fma 1 1.123456789987654321123456789012345E-29 0 -> 1.123456789987654321123456789012345E-29
dqadd371490 fma 1 1.123456789987654321123456789012345E-30 0 -> 1.123456789987654321123456789012345E-30
dqadd371491 fma 1 1.123456789987654321123456789012345E-31 0 -> 1.123456789987654321123456789012345E-31
dqadd371492 fma 1 1.123456789987654321123456789012345E-32 0 -> 1.123456789987654321123456789012345E-32
dqadd371493 fma 1 1.123456789987654321123456789012345E-33 0 -> 1.123456789987654321123456789012345E-33
dqadd371494 fma 1 1.123456789987654321123456789012345E-34 0 -> 1.123456789987654321123456789012345E-34
dqadd371495 fma 1 1.123456789987654321123456789012345E-35 0 -> 1.123456789987654321123456789012345E-35
dqadd371496 fma 1 1.123456789987654321123456789012345E-36 0 -> 1.123456789987654321123456789012345E-36
-- same, Es on the 0
dqadd371500 fma 1 1.123456789987654321123456789012345 0E-0 -> 1.123456789987654321123456789012345
dqadd371501 fma 1 1.123456789987654321123456789012345 0E-1 -> 1.123456789987654321123456789012345
dqadd371502 fma 1 1.123456789987654321123456789012345 0E-2 -> 1.123456789987654321123456789012345
dqadd371503 fma 1 1.123456789987654321123456789012345 0E-3 -> 1.123456789987654321123456789012345
dqadd371504 fma 1 1.123456789987654321123456789012345 0E-4 -> 1.123456789987654321123456789012345
dqadd371505 fma 1 1.123456789987654321123456789012345 0E-5 -> 1.123456789987654321123456789012345
dqadd371506 fma 1 1.123456789987654321123456789012345 0E-6 -> 1.123456789987654321123456789012345
dqadd371507 fma 1 1.123456789987654321123456789012345 0E-7 -> 1.123456789987654321123456789012345
dqadd371508 fma 1 1.123456789987654321123456789012345 0E-8 -> 1.123456789987654321123456789012345
dqadd371509 fma 1 1.123456789987654321123456789012345 0E-9 -> 1.123456789987654321123456789012345
dqadd371510 fma 1 1.123456789987654321123456789012345 0E-10 -> 1.123456789987654321123456789012345
dqadd371511 fma 1 1.123456789987654321123456789012345 0E-11 -> 1.123456789987654321123456789012345
dqadd371512 fma 1 1.123456789987654321123456789012345 0E-12 -> 1.123456789987654321123456789012345
dqadd371513 fma 1 1.123456789987654321123456789012345 0E-13 -> 1.123456789987654321123456789012345
dqadd371514 fma 1 1.123456789987654321123456789012345 0E-14 -> 1.123456789987654321123456789012345
dqadd371515 fma 1 1.123456789987654321123456789012345 0E-15 -> 1.123456789987654321123456789012345
dqadd371516 fma 1 1.123456789987654321123456789012345 0E-16 -> 1.123456789987654321123456789012345
dqadd371517 fma 1 1.123456789987654321123456789012345 0E-17 -> 1.123456789987654321123456789012345
dqadd371518 fma 1 1.123456789987654321123456789012345 0E-18 -> 1.123456789987654321123456789012345
dqadd371519 fma 1 1.123456789987654321123456789012345 0E-19 -> 1.123456789987654321123456789012345
dqadd371520 fma 1 1.123456789987654321123456789012345 0E-20 -> 1.123456789987654321123456789012345
dqadd371521 fma 1 1.123456789987654321123456789012345 0E-21 -> 1.123456789987654321123456789012345
dqadd371522 fma 1 1.123456789987654321123456789012345 0E-22 -> 1.123456789987654321123456789012345
dqadd371523 fma 1 1.123456789987654321123456789012345 0E-23 -> 1.123456789987654321123456789012345
dqadd371524 fma 1 1.123456789987654321123456789012345 0E-24 -> 1.123456789987654321123456789012345
dqadd371525 fma 1 1.123456789987654321123456789012345 0E-25 -> 1.123456789987654321123456789012345
dqadd371526 fma 1 1.123456789987654321123456789012345 0E-26 -> 1.123456789987654321123456789012345
dqadd371527 fma 1 1.123456789987654321123456789012345 0E-27 -> 1.123456789987654321123456789012345
dqadd371528 fma 1 1.123456789987654321123456789012345 0E-28 -> 1.123456789987654321123456789012345
dqadd371529 fma 1 1.123456789987654321123456789012345 0E-29 -> 1.123456789987654321123456789012345
dqadd371530 fma 1 1.123456789987654321123456789012345 0E-30 -> 1.123456789987654321123456789012345
dqadd371531 fma 1 1.123456789987654321123456789012345 0E-31 -> 1.123456789987654321123456789012345
dqadd371532 fma 1 1.123456789987654321123456789012345 0E-32 -> 1.123456789987654321123456789012345
dqadd371533 fma 1 1.123456789987654321123456789012345 0E-33 -> 1.123456789987654321123456789012345
-- next four flag Rounded because the 0 extends the result
dqadd371534 fma 1 1.123456789987654321123456789012345 0E-34 -> 1.123456789987654321123456789012345 Rounded
dqadd371535 fma 1 1.123456789987654321123456789012345 0E-35 -> 1.123456789987654321123456789012345 Rounded
dqadd371536 fma 1 1.123456789987654321123456789012345 0E-36 -> 1.123456789987654321123456789012345 Rounded
dqadd371537 fma 1 1.123456789987654321123456789012345 0E-37 -> 1.123456789987654321123456789012345 Rounded
-- sum of two opposite-sign operands is exactly 0 and floor => -0
rounding: half_up
-- exact zeros from zeros
dqadd371600 fma 1 0 0E-19 -> 0E-19
dqadd371601 fma 1 -0 0E-19 -> 0E-19
dqadd371602 fma 1 0 -0E-19 -> 0E-19
dqadd371603 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
dqadd371611 fma 1 -11 11 -> 0
dqadd371612 fma 1 11 -11 -> 0
-- overflow
dqadd371613 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
dqadd371614 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
rounding: half_down
-- exact zeros from zeros
dqadd371620 fma 1 0 0E-19 -> 0E-19
dqadd371621 fma 1 -0 0E-19 -> 0E-19
dqadd371622 fma 1 0 -0E-19 -> 0E-19
dqadd371623 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
dqadd371631 fma 1 -11 11 -> 0
dqadd371632 fma 1 11 -11 -> 0
-- overflow
dqadd371633 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
dqadd371634 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
rounding: half_even
-- exact zeros from zeros
dqadd371640 fma 1 0 0E-19 -> 0E-19
dqadd371641 fma 1 -0 0E-19 -> 0E-19
dqadd371642 fma 1 0 -0E-19 -> 0E-19
dqadd371643 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
dqadd371651 fma 1 -11 11 -> 0
dqadd371652 fma 1 11 -11 -> 0
-- overflow
dqadd371653 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
dqadd371654 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
rounding: up
-- exact zeros from zeros
dqadd371660 fma 1 0 0E-19 -> 0E-19
dqadd371661 fma 1 -0 0E-19 -> 0E-19
dqadd371662 fma 1 0 -0E-19 -> 0E-19
dqadd371663 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
dqadd371671 fma 1 -11 11 -> 0
dqadd371672 fma 1 11 -11 -> 0
-- overflow
dqadd371673 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
dqadd371674 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
rounding: down
-- exact zeros from zeros
dqadd371680 fma 1 0 0E-19 -> 0E-19
dqadd371681 fma 1 -0 0E-19 -> 0E-19
dqadd371682 fma 1 0 -0E-19 -> 0E-19
dqadd371683 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
dqadd371691 fma 1 -11 11 -> 0
dqadd371692 fma 1 11 -11 -> 0
-- overflow
dqadd371693 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
dqadd371694 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
rounding: ceiling
-- exact zeros from zeros
dqadd371700 fma 1 0 0E-19 -> 0E-19
dqadd371701 fma 1 -0 0E-19 -> 0E-19
dqadd371702 fma 1 0 -0E-19 -> 0E-19
dqadd371703 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
dqadd371711 fma 1 -11 11 -> 0
dqadd371712 fma 1 11 -11 -> 0
-- overflow
dqadd371713 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
dqadd371714 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
-- and the extra-special ugly case; unusual minuses marked by -- *
rounding: floor
-- exact zeros from zeros
dqadd371720 fma 1 0 0E-19 -> 0E-19
dqadd371721 fma 1 -0 0E-19 -> -0E-19 -- *
dqadd371722 fma 1 0 -0E-19 -> -0E-19 -- *
dqadd371723 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
dqadd371731 fma 1 -11 11 -> -0 -- *
dqadd371732 fma 1 11 -11 -> -0 -- *
-- overflow
dqadd371733 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
dqadd371734 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
rounding: 05up
-- exact zeros from zeros
dqadd371740 fma 1 0 0E-19 -> 0E-19
dqadd371741 fma 1 -0 0E-19 -> 0E-19
dqadd371742 fma 1 0 -0E-19 -> 0E-19
dqadd371743 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
dqadd371751 fma 1 -11 11 -> 0
dqadd371752 fma 1 11 -11 -> 0
-- overflow
dqadd371753 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
dqadd371754 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
-- Examples from SQL proposal (Krishna Kulkarni)
dqadd371761 fma 1 130E-2 120E-2 -> 2.50
dqadd371762 fma 1 130E-2 12E-1 -> 2.50
dqadd371763 fma 1 130E-2 1E0 -> 2.30
dqadd371764 fma 1 1E2 1E4 -> 1.01E+4
dqadd371765 fma 1 130E-2 -120E-2 -> 0.10
dqadd371766 fma 1 130E-2 -12E-1 -> 0.10
dqadd371767 fma 1 130E-2 -1E0 -> 0.30
dqadd371768 fma 1 1E2 -1E4 -> -9.9E+3
-- Gappy coefficients; check residue handling even with full coefficient gap
rounding: half_even
dqadd375001 fma 1 1239876543211234567894567890123456 1 -> 1239876543211234567894567890123457
dqadd375002 fma 1 1239876543211234567894567890123456 0.6 -> 1239876543211234567894567890123457 Inexact Rounded
dqadd375003 fma 1 1239876543211234567894567890123456 0.06 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375004 fma 1 1239876543211234567894567890123456 6E-3 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375005 fma 1 1239876543211234567894567890123456 6E-4 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375006 fma 1 1239876543211234567894567890123456 6E-5 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375007 fma 1 1239876543211234567894567890123456 6E-6 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375008 fma 1 1239876543211234567894567890123456 6E-7 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375009 fma 1 1239876543211234567894567890123456 6E-8 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375010 fma 1 1239876543211234567894567890123456 6E-9 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375011 fma 1 1239876543211234567894567890123456 6E-10 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375012 fma 1 1239876543211234567894567890123456 6E-11 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375013 fma 1 1239876543211234567894567890123456 6E-12 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375014 fma 1 1239876543211234567894567890123456 6E-13 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375015 fma 1 1239876543211234567894567890123456 6E-14 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375016 fma 1 1239876543211234567894567890123456 6E-15 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375017 fma 1 1239876543211234567894567890123456 6E-16 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375018 fma 1 1239876543211234567894567890123456 6E-17 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375019 fma 1 1239876543211234567894567890123456 6E-18 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375020 fma 1 1239876543211234567894567890123456 6E-19 -> 1239876543211234567894567890123456 Inexact Rounded
dqadd375021 fma 1 1239876543211234567894567890123456 6E-20 -> 1239876543211234567894567890123456 Inexact Rounded
-- widening second argument at gap
dqadd375030 fma 1 12398765432112345678945678 1 -> 12398765432112345678945679
dqadd375031 fma 1 12398765432112345678945678 0.1 -> 12398765432112345678945678.1
dqadd375032 fma 1 12398765432112345678945678 0.12 -> 12398765432112345678945678.12
dqadd375033 fma 1 12398765432112345678945678 0.123 -> 12398765432112345678945678.123
dqadd375034 fma 1 12398765432112345678945678 0.1234 -> 12398765432112345678945678.1234
dqadd375035 fma 1 12398765432112345678945678 0.12345 -> 12398765432112345678945678.12345
dqadd375036 fma 1 12398765432112345678945678 0.123456 -> 12398765432112345678945678.123456
dqadd375037 fma 1 12398765432112345678945678 0.1234567 -> 12398765432112345678945678.1234567
dqadd375038 fma 1 12398765432112345678945678 0.12345678 -> 12398765432112345678945678.12345678
dqadd375039 fma 1 12398765432112345678945678 0.123456789 -> 12398765432112345678945678.12345679 Inexact Rounded
dqadd375040 fma 1 12398765432112345678945678 0.123456785 -> 12398765432112345678945678.12345678 Inexact Rounded
dqadd375041 fma 1 12398765432112345678945678 0.1234567850 -> 12398765432112345678945678.12345678 Inexact Rounded
dqadd375042 fma 1 12398765432112345678945678 0.1234567851 -> 12398765432112345678945678.12345679 Inexact Rounded
dqadd375043 fma 1 12398765432112345678945678 0.12345678501 -> 12398765432112345678945678.12345679 Inexact Rounded
dqadd375044 fma 1 12398765432112345678945678 0.123456785001 -> 12398765432112345678945678.12345679 Inexact Rounded
dqadd375045 fma 1 12398765432112345678945678 0.1234567850001 -> 12398765432112345678945678.12345679 Inexact Rounded
dqadd375046 fma 1 12398765432112345678945678 0.12345678500001 -> 12398765432112345678945678.12345679 Inexact Rounded
dqadd375047 fma 1 12398765432112345678945678 0.123456785000001 -> 12398765432112345678945678.12345679 Inexact Rounded
dqadd375048 fma 1 12398765432112345678945678 0.1234567850000001 -> 12398765432112345678945678.12345679 Inexact Rounded
dqadd375049 fma 1 12398765432112345678945678 0.1234567850000000 -> 12398765432112345678945678.12345678 Inexact Rounded
-- 90123456
rounding: half_even
dqadd375050 fma 1 12398765432112345678945678 0.0234567750000000 -> 12398765432112345678945678.02345678 Inexact Rounded
dqadd375051 fma 1 12398765432112345678945678 0.0034567750000000 -> 12398765432112345678945678.00345678 Inexact Rounded
dqadd375052 fma 1 12398765432112345678945678 0.0004567750000000 -> 12398765432112345678945678.00045678 Inexact Rounded
dqadd375053 fma 1 12398765432112345678945678 0.0000567750000000 -> 12398765432112345678945678.00005678 Inexact Rounded
dqadd375054 fma 1 12398765432112345678945678 0.0000067750000000 -> 12398765432112345678945678.00000678 Inexact Rounded
dqadd375055 fma 1 12398765432112345678945678 0.0000007750000000 -> 12398765432112345678945678.00000078 Inexact Rounded
dqadd375056 fma 1 12398765432112345678945678 0.0000000750000000 -> 12398765432112345678945678.00000008 Inexact Rounded
dqadd375057 fma 1 12398765432112345678945678 0.0000000050000000 -> 12398765432112345678945678.00000000 Inexact Rounded
dqadd375060 fma 1 12398765432112345678945678 0.0234567750000001 -> 12398765432112345678945678.02345678 Inexact Rounded
dqadd375061 fma 1 12398765432112345678945678 0.0034567750000001 -> 12398765432112345678945678.00345678 Inexact Rounded
dqadd375062 fma 1 12398765432112345678945678 0.0004567750000001 -> 12398765432112345678945678.00045678 Inexact Rounded
dqadd375063 fma 1 12398765432112345678945678 0.0000567750000001 -> 12398765432112345678945678.00005678 Inexact Rounded
dqadd375064 fma 1 12398765432112345678945678 0.0000067750000001 -> 12398765432112345678945678.00000678 Inexact Rounded
dqadd375065 fma 1 12398765432112345678945678 0.0000007750000001 -> 12398765432112345678945678.00000078 Inexact Rounded
dqadd375066 fma 1 12398765432112345678945678 0.0000000750000001 -> 12398765432112345678945678.00000008 Inexact Rounded
dqadd375067 fma 1 12398765432112345678945678 0.0000000050000001 -> 12398765432112345678945678.00000001 Inexact Rounded
-- far-out residues (full coefficient gap is 16+15 digits)
rounding: up
dqadd375070 fma 1 12398765432112345678945678 1E-8 -> 12398765432112345678945678.00000001
dqadd375071 fma 1 12398765432112345678945678 1E-9 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375072 fma 1 12398765432112345678945678 1E-10 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375073 fma 1 12398765432112345678945678 1E-11 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375074 fma 1 12398765432112345678945678 1E-12 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375075 fma 1 12398765432112345678945678 1E-13 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375076 fma 1 12398765432112345678945678 1E-14 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375077 fma 1 12398765432112345678945678 1E-15 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375078 fma 1 12398765432112345678945678 1E-16 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375079 fma 1 12398765432112345678945678 1E-17 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375080 fma 1 12398765432112345678945678 1E-18 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375081 fma 1 12398765432112345678945678 1E-19 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375082 fma 1 12398765432112345678945678 1E-20 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375083 fma 1 12398765432112345678945678 1E-25 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375084 fma 1 12398765432112345678945678 1E-30 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375085 fma 1 12398765432112345678945678 1E-31 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375086 fma 1 12398765432112345678945678 1E-32 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375087 fma 1 12398765432112345678945678 1E-33 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375088 fma 1 12398765432112345678945678 1E-34 -> 12398765432112345678945678.00000001 Inexact Rounded
dqadd375089 fma 1 12398765432112345678945678 1E-35 -> 12398765432112345678945678.00000001 Inexact Rounded
-- Destructive subtract (from remainder tests)
-- +++ some of these will be off-by-one remainder vs remainderNear
dqfma4000 fma -1234567890123456789012345678901233 1.000000000000000000000000000000001 1234567890123456789012345678901234 -> -0.234567890123456789012345678901233
dqfma4001 fma -1234567890123456789012345678901222 1.00000000000000000000000000000001 1234567890123456789012345678901234 -> -0.34567890123456789012345678901222
dqfma4002 fma -1234567890123456789012345678901111 1.0000000000000000000000000000001 1234567890123456789012345678901234 -> -0.4567890123456789012345678901111
dqfma4003 fma -308641972530864197253086419725314 4.000000000000000000000000000000001 1234567890123456789012345678901255 -> -1.308641972530864197253086419725314
dqfma4004 fma -308641972530864197253086419725308 4.000000000000000000000000000000001 1234567890123456789012345678901234 -> 1.691358027469135802746913580274692
dqfma4005 fma -246913578024691357802469135780252 4.9999999999999999999999999999999 1234567890123456789012345678901234 -> -1.3086421975308642197530864219748
dqfma4006 fma -246913578024691357802469135780247 4.99999999999999999999999999999999 1234567890123456789012345678901234 -> 1.46913578024691357802469135780247
dqfma4007 fma -246913578024691357802469135780247 4.999999999999999999999999999999999 1234567890123456789012345678901234 -> -0.753086421975308642197530864219753
dqfma4008 fma -246913578024691357802469135780247 5.000000000000000000000000000000001 1234567890123456789012345678901234 -> -1.246913578024691357802469135780247
dqfma4009 fma -246913578024691357802469135780246 5.00000000000000000000000000000001 1234567890123456789012345678901234 -> 1.53086421975308642197530864219754
dqfma4010 fma -246913578024691357802469135780242 5.0000000000000000000000000000001 1234567890123456789012345678901234 -> -0.6913578024691357802469135780242
dqfma4011 fma -1234567890123456789012345678901232 1.000000000000000000000000000000001 1234567890123456789012345678901234 -> 0.765432109876543210987654321098768
dqfma4012 fma -1234567890123456789012345678901221 1.00000000000000000000000000000001 1234567890123456789012345678901234 -> 0.65432109876543210987654321098779
dqfma4013 fma -1234567890123456789012345678901110 1.0000000000000000000000000000001 1234567890123456789012345678901234 -> 0.5432109876543210987654321098890
dqfma4014 fma -308641972530864197253086419725313 4.000000000000000000000000000000001 1234567890123456789012345678901255 -> 2.691358027469135802746913580274687
dqfma4015 fma -308641972530864197253086419725308 4.000000000000000000000000000000001 1234567890123456789012345678901234 -> 1.691358027469135802746913580274692
dqfma4016 fma -246913578024691357802469135780251 4.9999999999999999999999999999999 1234567890123456789012345678901234 -> 3.6913578024691357802469135780251
dqfma4017 fma -246913578024691357802469135780247 4.99999999999999999999999999999999 1234567890123456789012345678901234 -> 1.46913578024691357802469135780247
dqfma4018 fma -246913578024691357802469135780246 4.999999999999999999999999999999999 1234567890123456789012345678901234 -> 4.246913578024691357802469135780246
dqfma4019 fma -246913578024691357802469135780241 5.0000000000000000000000000000001 1234567890123456789012345678901234 -> 4.3086421975308642197530864219759
-- Null tests
dqadd39990 fma 1 10 # -> NaN Invalid_operation
dqadd39991 fma 1 # 10 -> NaN Invalid_operation
|