/usr/lib/python2.7/test/decimaltestdata/ddFMA.decTest is in libpython2.7-testsuite 2.7.15~rc1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 | ------------------------------------------------------------------------
-- ddFMA.decTest -- decDouble Fused Multiply Add --
-- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
-- these testcases. --
-- --
-- These testcases are experimental ('beta' versions), and they --
-- may contain errors. They are offered on an as-is basis. In --
-- particular, achieving the same results as the tests here is not --
-- a guarantee that an implementation complies with any Standard --
-- or specification. The tests are not exhaustive. --
-- --
-- Please send comments, suggestions, and corrections to the author: --
-- Mike Cowlishaw, IBM Fellow --
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
version: 2.59
precision: 16
maxExponent: 384
minExponent: -383
extended: 1
clamp: 1
rounding: half_even
-- These tests comprese three parts:
-- 1. Sanity checks and other three-operand tests (especially those
-- where the fused operation makes a difference)
-- 2. Multiply tests (third operand is neutral zero [0E+emax])
-- 3. Addition tests (first operand is 1)
-- The multiply and addition tests are extensive because FMA may have
-- its own dedicated multiplication or addition routine(s), and they
-- also inherently check the left-to-right properties.
-- Sanity checks
ddfma0001 fma 1 1 1 -> 2
ddfma0002 fma 1 1 2 -> 3
ddfma0003 fma 2 2 3 -> 7
ddfma0004 fma 9 9 9 -> 90
ddfma0005 fma -1 1 1 -> 0
ddfma0006 fma -1 1 2 -> 1
ddfma0007 fma -2 2 3 -> -1
ddfma0008 fma -9 9 9 -> -72
ddfma0011 fma 1 -1 1 -> 0
ddfma0012 fma 1 -1 2 -> 1
ddfma0013 fma 2 -2 3 -> -1
ddfma0014 fma 9 -9 9 -> -72
ddfma0015 fma 1 1 -1 -> 0
ddfma0016 fma 1 1 -2 -> -1
ddfma0017 fma 2 2 -3 -> 1
ddfma0018 fma 9 9 -9 -> 72
-- non-integer exacts
ddfma0100 fma 25.2 63.6 -438 -> 1164.72
ddfma0101 fma 0.301 0.380 334 -> 334.114380
ddfma0102 fma 49.2 -4.8 23.3 -> -212.86
ddfma0103 fma 4.22 0.079 -94.6 -> -94.26662
ddfma0104 fma 903 0.797 0.887 -> 720.578
ddfma0105 fma 6.13 -161 65.9 -> -921.03
ddfma0106 fma 28.2 727 5.45 -> 20506.85
ddfma0107 fma 4 605 688 -> 3108
ddfma0108 fma 93.3 0.19 0.226 -> 17.953
ddfma0109 fma 0.169 -341 5.61 -> -52.019
ddfma0110 fma -72.2 30 -51.2 -> -2217.2
ddfma0111 fma -0.409 13 20.4 -> 15.083
ddfma0112 fma 317 77.0 19.0 -> 24428.0
ddfma0113 fma 47 6.58 1.62 -> 310.88
ddfma0114 fma 1.36 0.984 0.493 -> 1.83124
ddfma0115 fma 72.7 274 1.56 -> 19921.36
ddfma0116 fma 335 847 83 -> 283828
ddfma0117 fma 666 0.247 25.4 -> 189.902
ddfma0118 fma -3.87 3.06 78.0 -> 66.1578
ddfma0119 fma 0.742 192 35.6 -> 178.064
ddfma0120 fma -91.6 5.29 0.153 -> -484.411
-- cases where result is different from separate multiply + add; each
-- is preceded by the result of unfused multiply and add
-- [this is about 20% of all similar cases in general]
-- -> 7.123356429257969E+16
ddfma0201 fma 27583489.6645 2582471078.04 2593183.42371 -> 7.123356429257970E+16 Inexact Rounded
-- -> 22813275328.80506
ddfma0208 fma 24280.355566 939577.397653 2032.013252 -> 22813275328.80507 Inexact Rounded
-- -> -2.030397734278062E+16
ddfma0209 fma 7848976432 -2586831.2281 137903.517909 -> -2.030397734278061E+16 Inexact Rounded
-- -> 2040774094814.077
ddfma0217 fma 56890.388731 35872030.4255 339337.123410 -> 2040774094814.078 Inexact Rounded
-- -> 2.714469575205049E+18
ddfma0220 fma 7533543.57445 360317763928 5073392.31638 -> 2.714469575205050E+18 Inexact Rounded
-- -> 1.011676297716716E+19
ddfma0223 fma 739945255.563 13672312784.1 -994381.53572 -> 1.011676297716715E+19 Inexact Rounded
-- -> -2.914135721455315E+23
ddfma0224 fma -413510957218 704729988550 9234162614.0 -> -2.914135721455314E+23 Inexact Rounded
-- -> 2.620119863365786E+17
ddfma0226 fma 437484.00601 598906432790 894450638.442 -> 2.620119863365787E+17 Inexact Rounded
-- -> 1.272647995808178E+19
ddfma0253 fma 73287556929 173651305.784 -358312568.389 -> 1.272647995808177E+19 Inexact Rounded
-- -> -1.753769320861851E+18
ddfma0257 fma 203258304486 -8628278.8066 153127.446727 -> -1.753769320861850E+18 Inexact Rounded
-- -> -1.550737835263346E+17
ddfma0260 fma 42560533.1774 -3643605282.86 178277.96377 -> -1.550737835263347E+17 Inexact Rounded
-- -> 2.897624620576005E+22
ddfma0269 fma 142656587375 203118879670 604576103991 -> 2.897624620576004E+22 Inexact Rounded
-- Cases where multiply would overflow or underflow if separate
fma0300 fma 9e+384 10 0 -> Infinity Overflow Inexact Rounded
fma0301 fma 1e+384 10 0 -> Infinity Overflow Inexact Rounded
fma0302 fma 1e+384 10 -1e+384 -> 9.000000000000000E+384 Clamped
fma0303 fma 1e+384 10 -9e+384 -> 1.000000000000000E+384 Clamped
-- subnormal etc.
fma0305 fma 1e-398 0.1 0 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
fma0306 fma 1e-398 0.1 1 -> 1.000000000000000 Inexact Rounded
fma0307 fma 1e-398 0.1 1e-398 -> 1E-398 Underflow Subnormal Inexact Rounded
-- Infinite combinations
ddfma0800 fma Inf Inf Inf -> Infinity
ddfma0801 fma Inf Inf -Inf -> NaN Invalid_operation
ddfma0802 fma Inf -Inf Inf -> NaN Invalid_operation
ddfma0803 fma Inf -Inf -Inf -> -Infinity
ddfma0804 fma -Inf Inf Inf -> NaN Invalid_operation
ddfma0805 fma -Inf Inf -Inf -> -Infinity
ddfma0806 fma -Inf -Inf Inf -> Infinity
ddfma0807 fma -Inf -Inf -Inf -> NaN Invalid_operation
-- Triple NaN propagation
ddfma0900 fma NaN2 NaN3 NaN5 -> NaN2
ddfma0901 fma 0 NaN3 NaN5 -> NaN3
ddfma0902 fma 0 0 NaN5 -> NaN5
-- first sNaN wins (consider qNaN from earlier sNaN being
-- overridden by an sNaN in third operand)
ddfma0903 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
ddfma0904 fma 0 sNaN2 sNaN3 -> NaN2 Invalid_operation
ddfma0905 fma 0 0 sNaN3 -> NaN3 Invalid_operation
ddfma0906 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
ddfma0907 fma NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation
ddfma0908 fma NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation
-- MULTIPLICATION TESTS ------------------------------------------------
-- sanity checks
ddfma2000 fma 2 2 0e+384 -> 4
ddfma2001 fma 2 3 0e+384 -> 6
ddfma2002 fma 5 1 0e+384 -> 5
ddfma2003 fma 5 2 0e+384 -> 10
ddfma2004 fma 1.20 2 0e+384 -> 2.40
ddfma2005 fma 1.20 0 0e+384 -> 0.00
ddfma2006 fma 1.20 -2 0e+384 -> -2.40
ddfma2007 fma -1.20 2 0e+384 -> -2.40
ddfma2008 fma -1.20 0 0e+384 -> 0.00
ddfma2009 fma -1.20 -2 0e+384 -> 2.40
ddfma2010 fma 5.09 7.1 0e+384 -> 36.139
ddfma2011 fma 2.5 4 0e+384 -> 10.0
ddfma2012 fma 2.50 4 0e+384 -> 10.00
ddfma2013 fma 1.23456789 1.00000000 0e+384 -> 1.234567890000000 Rounded
ddfma2015 fma 2.50 4 0e+384 -> 10.00
ddfma2016 fma 9.999999999 9.999999999 0e+384 -> 99.99999998000000 Inexact Rounded
ddfma2017 fma 9.999999999 -9.999999999 0e+384 -> -99.99999998000000 Inexact Rounded
ddfma2018 fma -9.999999999 9.999999999 0e+384 -> -99.99999998000000 Inexact Rounded
ddfma2019 fma -9.999999999 -9.999999999 0e+384 -> 99.99999998000000 Inexact Rounded
-- zeros, etc.
ddfma2021 fma 0 0 0e+384 -> 0
ddfma2022 fma 0 -0 0e+384 -> 0
ddfma2023 fma -0 0 0e+384 -> 0
ddfma2024 fma -0 -0 0e+384 -> 0
ddfma2025 fma -0.0 -0.0 0e+384 -> 0.00
ddfma2026 fma -0.0 -0.0 0e+384 -> 0.00
ddfma2027 fma -0.0 -0.0 0e+384 -> 0.00
ddfma2028 fma -0.0 -0.0 0e+384 -> 0.00
ddfma2030 fma 5.00 1E-3 0e+384 -> 0.00500
ddfma2031 fma 00.00 0.000 0e+384 -> 0.00000
ddfma2032 fma 00.00 0E-3 0e+384 -> 0.00000 -- rhs is 0
ddfma2033 fma 0E-3 00.00 0e+384 -> 0.00000 -- lhs is 0
ddfma2034 fma -5.00 1E-3 0e+384 -> -0.00500
ddfma2035 fma -00.00 0.000 0e+384 -> 0.00000
ddfma2036 fma -00.00 0E-3 0e+384 -> 0.00000 -- rhs is 0
ddfma2037 fma -0E-3 00.00 0e+384 -> 0.00000 -- lhs is 0
ddfma2038 fma 5.00 -1E-3 0e+384 -> -0.00500
ddfma2039 fma 00.00 -0.000 0e+384 -> 0.00000
ddfma2040 fma 00.00 -0E-3 0e+384 -> 0.00000 -- rhs is 0
ddfma2041 fma 0E-3 -00.00 0e+384 -> 0.00000 -- lhs is 0
ddfma2042 fma -5.00 -1E-3 0e+384 -> 0.00500
ddfma2043 fma -00.00 -0.000 0e+384 -> 0.00000
ddfma2044 fma -00.00 -0E-3 0e+384 -> 0.00000 -- rhs is 0
ddfma2045 fma -0E-3 -00.00 -0e+384 -> 0.00000 -- lhs is 0
ddfma2046 fma -0E-3 00.00 -0e+384 -> -0.00000
ddfma2047 fma 0E-3 -00.00 -0e+384 -> -0.00000
ddfma2048 fma 0E-3 00.00 -0e+384 -> 0.00000
-- examples from decarith
ddfma2050 fma 1.20 3 0e+384 -> 3.60
ddfma2051 fma 7 3 0e+384 -> 21
ddfma2052 fma 0.9 0.8 0e+384 -> 0.72
ddfma2053 fma 0.9 -0 0e+384 -> 0.0
ddfma2054 fma 654321 654321 0e+384 -> 428135971041
ddfma2060 fma 123.45 1e7 0e+384 -> 1.2345E+9
ddfma2061 fma 123.45 1e8 0e+384 -> 1.2345E+10
ddfma2062 fma 123.45 1e+9 0e+384 -> 1.2345E+11
ddfma2063 fma 123.45 1e10 0e+384 -> 1.2345E+12
ddfma2064 fma 123.45 1e11 0e+384 -> 1.2345E+13
ddfma2065 fma 123.45 1e12 0e+384 -> 1.2345E+14
ddfma2066 fma 123.45 1e13 0e+384 -> 1.2345E+15
-- test some intermediate lengths
-- 1234567890123456
ddfma2080 fma 0.1 1230123456456789 0e+384 -> 123012345645678.9
ddfma2084 fma 0.1 1230123456456789 0e+384 -> 123012345645678.9
ddfma2090 fma 1230123456456789 0.1 0e+384 -> 123012345645678.9
ddfma2094 fma 1230123456456789 0.1 0e+384 -> 123012345645678.9
-- test some more edge cases and carries
ddfma2101 fma 9 9 0e+384 -> 81
ddfma2102 fma 9 90 0e+384 -> 810
ddfma2103 fma 9 900 0e+384 -> 8100
ddfma2104 fma 9 9000 0e+384 -> 81000
ddfma2105 fma 9 90000 0e+384 -> 810000
ddfma2106 fma 9 900000 0e+384 -> 8100000
ddfma2107 fma 9 9000000 0e+384 -> 81000000
ddfma2108 fma 9 90000000 0e+384 -> 810000000
ddfma2109 fma 9 900000000 0e+384 -> 8100000000
ddfma2110 fma 9 9000000000 0e+384 -> 81000000000
ddfma2111 fma 9 90000000000 0e+384 -> 810000000000
ddfma2112 fma 9 900000000000 0e+384 -> 8100000000000
ddfma2113 fma 9 9000000000000 0e+384 -> 81000000000000
ddfma2114 fma 9 90000000000000 0e+384 -> 810000000000000
ddfma2115 fma 9 900000000000000 0e+384 -> 8100000000000000
--ddfma2116 fma 9 9000000000000000 0e+384 -> 81000000000000000
--ddfma2117 fma 9 90000000000000000 0e+384 -> 810000000000000000
--ddfma2118 fma 9 900000000000000000 0e+384 -> 8100000000000000000
--ddfma2119 fma 9 9000000000000000000 0e+384 -> 81000000000000000000
--ddfma2120 fma 9 90000000000000000000 0e+384 -> 810000000000000000000
--ddfma2121 fma 9 900000000000000000000 0e+384 -> 8100000000000000000000
--ddfma2122 fma 9 9000000000000000000000 0e+384 -> 81000000000000000000000
--ddfma2123 fma 9 90000000000000000000000 0e+384 -> 810000000000000000000000
-- test some more edge cases without carries
ddfma2131 fma 3 3 0e+384 -> 9
ddfma2132 fma 3 30 0e+384 -> 90
ddfma2133 fma 3 300 0e+384 -> 900
ddfma2134 fma 3 3000 0e+384 -> 9000
ddfma2135 fma 3 30000 0e+384 -> 90000
ddfma2136 fma 3 300000 0e+384 -> 900000
ddfma2137 fma 3 3000000 0e+384 -> 9000000
ddfma2138 fma 3 30000000 0e+384 -> 90000000
ddfma2139 fma 3 300000000 0e+384 -> 900000000
ddfma2140 fma 3 3000000000 0e+384 -> 9000000000
ddfma2141 fma 3 30000000000 0e+384 -> 90000000000
ddfma2142 fma 3 300000000000 0e+384 -> 900000000000
ddfma2143 fma 3 3000000000000 0e+384 -> 9000000000000
ddfma2144 fma 3 30000000000000 0e+384 -> 90000000000000
ddfma2145 fma 3 300000000000000 0e+384 -> 900000000000000
-- test some edge cases with exact rounding
ddfma2301 fma 9 9 0e+384 -> 81
ddfma2302 fma 9 90 0e+384 -> 810
ddfma2303 fma 9 900 0e+384 -> 8100
ddfma2304 fma 9 9000 0e+384 -> 81000
ddfma2305 fma 9 90000 0e+384 -> 810000
ddfma2306 fma 9 900000 0e+384 -> 8100000
ddfma2307 fma 9 9000000 0e+384 -> 81000000
ddfma2308 fma 9 90000000 0e+384 -> 810000000
ddfma2309 fma 9 900000000 0e+384 -> 8100000000
ddfma2310 fma 9 9000000000 0e+384 -> 81000000000
ddfma2311 fma 9 90000000000 0e+384 -> 810000000000
ddfma2312 fma 9 900000000000 0e+384 -> 8100000000000
ddfma2313 fma 9 9000000000000 0e+384 -> 81000000000000
ddfma2314 fma 9 90000000000000 0e+384 -> 810000000000000
ddfma2315 fma 9 900000000000000 0e+384 -> 8100000000000000
ddfma2316 fma 9 9000000000000000 0e+384 -> 8.100000000000000E+16 Rounded
ddfma2317 fma 90 9000000000000000 0e+384 -> 8.100000000000000E+17 Rounded
ddfma2318 fma 900 9000000000000000 0e+384 -> 8.100000000000000E+18 Rounded
ddfma2319 fma 9000 9000000000000000 0e+384 -> 8.100000000000000E+19 Rounded
ddfma2320 fma 90000 9000000000000000 0e+384 -> 8.100000000000000E+20 Rounded
ddfma2321 fma 900000 9000000000000000 0e+384 -> 8.100000000000000E+21 Rounded
ddfma2322 fma 9000000 9000000000000000 0e+384 -> 8.100000000000000E+22 Rounded
ddfma2323 fma 90000000 9000000000000000 0e+384 -> 8.100000000000000E+23 Rounded
-- tryzeros cases
ddfma2504 fma 0E-260 1000E-260 0e+384 -> 0E-398 Clamped
ddfma2505 fma 100E+260 0E+260 0e+384 -> 0E+369 Clamped
-- mixed with zeros
ddfma2541 fma 0 -1 0e+384 -> 0
ddfma2542 fma -0 -1 0e+384 -> 0
ddfma2543 fma 0 1 0e+384 -> 0
ddfma2544 fma -0 1 0e+384 -> 0
ddfma2545 fma -1 0 0e+384 -> 0
ddfma2546 fma -1 -0 0e+384 -> 0
ddfma2547 fma 1 0 0e+384 -> 0
ddfma2548 fma 1 -0 0e+384 -> 0
ddfma2551 fma 0.0 -1 0e+384 -> 0.0
ddfma2552 fma -0.0 -1 0e+384 -> 0.0
ddfma2553 fma 0.0 1 0e+384 -> 0.0
ddfma2554 fma -0.0 1 0e+384 -> 0.0
ddfma2555 fma -1.0 0 0e+384 -> 0.0
ddfma2556 fma -1.0 -0 0e+384 -> 0.0
ddfma2557 fma 1.0 0 0e+384 -> 0.0
ddfma2558 fma 1.0 -0 0e+384 -> 0.0
ddfma2561 fma 0 -1.0 0e+384 -> 0.0
ddfma2562 fma -0 -1.0 0e+384 -> 0.0
ddfma2563 fma 0 1.0 0e+384 -> 0.0
ddfma2564 fma -0 1.0 0e+384 -> 0.0
ddfma2565 fma -1 0.0 0e+384 -> 0.0
ddfma2566 fma -1 -0.0 0e+384 -> 0.0
ddfma2567 fma 1 0.0 0e+384 -> 0.0
ddfma2568 fma 1 -0.0 0e+384 -> 0.0
ddfma2571 fma 0.0 -1.0 0e+384 -> 0.00
ddfma2572 fma -0.0 -1.0 0e+384 -> 0.00
ddfma2573 fma 0.0 1.0 0e+384 -> 0.00
ddfma2574 fma -0.0 1.0 0e+384 -> 0.00
ddfma2575 fma -1.0 0.0 0e+384 -> 0.00
ddfma2576 fma -1.0 -0.0 0e+384 -> 0.00
ddfma2577 fma 1.0 0.0 0e+384 -> 0.00
ddfma2578 fma 1.0 -0.0 0e+384 -> 0.00
-- Specials
ddfma2580 fma Inf -Inf 0e+384 -> -Infinity
ddfma2581 fma Inf -1000 0e+384 -> -Infinity
ddfma2582 fma Inf -1 0e+384 -> -Infinity
ddfma2583 fma Inf -0 0e+384 -> NaN Invalid_operation
ddfma2584 fma Inf 0 0e+384 -> NaN Invalid_operation
ddfma2585 fma Inf 1 0e+384 -> Infinity
ddfma2586 fma Inf 1000 0e+384 -> Infinity
ddfma2587 fma Inf Inf 0e+384 -> Infinity
ddfma2588 fma -1000 Inf 0e+384 -> -Infinity
ddfma2589 fma -Inf Inf 0e+384 -> -Infinity
ddfma2590 fma -1 Inf 0e+384 -> -Infinity
ddfma2591 fma -0 Inf 0e+384 -> NaN Invalid_operation
ddfma2592 fma 0 Inf 0e+384 -> NaN Invalid_operation
ddfma2593 fma 1 Inf 0e+384 -> Infinity
ddfma2594 fma 1000 Inf 0e+384 -> Infinity
ddfma2595 fma Inf Inf 0e+384 -> Infinity
ddfma2600 fma -Inf -Inf 0e+384 -> Infinity
ddfma2601 fma -Inf -1000 0e+384 -> Infinity
ddfma2602 fma -Inf -1 0e+384 -> Infinity
ddfma2603 fma -Inf -0 0e+384 -> NaN Invalid_operation
ddfma2604 fma -Inf 0 0e+384 -> NaN Invalid_operation
ddfma2605 fma -Inf 1 0e+384 -> -Infinity
ddfma2606 fma -Inf 1000 0e+384 -> -Infinity
ddfma2607 fma -Inf Inf 0e+384 -> -Infinity
ddfma2608 fma -1000 Inf 0e+384 -> -Infinity
ddfma2609 fma -Inf -Inf 0e+384 -> Infinity
ddfma2610 fma -1 -Inf 0e+384 -> Infinity
ddfma2611 fma -0 -Inf 0e+384 -> NaN Invalid_operation
ddfma2612 fma 0 -Inf 0e+384 -> NaN Invalid_operation
ddfma2613 fma 1 -Inf 0e+384 -> -Infinity
ddfma2614 fma 1000 -Inf 0e+384 -> -Infinity
ddfma2615 fma Inf -Inf 0e+384 -> -Infinity
ddfma2621 fma NaN -Inf 0e+384 -> NaN
ddfma2622 fma NaN -1000 0e+384 -> NaN
ddfma2623 fma NaN -1 0e+384 -> NaN
ddfma2624 fma NaN -0 0e+384 -> NaN
ddfma2625 fma NaN 0 0e+384 -> NaN
ddfma2626 fma NaN 1 0e+384 -> NaN
ddfma2627 fma NaN 1000 0e+384 -> NaN
ddfma2628 fma NaN Inf 0e+384 -> NaN
ddfma2629 fma NaN NaN 0e+384 -> NaN
ddfma2630 fma -Inf NaN 0e+384 -> NaN
ddfma2631 fma -1000 NaN 0e+384 -> NaN
ddfma2632 fma -1 NaN 0e+384 -> NaN
ddfma2633 fma -0 NaN 0e+384 -> NaN
ddfma2634 fma 0 NaN 0e+384 -> NaN
ddfma2635 fma 1 NaN 0e+384 -> NaN
ddfma2636 fma 1000 NaN 0e+384 -> NaN
ddfma2637 fma Inf NaN 0e+384 -> NaN
ddfma2641 fma sNaN -Inf 0e+384 -> NaN Invalid_operation
ddfma2642 fma sNaN -1000 0e+384 -> NaN Invalid_operation
ddfma2643 fma sNaN -1 0e+384 -> NaN Invalid_operation
ddfma2644 fma sNaN -0 0e+384 -> NaN Invalid_operation
ddfma2645 fma sNaN 0 0e+384 -> NaN Invalid_operation
ddfma2646 fma sNaN 1 0e+384 -> NaN Invalid_operation
ddfma2647 fma sNaN 1000 0e+384 -> NaN Invalid_operation
ddfma2648 fma sNaN NaN 0e+384 -> NaN Invalid_operation
ddfma2649 fma sNaN sNaN 0e+384 -> NaN Invalid_operation
ddfma2650 fma NaN sNaN 0e+384 -> NaN Invalid_operation
ddfma2651 fma -Inf sNaN 0e+384 -> NaN Invalid_operation
ddfma2652 fma -1000 sNaN 0e+384 -> NaN Invalid_operation
ddfma2653 fma -1 sNaN 0e+384 -> NaN Invalid_operation
ddfma2654 fma -0 sNaN 0e+384 -> NaN Invalid_operation
ddfma2655 fma 0 sNaN 0e+384 -> NaN Invalid_operation
ddfma2656 fma 1 sNaN 0e+384 -> NaN Invalid_operation
ddfma2657 fma 1000 sNaN 0e+384 -> NaN Invalid_operation
ddfma2658 fma Inf sNaN 0e+384 -> NaN Invalid_operation
ddfma2659 fma NaN sNaN 0e+384 -> NaN Invalid_operation
-- propagating NaNs
ddfma2661 fma NaN9 -Inf 0e+384 -> NaN9
ddfma2662 fma NaN8 999 0e+384 -> NaN8
ddfma2663 fma NaN71 Inf 0e+384 -> NaN71
ddfma2664 fma NaN6 NaN5 0e+384 -> NaN6
ddfma2665 fma -Inf NaN4 0e+384 -> NaN4
ddfma2666 fma -999 NaN33 0e+384 -> NaN33
ddfma2667 fma Inf NaN2 0e+384 -> NaN2
ddfma2671 fma sNaN99 -Inf 0e+384 -> NaN99 Invalid_operation
ddfma2672 fma sNaN98 -11 0e+384 -> NaN98 Invalid_operation
ddfma2673 fma sNaN97 NaN 0e+384 -> NaN97 Invalid_operation
ddfma2674 fma sNaN16 sNaN94 0e+384 -> NaN16 Invalid_operation
ddfma2675 fma NaN95 sNaN93 0e+384 -> NaN93 Invalid_operation
ddfma2676 fma -Inf sNaN92 0e+384 -> NaN92 Invalid_operation
ddfma2677 fma 088 sNaN91 0e+384 -> NaN91 Invalid_operation
ddfma2678 fma Inf sNaN90 0e+384 -> NaN90 Invalid_operation
ddfma2679 fma NaN sNaN89 0e+384 -> NaN89 Invalid_operation
ddfma2681 fma -NaN9 -Inf 0e+384 -> -NaN9
ddfma2682 fma -NaN8 999 0e+384 -> -NaN8
ddfma2683 fma -NaN71 Inf 0e+384 -> -NaN71
ddfma2684 fma -NaN6 -NaN5 0e+384 -> -NaN6
ddfma2685 fma -Inf -NaN4 0e+384 -> -NaN4
ddfma2686 fma -999 -NaN33 0e+384 -> -NaN33
ddfma2687 fma Inf -NaN2 0e+384 -> -NaN2
ddfma2691 fma -sNaN99 -Inf 0e+384 -> -NaN99 Invalid_operation
ddfma2692 fma -sNaN98 -11 0e+384 -> -NaN98 Invalid_operation
ddfma2693 fma -sNaN97 NaN 0e+384 -> -NaN97 Invalid_operation
ddfma2694 fma -sNaN16 -sNaN94 0e+384 -> -NaN16 Invalid_operation
ddfma2695 fma -NaN95 -sNaN93 0e+384 -> -NaN93 Invalid_operation
ddfma2696 fma -Inf -sNaN92 0e+384 -> -NaN92 Invalid_operation
ddfma2697 fma 088 -sNaN91 0e+384 -> -NaN91 Invalid_operation
ddfma2698 fma Inf -sNaN90 0e+384 -> -NaN90 Invalid_operation
ddfma2699 fma -NaN -sNaN89 0e+384 -> -NaN89 Invalid_operation
ddfma2701 fma -NaN -Inf 0e+384 -> -NaN
ddfma2702 fma -NaN 999 0e+384 -> -NaN
ddfma2703 fma -NaN Inf 0e+384 -> -NaN
ddfma2704 fma -NaN -NaN 0e+384 -> -NaN
ddfma2705 fma -Inf -NaN0 0e+384 -> -NaN
ddfma2706 fma -999 -NaN 0e+384 -> -NaN
ddfma2707 fma Inf -NaN 0e+384 -> -NaN
ddfma2711 fma -sNaN -Inf 0e+384 -> -NaN Invalid_operation
ddfma2712 fma -sNaN -11 0e+384 -> -NaN Invalid_operation
ddfma2713 fma -sNaN00 NaN 0e+384 -> -NaN Invalid_operation
ddfma2714 fma -sNaN -sNaN 0e+384 -> -NaN Invalid_operation
ddfma2715 fma -NaN -sNaN 0e+384 -> -NaN Invalid_operation
ddfma2716 fma -Inf -sNaN 0e+384 -> -NaN Invalid_operation
ddfma2717 fma 088 -sNaN 0e+384 -> -NaN Invalid_operation
ddfma2718 fma Inf -sNaN 0e+384 -> -NaN Invalid_operation
ddfma2719 fma -NaN -sNaN 0e+384 -> -NaN Invalid_operation
-- overflow and underflow tests .. note subnormal results
-- signs
ddfma2751 fma 1e+277 1e+311 0e+384 -> Infinity Overflow Inexact Rounded
ddfma2752 fma 1e+277 -1e+311 0e+384 -> -Infinity Overflow Inexact Rounded
ddfma2753 fma -1e+277 1e+311 0e+384 -> -Infinity Overflow Inexact Rounded
ddfma2754 fma -1e+277 -1e+311 0e+384 -> Infinity Overflow Inexact Rounded
ddfma2755 fma 1e-277 1e-311 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2756 fma 1e-277 -1e-311 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2757 fma -1e-277 1e-311 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2758 fma -1e-277 -1e-311 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
-- 'subnormal' boundary (all hard underflow or overflow in base arithemtic)
ddfma2760 fma 1e-291 1e-101 0e+384 -> 1E-392 Subnormal
ddfma2761 fma 1e-291 1e-102 0e+384 -> 1E-393 Subnormal
ddfma2762 fma 1e-291 1e-103 0e+384 -> 1E-394 Subnormal
ddfma2763 fma 1e-291 1e-104 0e+384 -> 1E-395 Subnormal
ddfma2764 fma 1e-291 1e-105 0e+384 -> 1E-396 Subnormal
ddfma2765 fma 1e-291 1e-106 0e+384 -> 1E-397 Subnormal
ddfma2766 fma 1e-291 1e-107 0e+384 -> 1E-398 Subnormal
ddfma2767 fma 1e-291 1e-108 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2768 fma 1e-291 1e-109 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2769 fma 1e-291 1e-110 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
-- [no equivalent of 'subnormal' for overflow]
ddfma2770 fma 1e+60 1e+321 0e+384 -> 1.000000000000E+381 Clamped
ddfma2771 fma 1e+60 1e+322 0e+384 -> 1.0000000000000E+382 Clamped
ddfma2772 fma 1e+60 1e+323 0e+384 -> 1.00000000000000E+383 Clamped
ddfma2773 fma 1e+60 1e+324 0e+384 -> 1.000000000000000E+384 Clamped
ddfma2774 fma 1e+60 1e+325 0e+384 -> Infinity Overflow Inexact Rounded
ddfma2775 fma 1e+60 1e+326 0e+384 -> Infinity Overflow Inexact Rounded
ddfma2776 fma 1e+60 1e+327 0e+384 -> Infinity Overflow Inexact Rounded
ddfma2777 fma 1e+60 1e+328 0e+384 -> Infinity Overflow Inexact Rounded
ddfma2778 fma 1e+60 1e+329 0e+384 -> Infinity Overflow Inexact Rounded
ddfma2779 fma 1e+60 1e+330 0e+384 -> Infinity Overflow Inexact Rounded
ddfma2801 fma 1.0000E-394 1 0e+384 -> 1.0000E-394 Subnormal
ddfma2802 fma 1.000E-394 1e-1 0e+384 -> 1.000E-395 Subnormal
ddfma2803 fma 1.00E-394 1e-2 0e+384 -> 1.00E-396 Subnormal
ddfma2804 fma 1.0E-394 1e-3 0e+384 -> 1.0E-397 Subnormal
ddfma2805 fma 1.0E-394 1e-4 0e+384 -> 1E-398 Subnormal Rounded
ddfma2806 fma 1.3E-394 1e-4 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded
ddfma2807 fma 1.5E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
ddfma2808 fma 1.7E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
ddfma2809 fma 2.3E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
ddfma2810 fma 2.5E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
ddfma2811 fma 2.7E-394 1e-4 0e+384 -> 3E-398 Underflow Subnormal Inexact Rounded
ddfma2812 fma 1.49E-394 1e-4 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded
ddfma2813 fma 1.50E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
ddfma2814 fma 1.51E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
ddfma2815 fma 2.49E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
ddfma2816 fma 2.50E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
ddfma2817 fma 2.51E-394 1e-4 0e+384 -> 3E-398 Underflow Subnormal Inexact Rounded
ddfma2818 fma 1E-394 1e-4 0e+384 -> 1E-398 Subnormal
ddfma2819 fma 3E-394 1e-5 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2820 fma 5E-394 1e-5 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2821 fma 7E-394 1e-5 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded
ddfma2822 fma 9E-394 1e-5 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded
ddfma2823 fma 9.9E-394 1e-5 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded
ddfma2824 fma 1E-394 -1e-4 0e+384 -> -1E-398 Subnormal
ddfma2825 fma 3E-394 -1e-5 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2826 fma -5E-394 1e-5 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2827 fma 7E-394 -1e-5 0e+384 -> -1E-398 Underflow Subnormal Inexact Rounded
ddfma2828 fma -9E-394 1e-5 0e+384 -> -1E-398 Underflow Subnormal Inexact Rounded
ddfma2829 fma 9.9E-394 -1e-5 0e+384 -> -1E-398 Underflow Subnormal Inexact Rounded
ddfma2830 fma 3.0E-394 -1e-5 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2831 fma 1.0E-199 1e-200 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
ddfma2832 fma 1.0E-199 1e-199 0e+384 -> 1E-398 Subnormal Rounded
ddfma2833 fma 1.0E-199 1e-198 0e+384 -> 1.0E-397 Subnormal
ddfma2834 fma 2.0E-199 2e-198 0e+384 -> 4.0E-397 Subnormal
ddfma2835 fma 4.0E-199 4e-198 0e+384 -> 1.60E-396 Subnormal
ddfma2836 fma 10.0E-199 10e-198 0e+384 -> 1.000E-395 Subnormal
ddfma2837 fma 30.0E-199 30e-198 0e+384 -> 9.000E-395 Subnormal
ddfma2838 fma 40.0E-199 40e-188 0e+384 -> 1.6000E-384 Subnormal
ddfma2839 fma 40.0E-199 40e-187 0e+384 -> 1.6000E-383
ddfma2840 fma 40.0E-199 40e-186 0e+384 -> 1.6000E-382
-- Long operand overflow may be a different path
ddfma2870 fma 100 9.999E+383 0e+384 -> Infinity Inexact Overflow Rounded
ddfma2871 fma 100 -9.999E+383 0e+384 -> -Infinity Inexact Overflow Rounded
ddfma2872 fma 9.999E+383 100 0e+384 -> Infinity Inexact Overflow Rounded
ddfma2873 fma -9.999E+383 100 0e+384 -> -Infinity Inexact Overflow Rounded
-- check for double-rounded subnormals
ddfma2881 fma 1.2347E-355 1.2347E-40 0e+384 -> 1.524E-395 Inexact Rounded Subnormal Underflow
ddfma2882 fma 1.234E-355 1.234E-40 0e+384 -> 1.523E-395 Inexact Rounded Subnormal Underflow
ddfma2883 fma 1.23E-355 1.23E-40 0e+384 -> 1.513E-395 Inexact Rounded Subnormal Underflow
ddfma2884 fma 1.2E-355 1.2E-40 0e+384 -> 1.44E-395 Subnormal
ddfma2885 fma 1.2E-355 1.2E-41 0e+384 -> 1.44E-396 Subnormal
ddfma2886 fma 1.2E-355 1.2E-42 0e+384 -> 1.4E-397 Subnormal Inexact Rounded Underflow
ddfma2887 fma 1.2E-355 1.3E-42 0e+384 -> 1.6E-397 Subnormal Inexact Rounded Underflow
ddfma2888 fma 1.3E-355 1.3E-42 0e+384 -> 1.7E-397 Subnormal Inexact Rounded Underflow
ddfma2889 fma 1.3E-355 1.3E-43 0e+384 -> 2E-398 Subnormal Inexact Rounded Underflow
ddfma2890 fma 1.3E-356 1.3E-43 0e+384 -> 0E-398 Clamped Subnormal Inexact Rounded Underflow
ddfma2891 fma 1.2345E-39 1.234E-355 0e+384 -> 1.5234E-394 Inexact Rounded Subnormal Underflow
ddfma2892 fma 1.23456E-39 1.234E-355 0e+384 -> 1.5234E-394 Inexact Rounded Subnormal Underflow
ddfma2893 fma 1.2345E-40 1.234E-355 0e+384 -> 1.523E-395 Inexact Rounded Subnormal Underflow
ddfma2894 fma 1.23456E-40 1.234E-355 0e+384 -> 1.523E-395 Inexact Rounded Subnormal Underflow
ddfma2895 fma 1.2345E-41 1.234E-355 0e+384 -> 1.52E-396 Inexact Rounded Subnormal Underflow
ddfma2896 fma 1.23456E-41 1.234E-355 0e+384 -> 1.52E-396 Inexact Rounded Subnormal Underflow
-- Now explore the case where we get a normal result with Underflow
ddfma2900 fma 0.3000000000E-191 0.3000000000E-191 0e+384 -> 9.00000000000000E-384 Subnormal Rounded
ddfma2901 fma 0.3000000001E-191 0.3000000001E-191 0e+384 -> 9.00000000600000E-384 Underflow Inexact Subnormal Rounded
ddfma2902 fma 9.999999999999999E-383 0.0999999999999 0e+384 -> 9.99999999999000E-384 Underflow Inexact Subnormal Rounded
ddfma2903 fma 9.999999999999999E-383 0.09999999999999 0e+384 -> 9.99999999999900E-384 Underflow Inexact Subnormal Rounded
ddfma2904 fma 9.999999999999999E-383 0.099999999999999 0e+384 -> 9.99999999999990E-384 Underflow Inexact Subnormal Rounded
ddfma2905 fma 9.999999999999999E-383 0.0999999999999999 0e+384 -> 9.99999999999999E-384 Underflow Inexact Subnormal Rounded
-- prove operands are exact
ddfma2906 fma 9.999999999999999E-383 1 0e+384 -> 9.999999999999999E-383
ddfma2907 fma 1 0.09999999999999999 0e+384 -> 0.09999999999999999
-- the next rounds to Nmin
ddfma2908 fma 9.999999999999999E-383 0.09999999999999999 0e+384 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
-- hugest
ddfma2909 fma 9999999999999999 9999999999999999 0e+384 -> 9.999999999999998E+31 Inexact Rounded
-- Null tests
ddfma2990 fma 10 # 0e+384 -> NaN Invalid_operation
ddfma2991 fma # 10 0e+384 -> NaN Invalid_operation
-- ADDITION TESTS ------------------------------------------------------
-- [first group are 'quick confidence check']
ddfma3001 fma 1 1 1 -> 2
ddfma3002 fma 1 2 3 -> 5
ddfma3003 fma 1 '5.75' '3.3' -> 9.05
ddfma3004 fma 1 '5' '-3' -> 2
ddfma3005 fma 1 '-5' '-3' -> -8
ddfma3006 fma 1 '-7' '2.5' -> -4.5
ddfma3007 fma 1 '0.7' '0.3' -> 1.0
ddfma3008 fma 1 '1.25' '1.25' -> 2.50
ddfma3009 fma 1 '1.23456789' '1.00000000' -> '2.23456789'
ddfma3010 fma 1 '1.23456789' '1.00000011' -> '2.23456800'
-- 1234567890123456 1234567890123456
ddfma3011 fma 1 '0.4444444444444446' '0.5555555555555555' -> '1.000000000000000' Inexact Rounded
ddfma3012 fma 1 '0.4444444444444445' '0.5555555555555555' -> '1.000000000000000' Rounded
ddfma3013 fma 1 '0.4444444444444444' '0.5555555555555555' -> '0.9999999999999999'
ddfma3014 fma 1 '4444444444444444' '0.49' -> '4444444444444444' Inexact Rounded
ddfma3015 fma 1 '4444444444444444' '0.499' -> '4444444444444444' Inexact Rounded
ddfma3016 fma 1 '4444444444444444' '0.4999' -> '4444444444444444' Inexact Rounded
ddfma3017 fma 1 '4444444444444444' '0.5000' -> '4444444444444444' Inexact Rounded
ddfma3018 fma 1 '4444444444444444' '0.5001' -> '4444444444444445' Inexact Rounded
ddfma3019 fma 1 '4444444444444444' '0.501' -> '4444444444444445' Inexact Rounded
ddfma3020 fma 1 '4444444444444444' '0.51' -> '4444444444444445' Inexact Rounded
ddfma3021 fma 1 0 1 -> 1
ddfma3022 fma 1 1 1 -> 2
ddfma3023 fma 1 2 1 -> 3
ddfma3024 fma 1 3 1 -> 4
ddfma3025 fma 1 4 1 -> 5
ddfma3026 fma 1 5 1 -> 6
ddfma3027 fma 1 6 1 -> 7
ddfma3028 fma 1 7 1 -> 8
ddfma3029 fma 1 8 1 -> 9
ddfma3030 fma 1 9 1 -> 10
-- some carrying effects
ddfma3031 fma 1 '0.9998' '0.0000' -> '0.9998'
ddfma3032 fma 1 '0.9998' '0.0001' -> '0.9999'
ddfma3033 fma 1 '0.9998' '0.0002' -> '1.0000'
ddfma3034 fma 1 '0.9998' '0.0003' -> '1.0001'
ddfma3035 fma 1 '70' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
ddfma3036 fma 1 '700' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
ddfma3037 fma 1 '7000' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
ddfma3038 fma 1 '70000' '10000e+16' -> '1.000000000000001E+20' Inexact Rounded
ddfma3039 fma 1 '700000' '10000e+16' -> '1.000000000000007E+20' Rounded
-- symmetry:
ddfma3040 fma 1 '10000e+16' '70' -> '1.000000000000000E+20' Inexact Rounded
ddfma3041 fma 1 '10000e+16' '700' -> '1.000000000000000E+20' Inexact Rounded
ddfma3042 fma 1 '10000e+16' '7000' -> '1.000000000000000E+20' Inexact Rounded
ddfma3044 fma 1 '10000e+16' '70000' -> '1.000000000000001E+20' Inexact Rounded
ddfma3045 fma 1 '10000e+16' '700000' -> '1.000000000000007E+20' Rounded
-- same, without rounding
ddfma3046 fma 1 '10000e+9' '7' -> '10000000000007'
ddfma3047 fma 1 '10000e+9' '70' -> '10000000000070'
ddfma3048 fma 1 '10000e+9' '700' -> '10000000000700'
ddfma3049 fma 1 '10000e+9' '7000' -> '10000000007000'
ddfma3050 fma 1 '10000e+9' '70000' -> '10000000070000'
ddfma3051 fma 1 '10000e+9' '700000' -> '10000000700000'
ddfma3052 fma 1 '10000e+9' '7000000' -> '10000007000000'
-- examples from decarith
ddfma3053 fma 1 '12' '7.00' -> '19.00'
ddfma3054 fma 1 '1.3' '-1.07' -> '0.23'
ddfma3055 fma 1 '1.3' '-1.30' -> '0.00'
ddfma3056 fma 1 '1.3' '-2.07' -> '-0.77'
ddfma3057 fma 1 '1E+2' '1E+4' -> '1.01E+4'
-- leading zero preservation
ddfma3061 fma 1 1 '0.0001' -> '1.0001'
ddfma3062 fma 1 1 '0.00001' -> '1.00001'
ddfma3063 fma 1 1 '0.000001' -> '1.000001'
ddfma3064 fma 1 1 '0.0000001' -> '1.0000001'
ddfma3065 fma 1 1 '0.00000001' -> '1.00000001'
-- some funny zeros [in case of bad signum]
ddfma3070 fma 1 1 0 -> 1
ddfma3071 fma 1 1 0. -> 1
ddfma3072 fma 1 1 .0 -> 1.0
ddfma3073 fma 1 1 0.0 -> 1.0
ddfma3074 fma 1 1 0.00 -> 1.00
ddfma3075 fma 1 0 1 -> 1
ddfma3076 fma 1 0. 1 -> 1
ddfma3077 fma 1 .0 1 -> 1.0
ddfma3078 fma 1 0.0 1 -> 1.0
ddfma3079 fma 1 0.00 1 -> 1.00
-- some carries
ddfma3080 fma 1 999999998 1 -> 999999999
ddfma3081 fma 1 999999999 1 -> 1000000000
ddfma3082 fma 1 99999999 1 -> 100000000
ddfma3083 fma 1 9999999 1 -> 10000000
ddfma3084 fma 1 999999 1 -> 1000000
ddfma3085 fma 1 99999 1 -> 100000
ddfma3086 fma 1 9999 1 -> 10000
ddfma3087 fma 1 999 1 -> 1000
ddfma3088 fma 1 99 1 -> 100
ddfma3089 fma 1 9 1 -> 10
-- more LHS swaps
ddfma3090 fma 1 '-56267E-10' 0 -> '-0.0000056267'
ddfma3091 fma 1 '-56267E-6' 0 -> '-0.056267'
ddfma3092 fma 1 '-56267E-5' 0 -> '-0.56267'
ddfma3093 fma 1 '-56267E-4' 0 -> '-5.6267'
ddfma3094 fma 1 '-56267E-3' 0 -> '-56.267'
ddfma3095 fma 1 '-56267E-2' 0 -> '-562.67'
ddfma3096 fma 1 '-56267E-1' 0 -> '-5626.7'
ddfma3097 fma 1 '-56267E-0' 0 -> '-56267'
ddfma3098 fma 1 '-5E-10' 0 -> '-5E-10'
ddfma3099 fma 1 '-5E-7' 0 -> '-5E-7'
ddfma3100 fma 1 '-5E-6' 0 -> '-0.000005'
ddfma3101 fma 1 '-5E-5' 0 -> '-0.00005'
ddfma3102 fma 1 '-5E-4' 0 -> '-0.0005'
ddfma3103 fma 1 '-5E-1' 0 -> '-0.5'
ddfma3104 fma 1 '-5E0' 0 -> '-5'
ddfma3105 fma 1 '-5E1' 0 -> '-50'
ddfma3106 fma 1 '-5E5' 0 -> '-500000'
ddfma3107 fma 1 '-5E15' 0 -> '-5000000000000000'
ddfma3108 fma 1 '-5E16' 0 -> '-5.000000000000000E+16' Rounded
ddfma3109 fma 1 '-5E17' 0 -> '-5.000000000000000E+17' Rounded
ddfma3110 fma 1 '-5E18' 0 -> '-5.000000000000000E+18' Rounded
ddfma3111 fma 1 '-5E100' 0 -> '-5.000000000000000E+100' Rounded
-- more RHS swaps
ddfma3113 fma 1 0 '-56267E-10' -> '-0.0000056267'
ddfma3114 fma 1 0 '-56267E-6' -> '-0.056267'
ddfma3116 fma 1 0 '-56267E-5' -> '-0.56267'
ddfma3117 fma 1 0 '-56267E-4' -> '-5.6267'
ddfma3119 fma 1 0 '-56267E-3' -> '-56.267'
ddfma3120 fma 1 0 '-56267E-2' -> '-562.67'
ddfma3121 fma 1 0 '-56267E-1' -> '-5626.7'
ddfma3122 fma 1 0 '-56267E-0' -> '-56267'
ddfma3123 fma 1 0 '-5E-10' -> '-5E-10'
ddfma3124 fma 1 0 '-5E-7' -> '-5E-7'
ddfma3125 fma 1 0 '-5E-6' -> '-0.000005'
ddfma3126 fma 1 0 '-5E-5' -> '-0.00005'
ddfma3127 fma 1 0 '-5E-4' -> '-0.0005'
ddfma3128 fma 1 0 '-5E-1' -> '-0.5'
ddfma3129 fma 1 0 '-5E0' -> '-5'
ddfma3130 fma 1 0 '-5E1' -> '-50'
ddfma3131 fma 1 0 '-5E5' -> '-500000'
ddfma3132 fma 1 0 '-5E15' -> '-5000000000000000'
ddfma3133 fma 1 0 '-5E16' -> '-5.000000000000000E+16' Rounded
ddfma3134 fma 1 0 '-5E17' -> '-5.000000000000000E+17' Rounded
ddfma3135 fma 1 0 '-5E18' -> '-5.000000000000000E+18' Rounded
ddfma3136 fma 1 0 '-5E100' -> '-5.000000000000000E+100' Rounded
-- related
ddfma3137 fma 1 1 '0E-19' -> '1.000000000000000' Rounded
ddfma3138 fma 1 -1 '0E-19' -> '-1.000000000000000' Rounded
ddfma3139 fma 1 '0E-19' 1 -> '1.000000000000000' Rounded
ddfma3140 fma 1 '0E-19' -1 -> '-1.000000000000000' Rounded
ddfma3141 fma 1 1E+11 0.0000 -> '100000000000.0000'
ddfma3142 fma 1 1E+11 0.00000 -> '100000000000.0000' Rounded
ddfma3143 fma 1 0.000 1E+12 -> '1000000000000.000'
ddfma3144 fma 1 0.0000 1E+12 -> '1000000000000.000' Rounded
-- [some of the next group are really constructor tests]
ddfma3146 fma 1 '00.0' 0 -> '0.0'
ddfma3147 fma 1 '0.00' 0 -> '0.00'
ddfma3148 fma 1 0 '0.00' -> '0.00'
ddfma3149 fma 1 0 '00.0' -> '0.0'
ddfma3150 fma 1 '00.0' '0.00' -> '0.00'
ddfma3151 fma 1 '0.00' '00.0' -> '0.00'
ddfma3152 fma 1 '3' '.3' -> '3.3'
ddfma3153 fma 1 '3.' '.3' -> '3.3'
ddfma3154 fma 1 '3.0' '.3' -> '3.3'
ddfma3155 fma 1 '3.00' '.3' -> '3.30'
ddfma3156 fma 1 '3' '3' -> '6'
ddfma3157 fma 1 '3' '+3' -> '6'
ddfma3158 fma 1 '3' '-3' -> '0'
ddfma3159 fma 1 '0.3' '-0.3' -> '0.0'
ddfma3160 fma 1 '0.03' '-0.03' -> '0.00'
-- try borderline precision, with carries, etc.
ddfma3161 fma 1 '1E+12' '-1' -> '999999999999'
ddfma3162 fma 1 '1E+12' '1.11' -> '1000000000001.11'
ddfma3163 fma 1 '1.11' '1E+12' -> '1000000000001.11'
ddfma3164 fma 1 '-1' '1E+12' -> '999999999999'
ddfma3165 fma 1 '7E+12' '-1' -> '6999999999999'
ddfma3166 fma 1 '7E+12' '1.11' -> '7000000000001.11'
ddfma3167 fma 1 '1.11' '7E+12' -> '7000000000001.11'
ddfma3168 fma 1 '-1' '7E+12' -> '6999999999999'
rounding: half_up
-- 1.234567890123456 1234567890123456 1 234567890123456
ddfma3170 fma 1 '4.444444444444444' '0.5555555555555567' -> '5.000000000000001' Inexact Rounded
ddfma3171 fma 1 '4.444444444444444' '0.5555555555555566' -> '5.000000000000001' Inexact Rounded
ddfma3172 fma 1 '4.444444444444444' '0.5555555555555565' -> '5.000000000000001' Inexact Rounded
ddfma3173 fma 1 '4.444444444444444' '0.5555555555555564' -> '5.000000000000000' Inexact Rounded
ddfma3174 fma 1 '4.444444444444444' '0.5555555555555553' -> '4.999999999999999' Inexact Rounded
ddfma3175 fma 1 '4.444444444444444' '0.5555555555555552' -> '4.999999999999999' Inexact Rounded
ddfma3176 fma 1 '4.444444444444444' '0.5555555555555551' -> '4.999999999999999' Inexact Rounded
ddfma3177 fma 1 '4.444444444444444' '0.5555555555555550' -> '4.999999999999999' Rounded
ddfma3178 fma 1 '4.444444444444444' '0.5555555555555545' -> '4.999999999999999' Inexact Rounded
ddfma3179 fma 1 '4.444444444444444' '0.5555555555555544' -> '4.999999999999998' Inexact Rounded
ddfma3180 fma 1 '4.444444444444444' '0.5555555555555543' -> '4.999999999999998' Inexact Rounded
ddfma3181 fma 1 '4.444444444444444' '0.5555555555555542' -> '4.999999999999998' Inexact Rounded
ddfma3182 fma 1 '4.444444444444444' '0.5555555555555541' -> '4.999999999999998' Inexact Rounded
ddfma3183 fma 1 '4.444444444444444' '0.5555555555555540' -> '4.999999999999998' Rounded
-- and some more, including residue effects and different roundings
rounding: half_up
ddfma3200 fma 1 '1234560123456789' 0 -> '1234560123456789'
ddfma3201 fma 1 '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded
ddfma3202 fma 1 '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded
ddfma3203 fma 1 '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded
ddfma3204 fma 1 '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded
ddfma3205 fma 1 '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded
ddfma3206 fma 1 '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded
ddfma3207 fma 1 '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded
ddfma3208 fma 1 '1234560123456789' 0.5 -> '1234560123456790' Inexact Rounded
ddfma3209 fma 1 '1234560123456789' 0.500000001 -> '1234560123456790' Inexact Rounded
ddfma3210 fma 1 '1234560123456789' 0.500001 -> '1234560123456790' Inexact Rounded
ddfma3211 fma 1 '1234560123456789' 0.51 -> '1234560123456790' Inexact Rounded
ddfma3212 fma 1 '1234560123456789' 0.6 -> '1234560123456790' Inexact Rounded
ddfma3213 fma 1 '1234560123456789' 0.9 -> '1234560123456790' Inexact Rounded
ddfma3214 fma 1 '1234560123456789' 0.99999 -> '1234560123456790' Inexact Rounded
ddfma3215 fma 1 '1234560123456789' 0.999999999 -> '1234560123456790' Inexact Rounded
ddfma3216 fma 1 '1234560123456789' 1 -> '1234560123456790'
ddfma3217 fma 1 '1234560123456789' 1.000000001 -> '1234560123456790' Inexact Rounded
ddfma3218 fma 1 '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded
ddfma3219 fma 1 '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded
rounding: half_even
ddfma3220 fma 1 '1234560123456789' 0 -> '1234560123456789'
ddfma3221 fma 1 '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded
ddfma3222 fma 1 '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded
ddfma3223 fma 1 '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded
ddfma3224 fma 1 '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded
ddfma3225 fma 1 '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded
ddfma3226 fma 1 '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded
ddfma3227 fma 1 '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded
ddfma3228 fma 1 '1234560123456789' 0.5 -> '1234560123456790' Inexact Rounded
ddfma3229 fma 1 '1234560123456789' 0.500000001 -> '1234560123456790' Inexact Rounded
ddfma3230 fma 1 '1234560123456789' 0.500001 -> '1234560123456790' Inexact Rounded
ddfma3231 fma 1 '1234560123456789' 0.51 -> '1234560123456790' Inexact Rounded
ddfma3232 fma 1 '1234560123456789' 0.6 -> '1234560123456790' Inexact Rounded
ddfma3233 fma 1 '1234560123456789' 0.9 -> '1234560123456790' Inexact Rounded
ddfma3234 fma 1 '1234560123456789' 0.99999 -> '1234560123456790' Inexact Rounded
ddfma3235 fma 1 '1234560123456789' 0.999999999 -> '1234560123456790' Inexact Rounded
ddfma3236 fma 1 '1234560123456789' 1 -> '1234560123456790'
ddfma3237 fma 1 '1234560123456789' 1.00000001 -> '1234560123456790' Inexact Rounded
ddfma3238 fma 1 '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded
ddfma3239 fma 1 '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded
-- critical few with even bottom digit...
ddfma3240 fma 1 '1234560123456788' 0.499999999 -> '1234560123456788' Inexact Rounded
ddfma3241 fma 1 '1234560123456788' 0.5 -> '1234560123456788' Inexact Rounded
ddfma3242 fma 1 '1234560123456788' 0.500000001 -> '1234560123456789' Inexact Rounded
rounding: down
ddfma3250 fma 1 '1234560123456789' 0 -> '1234560123456789'
ddfma3251 fma 1 '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded
ddfma3252 fma 1 '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded
ddfma3253 fma 1 '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded
ddfma3254 fma 1 '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded
ddfma3255 fma 1 '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded
ddfma3256 fma 1 '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded
ddfma3257 fma 1 '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded
ddfma3258 fma 1 '1234560123456789' 0.5 -> '1234560123456789' Inexact Rounded
ddfma3259 fma 1 '1234560123456789' 0.500000001 -> '1234560123456789' Inexact Rounded
ddfma3260 fma 1 '1234560123456789' 0.500001 -> '1234560123456789' Inexact Rounded
ddfma3261 fma 1 '1234560123456789' 0.51 -> '1234560123456789' Inexact Rounded
ddfma3262 fma 1 '1234560123456789' 0.6 -> '1234560123456789' Inexact Rounded
ddfma3263 fma 1 '1234560123456789' 0.9 -> '1234560123456789' Inexact Rounded
ddfma3264 fma 1 '1234560123456789' 0.99999 -> '1234560123456789' Inexact Rounded
ddfma3265 fma 1 '1234560123456789' 0.999999999 -> '1234560123456789' Inexact Rounded
ddfma3266 fma 1 '1234560123456789' 1 -> '1234560123456790'
ddfma3267 fma 1 '1234560123456789' 1.00000001 -> '1234560123456790' Inexact Rounded
ddfma3268 fma 1 '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded
ddfma3269 fma 1 '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded
-- 1 in last place tests
rounding: half_up
ddfma3301 fma 1 -1 1 -> 0
ddfma3302 fma 1 0 1 -> 1
ddfma3303 fma 1 1 1 -> 2
ddfma3304 fma 1 12 1 -> 13
ddfma3305 fma 1 98 1 -> 99
ddfma3306 fma 1 99 1 -> 100
ddfma3307 fma 1 100 1 -> 101
ddfma3308 fma 1 101 1 -> 102
ddfma3309 fma 1 -1 -1 -> -2
ddfma3310 fma 1 0 -1 -> -1
ddfma3311 fma 1 1 -1 -> 0
ddfma3312 fma 1 12 -1 -> 11
ddfma3313 fma 1 98 -1 -> 97
ddfma3314 fma 1 99 -1 -> 98
ddfma3315 fma 1 100 -1 -> 99
ddfma3316 fma 1 101 -1 -> 100
ddfma3321 fma 1 -0.01 0.01 -> 0.00
ddfma3322 fma 1 0.00 0.01 -> 0.01
ddfma3323 fma 1 0.01 0.01 -> 0.02
ddfma3324 fma 1 0.12 0.01 -> 0.13
ddfma3325 fma 1 0.98 0.01 -> 0.99
ddfma3326 fma 1 0.99 0.01 -> 1.00
ddfma3327 fma 1 1.00 0.01 -> 1.01
ddfma3328 fma 1 1.01 0.01 -> 1.02
ddfma3329 fma 1 -0.01 -0.01 -> -0.02
ddfma3330 fma 1 0.00 -0.01 -> -0.01
ddfma3331 fma 1 0.01 -0.01 -> 0.00
ddfma3332 fma 1 0.12 -0.01 -> 0.11
ddfma3333 fma 1 0.98 -0.01 -> 0.97
ddfma3334 fma 1 0.99 -0.01 -> 0.98
ddfma3335 fma 1 1.00 -0.01 -> 0.99
ddfma3336 fma 1 1.01 -0.01 -> 1.00
-- some more cases where adding 0 affects the coefficient
ddfma3340 fma 1 1E+3 0 -> 1000
ddfma3341 fma 1 1E+15 0 -> 1000000000000000
ddfma3342 fma 1 1E+16 0 -> 1.000000000000000E+16 Rounded
ddfma3343 fma 1 1E+20 0 -> 1.000000000000000E+20 Rounded
-- which simply follow from these cases ...
ddfma3344 fma 1 1E+3 1 -> 1001
ddfma3345 fma 1 1E+15 1 -> 1000000000000001
ddfma3346 fma 1 1E+16 1 -> 1.000000000000000E+16 Inexact Rounded
ddfma3347 fma 1 1E+20 1 -> 1.000000000000000E+20 Inexact Rounded
ddfma3348 fma 1 1E+3 7 -> 1007
ddfma3349 fma 1 1E+15 7 -> 1000000000000007
ddfma3350 fma 1 1E+16 7 -> 1.000000000000001E+16 Inexact Rounded
ddfma3351 fma 1 1E+20 7 -> 1.000000000000000E+20 Inexact Rounded
-- tryzeros cases
rounding: half_up
ddfma3360 fma 1 0E+50 10000E+1 -> 1.0000E+5
ddfma3361 fma 1 0E-50 10000E+1 -> 100000.0000000000 Rounded
ddfma3362 fma 1 10000E+1 0E-50 -> 100000.0000000000 Rounded
ddfma3363 fma 1 10000E+1 10000E-50 -> 100000.0000000000 Rounded Inexact
ddfma3364 fma 1 9.999999999999999E+384 -9.999999999999999E+384 -> 0E+369
-- a curiosity from JSR 13 testing
rounding: half_down
ddfma3370 fma 1 999999999999999 815 -> 1000000000000814
ddfma3371 fma 1 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact
rounding: half_up
ddfma3372 fma 1 999999999999999 815 -> 1000000000000814
ddfma3373 fma 1 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact
rounding: half_even
ddfma3374 fma 1 999999999999999 815 -> 1000000000000814
ddfma3375 fma 1 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact
-- ulp replacement tests
ddfma3400 fma 1 1 77e-14 -> 1.00000000000077
ddfma3401 fma 1 1 77e-15 -> 1.000000000000077
ddfma3402 fma 1 1 77e-16 -> 1.000000000000008 Inexact Rounded
ddfma3403 fma 1 1 77e-17 -> 1.000000000000001 Inexact Rounded
ddfma3404 fma 1 1 77e-18 -> 1.000000000000000 Inexact Rounded
ddfma3405 fma 1 1 77e-19 -> 1.000000000000000 Inexact Rounded
ddfma3406 fma 1 1 77e-299 -> 1.000000000000000 Inexact Rounded
ddfma3410 fma 1 10 77e-14 -> 10.00000000000077
ddfma3411 fma 1 10 77e-15 -> 10.00000000000008 Inexact Rounded
ddfma3412 fma 1 10 77e-16 -> 10.00000000000001 Inexact Rounded
ddfma3413 fma 1 10 77e-17 -> 10.00000000000000 Inexact Rounded
ddfma3414 fma 1 10 77e-18 -> 10.00000000000000 Inexact Rounded
ddfma3415 fma 1 10 77e-19 -> 10.00000000000000 Inexact Rounded
ddfma3416 fma 1 10 77e-299 -> 10.00000000000000 Inexact Rounded
ddfma3420 fma 1 77e-14 1 -> 1.00000000000077
ddfma3421 fma 1 77e-15 1 -> 1.000000000000077
ddfma3422 fma 1 77e-16 1 -> 1.000000000000008 Inexact Rounded
ddfma3423 fma 1 77e-17 1 -> 1.000000000000001 Inexact Rounded
ddfma3424 fma 1 77e-18 1 -> 1.000000000000000 Inexact Rounded
ddfma3425 fma 1 77e-19 1 -> 1.000000000000000 Inexact Rounded
ddfma3426 fma 1 77e-299 1 -> 1.000000000000000 Inexact Rounded
ddfma3430 fma 1 77e-14 10 -> 10.00000000000077
ddfma3431 fma 1 77e-15 10 -> 10.00000000000008 Inexact Rounded
ddfma3432 fma 1 77e-16 10 -> 10.00000000000001 Inexact Rounded
ddfma3433 fma 1 77e-17 10 -> 10.00000000000000 Inexact Rounded
ddfma3434 fma 1 77e-18 10 -> 10.00000000000000 Inexact Rounded
ddfma3435 fma 1 77e-19 10 -> 10.00000000000000 Inexact Rounded
ddfma3436 fma 1 77e-299 10 -> 10.00000000000000 Inexact Rounded
-- negative ulps
ddfma36440 fma 1 1 -77e-14 -> 0.99999999999923
ddfma36441 fma 1 1 -77e-15 -> 0.999999999999923
ddfma36442 fma 1 1 -77e-16 -> 0.9999999999999923
ddfma36443 fma 1 1 -77e-17 -> 0.9999999999999992 Inexact Rounded
ddfma36444 fma 1 1 -77e-18 -> 0.9999999999999999 Inexact Rounded
ddfma36445 fma 1 1 -77e-19 -> 1.000000000000000 Inexact Rounded
ddfma36446 fma 1 1 -77e-99 -> 1.000000000000000 Inexact Rounded
ddfma36450 fma 1 10 -77e-14 -> 9.99999999999923
ddfma36451 fma 1 10 -77e-15 -> 9.999999999999923
ddfma36452 fma 1 10 -77e-16 -> 9.999999999999992 Inexact Rounded
ddfma36453 fma 1 10 -77e-17 -> 9.999999999999999 Inexact Rounded
ddfma36454 fma 1 10 -77e-18 -> 10.00000000000000 Inexact Rounded
ddfma36455 fma 1 10 -77e-19 -> 10.00000000000000 Inexact Rounded
ddfma36456 fma 1 10 -77e-99 -> 10.00000000000000 Inexact Rounded
ddfma36460 fma 1 -77e-14 1 -> 0.99999999999923
ddfma36461 fma 1 -77e-15 1 -> 0.999999999999923
ddfma36462 fma 1 -77e-16 1 -> 0.9999999999999923
ddfma36463 fma 1 -77e-17 1 -> 0.9999999999999992 Inexact Rounded
ddfma36464 fma 1 -77e-18 1 -> 0.9999999999999999 Inexact Rounded
ddfma36465 fma 1 -77e-19 1 -> 1.000000000000000 Inexact Rounded
ddfma36466 fma 1 -77e-99 1 -> 1.000000000000000 Inexact Rounded
ddfma36470 fma 1 -77e-14 10 -> 9.99999999999923
ddfma36471 fma 1 -77e-15 10 -> 9.999999999999923
ddfma36472 fma 1 -77e-16 10 -> 9.999999999999992 Inexact Rounded
ddfma36473 fma 1 -77e-17 10 -> 9.999999999999999 Inexact Rounded
ddfma36474 fma 1 -77e-18 10 -> 10.00000000000000 Inexact Rounded
ddfma36475 fma 1 -77e-19 10 -> 10.00000000000000 Inexact Rounded
ddfma36476 fma 1 -77e-99 10 -> 10.00000000000000 Inexact Rounded
-- negative ulps
ddfma36480 fma 1 -1 77e-14 -> -0.99999999999923
ddfma36481 fma 1 -1 77e-15 -> -0.999999999999923
ddfma36482 fma 1 -1 77e-16 -> -0.9999999999999923
ddfma36483 fma 1 -1 77e-17 -> -0.9999999999999992 Inexact Rounded
ddfma36484 fma 1 -1 77e-18 -> -0.9999999999999999 Inexact Rounded
ddfma36485 fma 1 -1 77e-19 -> -1.000000000000000 Inexact Rounded
ddfma36486 fma 1 -1 77e-99 -> -1.000000000000000 Inexact Rounded
ddfma36490 fma 1 -10 77e-14 -> -9.99999999999923
ddfma36491 fma 1 -10 77e-15 -> -9.999999999999923
ddfma36492 fma 1 -10 77e-16 -> -9.999999999999992 Inexact Rounded
ddfma36493 fma 1 -10 77e-17 -> -9.999999999999999 Inexact Rounded
ddfma36494 fma 1 -10 77e-18 -> -10.00000000000000 Inexact Rounded
ddfma36495 fma 1 -10 77e-19 -> -10.00000000000000 Inexact Rounded
ddfma36496 fma 1 -10 77e-99 -> -10.00000000000000 Inexact Rounded
ddfma36500 fma 1 77e-14 -1 -> -0.99999999999923
ddfma36501 fma 1 77e-15 -1 -> -0.999999999999923
ddfma36502 fma 1 77e-16 -1 -> -0.9999999999999923
ddfma36503 fma 1 77e-17 -1 -> -0.9999999999999992 Inexact Rounded
ddfma36504 fma 1 77e-18 -1 -> -0.9999999999999999 Inexact Rounded
ddfma36505 fma 1 77e-19 -1 -> -1.000000000000000 Inexact Rounded
ddfma36506 fma 1 77e-99 -1 -> -1.000000000000000 Inexact Rounded
ddfma36510 fma 1 77e-14 -10 -> -9.99999999999923
ddfma36511 fma 1 77e-15 -10 -> -9.999999999999923
ddfma36512 fma 1 77e-16 -10 -> -9.999999999999992 Inexact Rounded
ddfma36513 fma 1 77e-17 -10 -> -9.999999999999999 Inexact Rounded
ddfma36514 fma 1 77e-18 -10 -> -10.00000000000000 Inexact Rounded
ddfma36515 fma 1 77e-19 -10 -> -10.00000000000000 Inexact Rounded
ddfma36516 fma 1 77e-99 -10 -> -10.00000000000000 Inexact Rounded
-- and a couple more with longer RHS
ddfma36520 fma 1 1 -7777e-16 -> 0.9999999999992223
ddfma36521 fma 1 1 -7777e-17 -> 0.9999999999999222 Inexact Rounded
ddfma36522 fma 1 1 -7777e-18 -> 0.9999999999999922 Inexact Rounded
ddfma36523 fma 1 1 -7777e-19 -> 0.9999999999999992 Inexact Rounded
ddfma36524 fma 1 1 -7777e-20 -> 0.9999999999999999 Inexact Rounded
ddfma36525 fma 1 1 -7777e-21 -> 1.000000000000000 Inexact Rounded
ddfma36526 fma 1 1 -7777e-22 -> 1.000000000000000 Inexact Rounded
-- and some more residue effects and different roundings
rounding: half_up
ddfma36540 fma 1 '6543210123456789' 0 -> '6543210123456789'
ddfma36541 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
ddfma36542 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
ddfma36543 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
ddfma36544 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
ddfma36545 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
ddfma36546 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
ddfma36547 fma 1 '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded
ddfma36548 fma 1 '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded
ddfma36549 fma 1 '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded
ddfma36550 fma 1 '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded
ddfma36551 fma 1 '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded
ddfma36552 fma 1 '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded
ddfma36553 fma 1 '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded
ddfma36554 fma 1 '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded
ddfma36555 fma 1 '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded
ddfma36556 fma 1 '6543210123456789' 1 -> '6543210123456790'
ddfma36557 fma 1 '6543210123456789' 1.000000001 -> '6543210123456790' Inexact Rounded
ddfma36558 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
ddfma36559 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
rounding: half_even
ddfma36560 fma 1 '6543210123456789' 0 -> '6543210123456789'
ddfma36561 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
ddfma36562 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
ddfma36563 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
ddfma36564 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
ddfma36565 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
ddfma36566 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
ddfma36567 fma 1 '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded
ddfma36568 fma 1 '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded
ddfma36569 fma 1 '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded
ddfma36570 fma 1 '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded
ddfma36571 fma 1 '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded
ddfma36572 fma 1 '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded
ddfma36573 fma 1 '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded
ddfma36574 fma 1 '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded
ddfma36575 fma 1 '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded
ddfma36576 fma 1 '6543210123456789' 1 -> '6543210123456790'
ddfma36577 fma 1 '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded
ddfma36578 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
ddfma36579 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
-- critical few with even bottom digit...
ddfma37540 fma 1 '6543210123456788' 0.499999999 -> '6543210123456788' Inexact Rounded
ddfma37541 fma 1 '6543210123456788' 0.5 -> '6543210123456788' Inexact Rounded
ddfma37542 fma 1 '6543210123456788' 0.500000001 -> '6543210123456789' Inexact Rounded
rounding: down
ddfma37550 fma 1 '6543210123456789' 0 -> '6543210123456789'
ddfma37551 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
ddfma37552 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
ddfma37553 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
ddfma37554 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
ddfma37555 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
ddfma37556 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
ddfma37557 fma 1 '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded
ddfma37558 fma 1 '6543210123456789' 0.5 -> '6543210123456789' Inexact Rounded
ddfma37559 fma 1 '6543210123456789' 0.500000001 -> '6543210123456789' Inexact Rounded
ddfma37560 fma 1 '6543210123456789' 0.500001 -> '6543210123456789' Inexact Rounded
ddfma37561 fma 1 '6543210123456789' 0.51 -> '6543210123456789' Inexact Rounded
ddfma37562 fma 1 '6543210123456789' 0.6 -> '6543210123456789' Inexact Rounded
ddfma37563 fma 1 '6543210123456789' 0.9 -> '6543210123456789' Inexact Rounded
ddfma37564 fma 1 '6543210123456789' 0.99999 -> '6543210123456789' Inexact Rounded
ddfma37565 fma 1 '6543210123456789' 0.999999999 -> '6543210123456789' Inexact Rounded
ddfma37566 fma 1 '6543210123456789' 1 -> '6543210123456790'
ddfma37567 fma 1 '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded
ddfma37568 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
ddfma37569 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
-- verify a query
rounding: down
ddfma37661 fma 1 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded
ddfma37662 fma 1 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded
ddfma37663 fma 1 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded
ddfma37664 fma 1 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded
-- more zeros, etc.
rounding: half_even
ddfma37701 fma 1 5.00 1.00E-3 -> 5.00100
ddfma37702 fma 1 00.00 0.000 -> 0.000
ddfma37703 fma 1 00.00 0E-3 -> 0.000
ddfma37704 fma 1 0E-3 00.00 -> 0.000
ddfma37710 fma 1 0E+3 00.00 -> 0.00
ddfma37711 fma 1 0E+3 00.0 -> 0.0
ddfma37712 fma 1 0E+3 00. -> 0
ddfma37713 fma 1 0E+3 00.E+1 -> 0E+1
ddfma37714 fma 1 0E+3 00.E+2 -> 0E+2
ddfma37715 fma 1 0E+3 00.E+3 -> 0E+3
ddfma37716 fma 1 0E+3 00.E+4 -> 0E+3
ddfma37717 fma 1 0E+3 00.E+5 -> 0E+3
ddfma37718 fma 1 0E+3 -00.0 -> 0.0
ddfma37719 fma 1 0E+3 -00. -> 0
ddfma37731 fma 1 0E+3 -00.E+1 -> 0E+1
ddfma37720 fma 1 00.00 0E+3 -> 0.00
ddfma37721 fma 1 00.0 0E+3 -> 0.0
ddfma37722 fma 1 00. 0E+3 -> 0
ddfma37723 fma 1 00.E+1 0E+3 -> 0E+1
ddfma37724 fma 1 00.E+2 0E+3 -> 0E+2
ddfma37725 fma 1 00.E+3 0E+3 -> 0E+3
ddfma37726 fma 1 00.E+4 0E+3 -> 0E+3
ddfma37727 fma 1 00.E+5 0E+3 -> 0E+3
ddfma37728 fma 1 -00.00 0E+3 -> 0.00
ddfma37729 fma 1 -00.0 0E+3 -> 0.0
ddfma37730 fma 1 -00. 0E+3 -> 0
ddfma37732 fma 1 0 0 -> 0
ddfma37733 fma 1 0 -0 -> 0
ddfma37734 fma 1 -0 0 -> 0
ddfma37735 fma 1 -0 -0 -> -0 -- IEEE 854 special case
ddfma37736 fma 1 1 -1 -> 0
ddfma37737 fma 1 -1 -1 -> -2
ddfma37738 fma 1 1 1 -> 2
ddfma37739 fma 1 -1 1 -> 0
ddfma37741 fma 1 0 -1 -> -1
ddfma37742 fma 1 -0 -1 -> -1
ddfma37743 fma 1 0 1 -> 1
ddfma37744 fma 1 -0 1 -> 1
ddfma37745 fma 1 -1 0 -> -1
ddfma37746 fma 1 -1 -0 -> -1
ddfma37747 fma 1 1 0 -> 1
ddfma37748 fma 1 1 -0 -> 1
ddfma37751 fma 1 0.0 -1 -> -1.0
ddfma37752 fma 1 -0.0 -1 -> -1.0
ddfma37753 fma 1 0.0 1 -> 1.0
ddfma37754 fma 1 -0.0 1 -> 1.0
ddfma37755 fma 1 -1.0 0 -> -1.0
ddfma37756 fma 1 -1.0 -0 -> -1.0
ddfma37757 fma 1 1.0 0 -> 1.0
ddfma37758 fma 1 1.0 -0 -> 1.0
ddfma37761 fma 1 0 -1.0 -> -1.0
ddfma37762 fma 1 -0 -1.0 -> -1.0
ddfma37763 fma 1 0 1.0 -> 1.0
ddfma37764 fma 1 -0 1.0 -> 1.0
ddfma37765 fma 1 -1 0.0 -> -1.0
ddfma37766 fma 1 -1 -0.0 -> -1.0
ddfma37767 fma 1 1 0.0 -> 1.0
ddfma37768 fma 1 1 -0.0 -> 1.0
ddfma37771 fma 1 0.0 -1.0 -> -1.0
ddfma37772 fma 1 -0.0 -1.0 -> -1.0
ddfma37773 fma 1 0.0 1.0 -> 1.0
ddfma37774 fma 1 -0.0 1.0 -> 1.0
ddfma37775 fma 1 -1.0 0.0 -> -1.0
ddfma37776 fma 1 -1.0 -0.0 -> -1.0
ddfma37777 fma 1 1.0 0.0 -> 1.0
ddfma37778 fma 1 1.0 -0.0 -> 1.0
-- Specials
ddfma37780 fma 1 -Inf -Inf -> -Infinity
ddfma37781 fma 1 -Inf -1000 -> -Infinity
ddfma37782 fma 1 -Inf -1 -> -Infinity
ddfma37783 fma 1 -Inf -0 -> -Infinity
ddfma37784 fma 1 -Inf 0 -> -Infinity
ddfma37785 fma 1 -Inf 1 -> -Infinity
ddfma37786 fma 1 -Inf 1000 -> -Infinity
ddfma37787 fma 1 -1000 -Inf -> -Infinity
ddfma37788 fma 1 -Inf -Inf -> -Infinity
ddfma37789 fma 1 -1 -Inf -> -Infinity
ddfma37790 fma 1 -0 -Inf -> -Infinity
ddfma37791 fma 1 0 -Inf -> -Infinity
ddfma37792 fma 1 1 -Inf -> -Infinity
ddfma37793 fma 1 1000 -Inf -> -Infinity
ddfma37794 fma 1 Inf -Inf -> NaN Invalid_operation
ddfma37800 fma 1 Inf -Inf -> NaN Invalid_operation
ddfma37801 fma 1 Inf -1000 -> Infinity
ddfma37802 fma 1 Inf -1 -> Infinity
ddfma37803 fma 1 Inf -0 -> Infinity
ddfma37804 fma 1 Inf 0 -> Infinity
ddfma37805 fma 1 Inf 1 -> Infinity
ddfma37806 fma 1 Inf 1000 -> Infinity
ddfma37807 fma 1 Inf Inf -> Infinity
ddfma37808 fma 1 -1000 Inf -> Infinity
ddfma37809 fma 1 -Inf Inf -> NaN Invalid_operation
ddfma37810 fma 1 -1 Inf -> Infinity
ddfma37811 fma 1 -0 Inf -> Infinity
ddfma37812 fma 1 0 Inf -> Infinity
ddfma37813 fma 1 1 Inf -> Infinity
ddfma37814 fma 1 1000 Inf -> Infinity
ddfma37815 fma 1 Inf Inf -> Infinity
ddfma37821 fma 1 NaN -Inf -> NaN
ddfma37822 fma 1 NaN -1000 -> NaN
ddfma37823 fma 1 NaN -1 -> NaN
ddfma37824 fma 1 NaN -0 -> NaN
ddfma37825 fma 1 NaN 0 -> NaN
ddfma37826 fma 1 NaN 1 -> NaN
ddfma37827 fma 1 NaN 1000 -> NaN
ddfma37828 fma 1 NaN Inf -> NaN
ddfma37829 fma 1 NaN NaN -> NaN
ddfma37830 fma 1 -Inf NaN -> NaN
ddfma37831 fma 1 -1000 NaN -> NaN
ddfma37832 fma 1 -1 NaN -> NaN
ddfma37833 fma 1 -0 NaN -> NaN
ddfma37834 fma 1 0 NaN -> NaN
ddfma37835 fma 1 1 NaN -> NaN
ddfma37836 fma 1 1000 NaN -> NaN
ddfma37837 fma 1 Inf NaN -> NaN
ddfma37841 fma 1 sNaN -Inf -> NaN Invalid_operation
ddfma37842 fma 1 sNaN -1000 -> NaN Invalid_operation
ddfma37843 fma 1 sNaN -1 -> NaN Invalid_operation
ddfma37844 fma 1 sNaN -0 -> NaN Invalid_operation
ddfma37845 fma 1 sNaN 0 -> NaN Invalid_operation
ddfma37846 fma 1 sNaN 1 -> NaN Invalid_operation
ddfma37847 fma 1 sNaN 1000 -> NaN Invalid_operation
ddfma37848 fma 1 sNaN NaN -> NaN Invalid_operation
ddfma37849 fma 1 sNaN sNaN -> NaN Invalid_operation
ddfma37850 fma 1 NaN sNaN -> NaN Invalid_operation
ddfma37851 fma 1 -Inf sNaN -> NaN Invalid_operation
ddfma37852 fma 1 -1000 sNaN -> NaN Invalid_operation
ddfma37853 fma 1 -1 sNaN -> NaN Invalid_operation
ddfma37854 fma 1 -0 sNaN -> NaN Invalid_operation
ddfma37855 fma 1 0 sNaN -> NaN Invalid_operation
ddfma37856 fma 1 1 sNaN -> NaN Invalid_operation
ddfma37857 fma 1 1000 sNaN -> NaN Invalid_operation
ddfma37858 fma 1 Inf sNaN -> NaN Invalid_operation
ddfma37859 fma 1 NaN sNaN -> NaN Invalid_operation
-- propagating NaNs
ddfma37861 fma 1 NaN1 -Inf -> NaN1
ddfma37862 fma 1 +NaN2 -1000 -> NaN2
ddfma37863 fma 1 NaN3 1000 -> NaN3
ddfma37864 fma 1 NaN4 Inf -> NaN4
ddfma37865 fma 1 NaN5 +NaN6 -> NaN5
ddfma37866 fma 1 -Inf NaN7 -> NaN7
ddfma37867 fma 1 -1000 NaN8 -> NaN8
ddfma37868 fma 1 1000 NaN9 -> NaN9
ddfma37869 fma 1 Inf +NaN10 -> NaN10
ddfma37871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation
ddfma37872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation
ddfma37873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation
ddfma37874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation
ddfma37875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation
ddfma37876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation
ddfma37877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation
ddfma37878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation
ddfma37879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation
ddfma37880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation
ddfma37881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation
ddfma37882 fma 1 -NaN26 NaN28 -> -NaN26
ddfma37883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation
ddfma37884 fma 1 1000 -NaN30 -> -NaN30
ddfma37885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation
-- Here we explore near the boundary of rounding a subnormal to Nmin
ddfma37575 fma 1 1E-383 -1E-398 -> 9.99999999999999E-384 Subnormal
ddfma37576 fma 1 -1E-383 +1E-398 -> -9.99999999999999E-384 Subnormal
-- check overflow edge case
-- 1234567890123456
ddfma37972 apply 9.999999999999999E+384 -> 9.999999999999999E+384
ddfma37973 fma 1 9.999999999999999E+384 1 -> 9.999999999999999E+384 Inexact Rounded
ddfma37974 fma 1 9999999999999999E+369 1 -> 9.999999999999999E+384 Inexact Rounded
ddfma37975 fma 1 9999999999999999E+369 1E+369 -> Infinity Overflow Inexact Rounded
ddfma37976 fma 1 9999999999999999E+369 9E+368 -> Infinity Overflow Inexact Rounded
ddfma37977 fma 1 9999999999999999E+369 8E+368 -> Infinity Overflow Inexact Rounded
ddfma37978 fma 1 9999999999999999E+369 7E+368 -> Infinity Overflow Inexact Rounded
ddfma37979 fma 1 9999999999999999E+369 6E+368 -> Infinity Overflow Inexact Rounded
ddfma37980 fma 1 9999999999999999E+369 5E+368 -> Infinity Overflow Inexact Rounded
ddfma37981 fma 1 9999999999999999E+369 4E+368 -> 9.999999999999999E+384 Inexact Rounded
ddfma37982 fma 1 9999999999999999E+369 3E+368 -> 9.999999999999999E+384 Inexact Rounded
ddfma37983 fma 1 9999999999999999E+369 2E+368 -> 9.999999999999999E+384 Inexact Rounded
ddfma37984 fma 1 9999999999999999E+369 1E+368 -> 9.999999999999999E+384 Inexact Rounded
ddfma37985 apply -9.999999999999999E+384 -> -9.999999999999999E+384
ddfma37986 fma 1 -9.999999999999999E+384 -1 -> -9.999999999999999E+384 Inexact Rounded
ddfma37987 fma 1 -9999999999999999E+369 -1 -> -9.999999999999999E+384 Inexact Rounded
ddfma37988 fma 1 -9999999999999999E+369 -1E+369 -> -Infinity Overflow Inexact Rounded
ddfma37989 fma 1 -9999999999999999E+369 -9E+368 -> -Infinity Overflow Inexact Rounded
ddfma37990 fma 1 -9999999999999999E+369 -8E+368 -> -Infinity Overflow Inexact Rounded
ddfma37991 fma 1 -9999999999999999E+369 -7E+368 -> -Infinity Overflow Inexact Rounded
ddfma37992 fma 1 -9999999999999999E+369 -6E+368 -> -Infinity Overflow Inexact Rounded
ddfma37993 fma 1 -9999999999999999E+369 -5E+368 -> -Infinity Overflow Inexact Rounded
ddfma37994 fma 1 -9999999999999999E+369 -4E+368 -> -9.999999999999999E+384 Inexact Rounded
ddfma37995 fma 1 -9999999999999999E+369 -3E+368 -> -9.999999999999999E+384 Inexact Rounded
ddfma37996 fma 1 -9999999999999999E+369 -2E+368 -> -9.999999999999999E+384 Inexact Rounded
ddfma37997 fma 1 -9999999999999999E+369 -1E+368 -> -9.999999999999999E+384 Inexact Rounded
-- And for round down full and subnormal results
rounding: down
ddfma371100 fma 1 1e+2 -1e-383 -> 99.99999999999999 Rounded Inexact
ddfma371101 fma 1 1e+1 -1e-383 -> 9.999999999999999 Rounded Inexact
ddfma371103 fma 1 +1 -1e-383 -> 0.9999999999999999 Rounded Inexact
ddfma371104 fma 1 1e-1 -1e-383 -> 0.09999999999999999 Rounded Inexact
ddfma371105 fma 1 1e-2 -1e-383 -> 0.009999999999999999 Rounded Inexact
ddfma371106 fma 1 1e-3 -1e-383 -> 0.0009999999999999999 Rounded Inexact
ddfma371107 fma 1 1e-4 -1e-383 -> 0.00009999999999999999 Rounded Inexact
ddfma371108 fma 1 1e-5 -1e-383 -> 0.000009999999999999999 Rounded Inexact
ddfma371109 fma 1 1e-6 -1e-383 -> 9.999999999999999E-7 Rounded Inexact
rounding: ceiling
ddfma371110 fma 1 -1e+2 +1e-383 -> -99.99999999999999 Rounded Inexact
ddfma371111 fma 1 -1e+1 +1e-383 -> -9.999999999999999 Rounded Inexact
ddfma371113 fma 1 -1 +1e-383 -> -0.9999999999999999 Rounded Inexact
ddfma371114 fma 1 -1e-1 +1e-383 -> -0.09999999999999999 Rounded Inexact
ddfma371115 fma 1 -1e-2 +1e-383 -> -0.009999999999999999 Rounded Inexact
ddfma371116 fma 1 -1e-3 +1e-383 -> -0.0009999999999999999 Rounded Inexact
ddfma371117 fma 1 -1e-4 +1e-383 -> -0.00009999999999999999 Rounded Inexact
ddfma371118 fma 1 -1e-5 +1e-383 -> -0.000009999999999999999 Rounded Inexact
ddfma371119 fma 1 -1e-6 +1e-383 -> -9.999999999999999E-7 Rounded Inexact
-- tests based on Gunnar Degnbol's edge case
rounding: half_even
ddfma371300 fma 1 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded
ddfma371310 fma 1 1E16 -0.51 -> 9999999999999999 Inexact Rounded
ddfma371311 fma 1 1E16 -0.501 -> 9999999999999999 Inexact Rounded
ddfma371312 fma 1 1E16 -0.5001 -> 9999999999999999 Inexact Rounded
ddfma371313 fma 1 1E16 -0.50001 -> 9999999999999999 Inexact Rounded
ddfma371314 fma 1 1E16 -0.500001 -> 9999999999999999 Inexact Rounded
ddfma371315 fma 1 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded
ddfma371316 fma 1 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded
ddfma371317 fma 1 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded
ddfma371318 fma 1 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded
ddfma371319 fma 1 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded
ddfma371320 fma 1 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded
ddfma371321 fma 1 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded
ddfma371322 fma 1 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded
ddfma371323 fma 1 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded
ddfma371324 fma 1 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded
ddfma371325 fma 1 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371326 fma 1 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371327 fma 1 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371328 fma 1 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371329 fma 1 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371330 fma 1 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371331 fma 1 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371332 fma 1 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371333 fma 1 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371334 fma 1 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371335 fma 1 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371336 fma 1 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371337 fma 1 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371338 fma 1 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded
ddfma371339 fma 1 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded
ddfma371340 fma 1 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded
ddfma371341 fma 1 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded
ddfma371349 fma 1 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded
ddfma371350 fma 1 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded
ddfma371351 fma 1 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded
ddfma371352 fma 1 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded
ddfma371353 fma 1 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded
ddfma371354 fma 1 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded
ddfma371355 fma 1 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded
ddfma371356 fma 1 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded
ddfma371357 fma 1 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded
ddfma371358 fma 1 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded
ddfma371359 fma 1 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded
ddfma371360 fma 1 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded
ddfma371361 fma 1 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded
ddfma371362 fma 1 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded
ddfma371363 fma 1 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded
ddfma371364 fma 1 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded
ddfma371365 fma 1 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371367 fma 1 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371368 fma 1 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371369 fma 1 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371370 fma 1 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371371 fma 1 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371372 fma 1 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371373 fma 1 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371374 fma 1 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371375 fma 1 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371376 fma 1 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371377 fma 1 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371378 fma 1 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded
ddfma371379 fma 1 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded
ddfma371380 fma 1 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded
ddfma371381 fma 1 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded
ddfma371382 fma 1 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371383 fma 1 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371384 fma 1 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371385 fma 1 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371386 fma 1 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371387 fma 1 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371388 fma 1 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371389 fma 1 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371390 fma 1 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371391 fma 1 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371392 fma 1 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371393 fma 1 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371394 fma 1 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded
ddfma371395 fma 1 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded
ddfma371396 fma 1 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded
-- More GD edge cases, where difference between the unadjusted
-- exponents is larger than the maximum precision and one side is 0
ddfma371420 fma 1 0 1.123456789012345 -> 1.123456789012345
ddfma371421 fma 1 0 1.123456789012345E-1 -> 0.1123456789012345
ddfma371422 fma 1 0 1.123456789012345E-2 -> 0.01123456789012345
ddfma371423 fma 1 0 1.123456789012345E-3 -> 0.001123456789012345
ddfma371424 fma 1 0 1.123456789012345E-4 -> 0.0001123456789012345
ddfma371425 fma 1 0 1.123456789012345E-5 -> 0.00001123456789012345
ddfma371426 fma 1 0 1.123456789012345E-6 -> 0.000001123456789012345
ddfma371427 fma 1 0 1.123456789012345E-7 -> 1.123456789012345E-7
ddfma371428 fma 1 0 1.123456789012345E-8 -> 1.123456789012345E-8
ddfma371429 fma 1 0 1.123456789012345E-9 -> 1.123456789012345E-9
ddfma371430 fma 1 0 1.123456789012345E-10 -> 1.123456789012345E-10
ddfma371431 fma 1 0 1.123456789012345E-11 -> 1.123456789012345E-11
ddfma371432 fma 1 0 1.123456789012345E-12 -> 1.123456789012345E-12
ddfma371433 fma 1 0 1.123456789012345E-13 -> 1.123456789012345E-13
ddfma371434 fma 1 0 1.123456789012345E-14 -> 1.123456789012345E-14
ddfma371435 fma 1 0 1.123456789012345E-15 -> 1.123456789012345E-15
ddfma371436 fma 1 0 1.123456789012345E-16 -> 1.123456789012345E-16
ddfma371437 fma 1 0 1.123456789012345E-17 -> 1.123456789012345E-17
ddfma371438 fma 1 0 1.123456789012345E-18 -> 1.123456789012345E-18
ddfma371439 fma 1 0 1.123456789012345E-19 -> 1.123456789012345E-19
-- same, reversed 0
ddfma371440 fma 1 1.123456789012345 0 -> 1.123456789012345
ddfma371441 fma 1 1.123456789012345E-1 0 -> 0.1123456789012345
ddfma371442 fma 1 1.123456789012345E-2 0 -> 0.01123456789012345
ddfma371443 fma 1 1.123456789012345E-3 0 -> 0.001123456789012345
ddfma371444 fma 1 1.123456789012345E-4 0 -> 0.0001123456789012345
ddfma371445 fma 1 1.123456789012345E-5 0 -> 0.00001123456789012345
ddfma371446 fma 1 1.123456789012345E-6 0 -> 0.000001123456789012345
ddfma371447 fma 1 1.123456789012345E-7 0 -> 1.123456789012345E-7
ddfma371448 fma 1 1.123456789012345E-8 0 -> 1.123456789012345E-8
ddfma371449 fma 1 1.123456789012345E-9 0 -> 1.123456789012345E-9
ddfma371450 fma 1 1.123456789012345E-10 0 -> 1.123456789012345E-10
ddfma371451 fma 1 1.123456789012345E-11 0 -> 1.123456789012345E-11
ddfma371452 fma 1 1.123456789012345E-12 0 -> 1.123456789012345E-12
ddfma371453 fma 1 1.123456789012345E-13 0 -> 1.123456789012345E-13
ddfma371454 fma 1 1.123456789012345E-14 0 -> 1.123456789012345E-14
ddfma371455 fma 1 1.123456789012345E-15 0 -> 1.123456789012345E-15
ddfma371456 fma 1 1.123456789012345E-16 0 -> 1.123456789012345E-16
ddfma371457 fma 1 1.123456789012345E-17 0 -> 1.123456789012345E-17
ddfma371458 fma 1 1.123456789012345E-18 0 -> 1.123456789012345E-18
ddfma371459 fma 1 1.123456789012345E-19 0 -> 1.123456789012345E-19
-- same, Es on the 0
ddfma371460 fma 1 1.123456789012345 0E-0 -> 1.123456789012345
ddfma371461 fma 1 1.123456789012345 0E-1 -> 1.123456789012345
ddfma371462 fma 1 1.123456789012345 0E-2 -> 1.123456789012345
ddfma371463 fma 1 1.123456789012345 0E-3 -> 1.123456789012345
ddfma371464 fma 1 1.123456789012345 0E-4 -> 1.123456789012345
ddfma371465 fma 1 1.123456789012345 0E-5 -> 1.123456789012345
ddfma371466 fma 1 1.123456789012345 0E-6 -> 1.123456789012345
ddfma371467 fma 1 1.123456789012345 0E-7 -> 1.123456789012345
ddfma371468 fma 1 1.123456789012345 0E-8 -> 1.123456789012345
ddfma371469 fma 1 1.123456789012345 0E-9 -> 1.123456789012345
ddfma371470 fma 1 1.123456789012345 0E-10 -> 1.123456789012345
ddfma371471 fma 1 1.123456789012345 0E-11 -> 1.123456789012345
ddfma371472 fma 1 1.123456789012345 0E-12 -> 1.123456789012345
ddfma371473 fma 1 1.123456789012345 0E-13 -> 1.123456789012345
ddfma371474 fma 1 1.123456789012345 0E-14 -> 1.123456789012345
ddfma371475 fma 1 1.123456789012345 0E-15 -> 1.123456789012345
-- next four flag Rounded because the 0 extends the result
ddfma371476 fma 1 1.123456789012345 0E-16 -> 1.123456789012345 Rounded
ddfma371477 fma 1 1.123456789012345 0E-17 -> 1.123456789012345 Rounded
ddfma371478 fma 1 1.123456789012345 0E-18 -> 1.123456789012345 Rounded
ddfma371479 fma 1 1.123456789012345 0E-19 -> 1.123456789012345 Rounded
-- sum of two opposite-sign operands is exactly 0 and floor => -0
rounding: half_up
-- exact zeros from zeros
ddfma371500 fma 1 0 0E-19 -> 0E-19
ddfma371501 fma 1 -0 0E-19 -> 0E-19
ddfma371502 fma 1 0 -0E-19 -> 0E-19
ddfma371503 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
ddfma371511 fma 1 -11 11 -> 0
ddfma371512 fma 1 11 -11 -> 0
rounding: half_down
-- exact zeros from zeros
ddfma371520 fma 1 0 0E-19 -> 0E-19
ddfma371521 fma 1 -0 0E-19 -> 0E-19
ddfma371522 fma 1 0 -0E-19 -> 0E-19
ddfma371523 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
ddfma371531 fma 1 -11 11 -> 0
ddfma371532 fma 1 11 -11 -> 0
rounding: half_even
-- exact zeros from zeros
ddfma371540 fma 1 0 0E-19 -> 0E-19
ddfma371541 fma 1 -0 0E-19 -> 0E-19
ddfma371542 fma 1 0 -0E-19 -> 0E-19
ddfma371543 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
ddfma371551 fma 1 -11 11 -> 0
ddfma371552 fma 1 11 -11 -> 0
rounding: up
-- exact zeros from zeros
ddfma371560 fma 1 0 0E-19 -> 0E-19
ddfma371561 fma 1 -0 0E-19 -> 0E-19
ddfma371562 fma 1 0 -0E-19 -> 0E-19
ddfma371563 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
ddfma371571 fma 1 -11 11 -> 0
ddfma371572 fma 1 11 -11 -> 0
rounding: down
-- exact zeros from zeros
ddfma371580 fma 1 0 0E-19 -> 0E-19
ddfma371581 fma 1 -0 0E-19 -> 0E-19
ddfma371582 fma 1 0 -0E-19 -> 0E-19
ddfma371583 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
ddfma371591 fma 1 -11 11 -> 0
ddfma371592 fma 1 11 -11 -> 0
rounding: ceiling
-- exact zeros from zeros
ddfma371600 fma 1 0 0E-19 -> 0E-19
ddfma371601 fma 1 -0 0E-19 -> 0E-19
ddfma371602 fma 1 0 -0E-19 -> 0E-19
ddfma371603 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
ddfma371611 fma 1 -11 11 -> 0
ddfma371612 fma 1 11 -11 -> 0
-- and the extra-special ugly case; unusual minuses marked by -- *
rounding: floor
-- exact zeros from zeros
ddfma371620 fma 1 0 0E-19 -> 0E-19
ddfma371621 fma 1 -0 0E-19 -> -0E-19 -- *
ddfma371622 fma 1 0 -0E-19 -> -0E-19 -- *
ddfma371623 fma 1 -0 -0E-19 -> -0E-19
-- exact zeros from non-zeros
ddfma371631 fma 1 -11 11 -> -0 -- *
ddfma371632 fma 1 11 -11 -> -0 -- *
-- Examples from SQL proposal (Krishna Kulkarni)
ddfma371701 fma 1 130E-2 120E-2 -> 2.50
ddfma371702 fma 1 130E-2 12E-1 -> 2.50
ddfma371703 fma 1 130E-2 1E0 -> 2.30
ddfma371704 fma 1 1E2 1E4 -> 1.01E+4
ddfma371705 fma 1 130E-2 -120E-2 -> 0.10
ddfma371706 fma 1 130E-2 -12E-1 -> 0.10
ddfma371707 fma 1 130E-2 -1E0 -> 0.30
ddfma371708 fma 1 1E2 -1E4 -> -9.9E+3
-- Gappy coefficients; check residue handling even with full coefficient gap
rounding: half_even
ddfma375001 fma 1 1234567890123456 1 -> 1234567890123457
ddfma375002 fma 1 1234567890123456 0.6 -> 1234567890123457 Inexact Rounded
ddfma375003 fma 1 1234567890123456 0.06 -> 1234567890123456 Inexact Rounded
ddfma375004 fma 1 1234567890123456 6E-3 -> 1234567890123456 Inexact Rounded
ddfma375005 fma 1 1234567890123456 6E-4 -> 1234567890123456 Inexact Rounded
ddfma375006 fma 1 1234567890123456 6E-5 -> 1234567890123456 Inexact Rounded
ddfma375007 fma 1 1234567890123456 6E-6 -> 1234567890123456 Inexact Rounded
ddfma375008 fma 1 1234567890123456 6E-7 -> 1234567890123456 Inexact Rounded
ddfma375009 fma 1 1234567890123456 6E-8 -> 1234567890123456 Inexact Rounded
ddfma375010 fma 1 1234567890123456 6E-9 -> 1234567890123456 Inexact Rounded
ddfma375011 fma 1 1234567890123456 6E-10 -> 1234567890123456 Inexact Rounded
ddfma375012 fma 1 1234567890123456 6E-11 -> 1234567890123456 Inexact Rounded
ddfma375013 fma 1 1234567890123456 6E-12 -> 1234567890123456 Inexact Rounded
ddfma375014 fma 1 1234567890123456 6E-13 -> 1234567890123456 Inexact Rounded
ddfma375015 fma 1 1234567890123456 6E-14 -> 1234567890123456 Inexact Rounded
ddfma375016 fma 1 1234567890123456 6E-15 -> 1234567890123456 Inexact Rounded
ddfma375017 fma 1 1234567890123456 6E-16 -> 1234567890123456 Inexact Rounded
ddfma375018 fma 1 1234567890123456 6E-17 -> 1234567890123456 Inexact Rounded
ddfma375019 fma 1 1234567890123456 6E-18 -> 1234567890123456 Inexact Rounded
ddfma375020 fma 1 1234567890123456 6E-19 -> 1234567890123456 Inexact Rounded
ddfma375021 fma 1 1234567890123456 6E-20 -> 1234567890123456 Inexact Rounded
-- widening second argument at gap
ddfma375030 fma 1 12345678 1 -> 12345679
ddfma375031 fma 1 12345678 0.1 -> 12345678.1
ddfma375032 fma 1 12345678 0.12 -> 12345678.12
ddfma375033 fma 1 12345678 0.123 -> 12345678.123
ddfma375034 fma 1 12345678 0.1234 -> 12345678.1234
ddfma375035 fma 1 12345678 0.12345 -> 12345678.12345
ddfma375036 fma 1 12345678 0.123456 -> 12345678.123456
ddfma375037 fma 1 12345678 0.1234567 -> 12345678.1234567
ddfma375038 fma 1 12345678 0.12345678 -> 12345678.12345678
ddfma375039 fma 1 12345678 0.123456789 -> 12345678.12345679 Inexact Rounded
ddfma375040 fma 1 12345678 0.123456785 -> 12345678.12345678 Inexact Rounded
ddfma375041 fma 1 12345678 0.1234567850 -> 12345678.12345678 Inexact Rounded
ddfma375042 fma 1 12345678 0.1234567851 -> 12345678.12345679 Inexact Rounded
ddfma375043 fma 1 12345678 0.12345678501 -> 12345678.12345679 Inexact Rounded
ddfma375044 fma 1 12345678 0.123456785001 -> 12345678.12345679 Inexact Rounded
ddfma375045 fma 1 12345678 0.1234567850001 -> 12345678.12345679 Inexact Rounded
ddfma375046 fma 1 12345678 0.12345678500001 -> 12345678.12345679 Inexact Rounded
ddfma375047 fma 1 12345678 0.123456785000001 -> 12345678.12345679 Inexact Rounded
ddfma375048 fma 1 12345678 0.1234567850000001 -> 12345678.12345679 Inexact Rounded
ddfma375049 fma 1 12345678 0.1234567850000000 -> 12345678.12345678 Inexact Rounded
-- 90123456
rounding: half_even
ddfma375050 fma 1 12345678 0.0234567750000000 -> 12345678.02345678 Inexact Rounded
ddfma375051 fma 1 12345678 0.0034567750000000 -> 12345678.00345678 Inexact Rounded
ddfma375052 fma 1 12345678 0.0004567750000000 -> 12345678.00045678 Inexact Rounded
ddfma375053 fma 1 12345678 0.0000567750000000 -> 12345678.00005678 Inexact Rounded
ddfma375054 fma 1 12345678 0.0000067750000000 -> 12345678.00000678 Inexact Rounded
ddfma375055 fma 1 12345678 0.0000007750000000 -> 12345678.00000078 Inexact Rounded
ddfma375056 fma 1 12345678 0.0000000750000000 -> 12345678.00000008 Inexact Rounded
ddfma375057 fma 1 12345678 0.0000000050000000 -> 12345678.00000000 Inexact Rounded
ddfma375060 fma 1 12345678 0.0234567750000001 -> 12345678.02345678 Inexact Rounded
ddfma375061 fma 1 12345678 0.0034567750000001 -> 12345678.00345678 Inexact Rounded
ddfma375062 fma 1 12345678 0.0004567750000001 -> 12345678.00045678 Inexact Rounded
ddfma375063 fma 1 12345678 0.0000567750000001 -> 12345678.00005678 Inexact Rounded
ddfma375064 fma 1 12345678 0.0000067750000001 -> 12345678.00000678 Inexact Rounded
ddfma375065 fma 1 12345678 0.0000007750000001 -> 12345678.00000078 Inexact Rounded
ddfma375066 fma 1 12345678 0.0000000750000001 -> 12345678.00000008 Inexact Rounded
ddfma375067 fma 1 12345678 0.0000000050000001 -> 12345678.00000001 Inexact Rounded
-- far-out residues (full coefficient gap is 16+15 digits)
rounding: up
ddfma375070 fma 1 12345678 1E-8 -> 12345678.00000001
ddfma375071 fma 1 12345678 1E-9 -> 12345678.00000001 Inexact Rounded
ddfma375072 fma 1 12345678 1E-10 -> 12345678.00000001 Inexact Rounded
ddfma375073 fma 1 12345678 1E-11 -> 12345678.00000001 Inexact Rounded
ddfma375074 fma 1 12345678 1E-12 -> 12345678.00000001 Inexact Rounded
ddfma375075 fma 1 12345678 1E-13 -> 12345678.00000001 Inexact Rounded
ddfma375076 fma 1 12345678 1E-14 -> 12345678.00000001 Inexact Rounded
ddfma375077 fma 1 12345678 1E-15 -> 12345678.00000001 Inexact Rounded
ddfma375078 fma 1 12345678 1E-16 -> 12345678.00000001 Inexact Rounded
ddfma375079 fma 1 12345678 1E-17 -> 12345678.00000001 Inexact Rounded
ddfma375080 fma 1 12345678 1E-18 -> 12345678.00000001 Inexact Rounded
ddfma375081 fma 1 12345678 1E-19 -> 12345678.00000001 Inexact Rounded
ddfma375082 fma 1 12345678 1E-20 -> 12345678.00000001 Inexact Rounded
ddfma375083 fma 1 12345678 1E-25 -> 12345678.00000001 Inexact Rounded
ddfma375084 fma 1 12345678 1E-30 -> 12345678.00000001 Inexact Rounded
ddfma375085 fma 1 12345678 1E-31 -> 12345678.00000001 Inexact Rounded
ddfma375086 fma 1 12345678 1E-32 -> 12345678.00000001 Inexact Rounded
ddfma375087 fma 1 12345678 1E-33 -> 12345678.00000001 Inexact Rounded
ddfma375088 fma 1 12345678 1E-34 -> 12345678.00000001 Inexact Rounded
ddfma375089 fma 1 12345678 1E-35 -> 12345678.00000001 Inexact Rounded
-- desctructive subtraction (from remainder tests)
-- +++ some of these will be off-by-one remainder vs remainderNear
ddfma4000 fma -1234567890123454 1.000000000000001 1234567890123456 -> 0.765432109876546
ddfma4001 fma -1234567890123443 1.00000000000001 1234567890123456 -> 0.65432109876557
ddfma4002 fma -1234567890123332 1.0000000000001 1234567890123456 -> 0.5432109876668
ddfma4003 fma -308641972530863 4.000000000000001 1234567890123455 -> 2.691358027469137
ddfma4004 fma -308641972530863 4.000000000000001 1234567890123456 -> 3.691358027469137
ddfma4005 fma -246913578024696 4.9999999999999 1234567890123456 -> 0.6913578024696
ddfma4006 fma -246913578024691 4.99999999999999 1234567890123456 -> 3.46913578024691
ddfma4007 fma -246913578024691 4.999999999999999 1234567890123456 -> 1.246913578024691
ddfma4008 fma -246913578024691 5.000000000000001 1234567890123456 -> 0.753086421975309
ddfma4009 fma -246913578024690 5.00000000000001 1234567890123456 -> 3.53086421975310
ddfma4010 fma -246913578024686 5.0000000000001 1234567890123456 -> 1.3086421975314
ddfma4011 fma -1234567890123455 1.000000000000001 1234567890123456 -> -0.234567890123455
ddfma4012 fma -1234567890123444 1.00000000000001 1234567890123456 -> -0.34567890123444
ddfma4013 fma -1234567890123333 1.0000000000001 1234567890123456 -> -0.4567890123333
ddfma4014 fma -308641972530864 4.000000000000001 1234567890123455 -> -1.308641972530864
ddfma4015 fma -308641972530864 4.000000000000001 1234567890123456 -> -0.308641972530864
ddfma4016 fma -246913578024696 4.9999999999999 1234567890123456 -> 0.6913578024696
ddfma4017 fma -246913578024692 4.99999999999999 1234567890123456 -> -1.53086421975308
ddfma4018 fma -246913578024691 4.999999999999999 1234567890123456 -> 1.246913578024691
ddfma4019 fma -246913578024691 5.000000000000001 1234567890123456 -> 0.753086421975309
ddfma4020 fma -246913578024691 5.00000000000001 1234567890123456 -> -1.46913578024691
ddfma4021 fma -246913578024686 5.0000000000001 1234567890123456 -> 1.3086421975314
-- Null tests
ddfma39990 fma 1 10 # -> NaN Invalid_operation
ddfma39991 fma 1 # 10 -> NaN Invalid_operation
|