/usr/include/polymake/tropical/specialcycles.h is in libpolymake-dev-common 3.2r2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 | /*
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
---
Copyright (C) 2011 - 2015, Simon Hampe <simon.hampe@googlemail.com>
This file provides functionality to compute certain special tropical varieties
*/
#ifndef POLYMAKE_ATINT_SPECIALCYCLES_H
#define POLYMAKE_ATINT_SPECIALCYCLES_H
#include "polymake/client.h"
#include "polymake/PowerSet.h"
#include "polymake/Set.h"
#include "polymake/Matrix.h"
#include "polymake/Vector.h"
#include "polymake/Rational.h"
#include "polymake/Array.h"
#include "polymake/IncidenceMatrix.h"
#include "polymake/Graph.h"
#include "polymake/linalg.h"
#include "polymake/tropical/thomog.h"
#include "polymake/tropical/misc_tools.h"
namespace polymake { namespace tropical {
template <typename Addition>
perl::Object empty_cycle(int ambient_dim) {
perl::Object cycle(perl::ObjectType::construct<Addition>("Cycle"));
cycle.take("VERTICES") << Matrix<Rational>(0,ambient_dim+2);
cycle.take("MAXIMAL_POLYTOPES") << Array<Set<int> >();
cycle.take("WEIGHTS") << Vector<Integer>();
cycle.take("PROJECTIVE_AMBIENT_DIM") << ambient_dim;
cycle.set_description() << "Empty cycle in dimension " << ambient_dim;
return cycle;
}//END empty_cycle
template <typename Addition>
perl::Object point_collection(Matrix<Rational> m, Vector<Integer> weights) {
//Sanity check
if(m.rows() == 0)
throw std::runtime_error("No points given.");
if(m.rows() != weights.dim())
throw std::runtime_error("Number of points does not match number of weights");
//Create vertices
m = ones_vector<Rational>(m.rows()) | m;
//Create polytopes
Array<Set<int> > polytopes(m.rows());
for(int i = 0; i < polytopes.size(); i++)
polytopes[i] = scalar2set(i);
perl::Object cycle(perl::ObjectType::construct<Addition>("Cycle"));
cycle.take("PROJECTIVE_VERTICES") << m;
cycle.take("MAXIMAL_POLYTOPES") << polytopes;
cycle.take("WEIGHTS") << weights;
return cycle;
}//END point_collection
template <typename Addition>
perl::Object uniform_linear_space(const int n, const int k, Integer weight = 1) {
//Ensure that dimensions match
if(k > n)
throw std::runtime_error("Cannot create uniform linear space. Fan dimension is larger than ambient dimension.");
if(k < 0 || n < 0)
throw std::runtime_error("Cannot create uniform linear space. Negative dimension provided.");
if(k == 0) {
return point_collection<Addition>( Matrix<Rational>(1,n+1), ones_vector<Integer>(1));
}
//Create rays
Matrix<Rational> vertices(unit_matrix<Rational>(n+1));
vertices = zero_vector<Rational>(n+1) | vertices;
vertices *= Addition::orientation();
vertices = unit_vector<Rational>(n+2,0) / vertices;
//Create cones
Array<Set<int>> polytopes{ all_subsets_of_k(sequence(1,n+1), k) };
for (int i = 0; i < polytopes.size(); i++)
polytopes[i] += 0;
//Create weights
Vector<Integer> weights = weight * ones_vector<Integer>(polytopes.size());
//Create final object
perl::Object fan(perl::ObjectType::construct<Addition>("Cycle"));
fan.take("PROJECTIVE_VERTICES") << vertices;
fan.take("MAXIMAL_POLYTOPES") << polytopes;
fan.take("WEIGHTS") << weights;
fan.set_description() << "Uniform linear space of dimension " << k << " in dimension " << n;
return fan;
}//END uniform_linear_space
template <typename Addition>
perl::Object halfspace_subdivision(const Rational& a, const Vector<Rational>& g, const Integer& weight) {
//Sanity check
if (is_zero(g))
throw std::runtime_error("Zero vector does not define a hyperplane.");
if (!is_zero(accumulate(g, operations::add())))
throw std::runtime_error("Normal vector must be homogenous, i.e. sum of entries must be zero");
//Create vertices
Matrix<Rational> vertices(0,g.dim());
vertices /= g;
vertices /= (-g);
vertices = zero_vector<Rational>(2) | vertices;
//Create lineality
Matrix<Rational> lineality = zero_vector<Rational>() | null_space(g).minor(~scalar2set(0), All);
//Compute apex
Rational sum = accumulate(attach_operation(g,operations::square()),operations::add());
const Vector<Rational> apex = Rational(1) | (a/sum)*g;
vertices = apex / vertices;
Array<Set<int> > polytopes(2);
polytopes[0] = (sequence(0,3)-1);
polytopes[1] = (sequence(0,3)-2);
perl::Object cycle(perl::ObjectType::construct<Addition>("Cycle"));
cycle.take("PROJECTIVE_VERTICES") << vertices;
cycle.take("MAXIMAL_POLYTOPES") << polytopes;
if(lineality.rows() > 0)
cycle.take("LINEALITY_SPACE") << lineality;
cycle.take("WEIGHTS") << weight * ones_vector<Integer>(2);
return cycle;
}//END halfspace_subdivision
template <typename Addition>
perl::Object projective_torus(int n, Integer weight) {
//Sanity check
if(n < 0) throw std::runtime_error("Negative ambient dimension is not allowed.");
Matrix<Rational> vertex(0,n+2);
vertex /= unit_vector<Rational>(n+2,0);
Matrix<Rational> lineality = unit_matrix<Rational>(n);
lineality = Matrix<Rational>(n,2) | lineality;
Array<Set<int> > polytopes(1);
polytopes[0] = scalar2set(0);
perl::Object cycle(perl::ObjectType::construct<Addition>("Cycle"));
cycle.take("PROJECTIVE_VERTICES") << vertex;
cycle.take("MAXIMAL_POLYTOPES") << polytopes;
cycle.take("LINEALITY_SPACE") << lineality;
cycle.take("WEIGHTS") << (weight* ones_vector<Integer>(1));
return cycle;
}//END projective_torus
template <typename Addition>
perl::Object orthant_subdivision(Vector<Rational> point, int chart = 0, Integer weight = 1) {
if(point.dim() <= 2) {
throw std::runtime_error("Cannot create orthant subdivision. Vector dimension too small");
}
//Dehomogenize
point = tdehomog_vec(point,chart);
int dim = point.dim() -1;
//Create ray matrix - first positive rays, then negative rays
Matrix<Rational> rays = unit_matrix<Rational>(dim);
rays /= (-unit_matrix<Rational>(dim));
//Prepend a zero and set the vertex as last ray
rays = zero_vector<Rational>() | rays;
rays = rays / point;
//Create cones
Set<int> seq = sequence(0,dim);
Array<Set<int>> all_sets( pm::all_subsets(seq) ); //All possible sign choices
Vector<Set<int>> cones;
for(int s = 0; s < all_sets.size(); s++) {
Set<int> rayset;
Set<int> complement = seq - all_sets[s];
//Add all rays from the current set with positive sign and all the others with negative sign
rayset += all_sets[s];
for(Entire<Set<int> >::iterator c = entire(complement); !c.at_end(); c++) {
rayset += (*c + dim);
}
//Finally add the vertex
rayset += (rays.rows()-1);
cones |= rayset;
}//END create cones
Vector<Integer> weights = weight * ones_vector<Integer>(cones.dim());
//Create result
perl::Object result(perl::ObjectType::construct<Addition>("Cycle"));
result.take("PROJECTIVE_VERTICES") << thomog(rays,chart);
result.take("MAXIMAL_POLYTOPES") << cones;
result.take("WEIGHTS") << weights;
return result;
}//END orthant_subdivision
template <typename Addition>
perl::Object affine_linear_space(const Matrix<Rational> &generators, Vector<Rational> translate = Vector<Rational>(), Integer weight = 1) {
//Sanity check
if(translate.dim() > 0 && translate.dim() != generators.cols()) {
throw std::runtime_error("affine_linear_space: Dimension mismatch.");
}
if(translate.dim() == 0) translate = Vector<Rational>(generators.cols());
Matrix<Rational> vertices(1,generators.cols()+1);
vertices(0,0) = 1;
vertices.row(0).slice(~scalar2set(0)) = translate;
Vector<Set<int> > polytopes;
polytopes |= scalar2set(0);
Vector<Integer> weights(1);
weights[0] = weight;
perl::Object result(perl::ObjectType::construct<Addition>("Cycle"));
result.take("PROJECTIVE_VERTICES") << vertices;
result.take("MAXIMAL_POLYTOPES") << polytopes;
result.take("LINEALITY_SPACE") << (zero_vector<Rational>() | generators);
result.take("WEIGHTS") << weights;
return result;
}
///////////////////////////////////////////////////////////////////////////////////////
template <typename Addition>
perl::Object cross_variety(int n, int k, Rational h = 1, Integer weight = 1) {
//Create the cube vertices
Matrix<Rational> rays = binaryMatrix(n);
Vector<Set<int> > cones;
//Sanity check
if(n < k || k < 0 || h < 0) {
throw std::runtime_error("cross_variety: Invalid input parameters.");
}
//First we treat the special case of k = 0
if(k == 0) {
perl::Object result(perl::ObjectType::construct<Addition>("Cycle"));
if(h == 0) {
rays = Matrix<Rational>(1,n+1);
rays(0,0) = 1;
}
else
rays = ones_vector<Rational>(rays.rows()) | (weight *rays);
Vector<Set<int> > polytopes;
for(int r = 0; r < rays.rows(); r++)
polytopes |= scalar2set(r);
result.take("VERTICES") << thomog(rays);
result.take("MAXIMAL_POLYTOPES") << polytopes;
result.take("WEIGHTS") << weight * ones_vector<Integer>(polytopes.dim());
return result;
}
//Now create the k-skeleton of the n-cube: For each n-k-set S of 0,..,n-1 and for each vertex
// v of the n-k-dimensional cube: Insert the entries of v in S and then insert all possible
//vertices of the k-dimensional cube in S^c to obtain a k-dimensional face of the cube
Array<Set<int>> nmkSets{ all_subsets_of_k(sequence(0,n), n-k) };
Matrix<Rational> nmkVertices = binaryMatrix(n-k);
Matrix<Rational> kVertices = binaryMatrix(k);
for(int s = 0; s < nmkSets.size(); s++) {
for(int v = 0; v < nmkVertices.rows(); v++) {
Set<int> S = nmkSets[s];
Set<int> newface;
Vector<Rational> vertex(n);
vertex.slice(S) = nmkVertices.row(v);
for(int w = 0; w < kVertices.rows(); w++) {
vertex.slice(~S) = kVertices.row(w);
newface += binaryIndex(vertex);
}
cones |= newface;
}
}//End create k-skeleton
int vertexnumber = rays.rows();
//Now we also create the k-1-skeleton of the cube to compute the ray faces
Array<Set<int>> nmlSets{ all_subsets_of_k(sequence(0,n), n-k+1) };
Matrix<Rational> nmlVertices = binaryMatrix(n-k+1);
Matrix<Rational> lVertices = binaryMatrix(k-1);
Vector<Set<int> > raycones;
for(int s = 0; s < nmlSets.size(); s++) {
for(int v = 0; v < nmlVertices.rows(); v++) {
Set<int> S = nmlSets[s];
Set<int> newface;
Vector<Rational> vertex(n);
vertex.slice(S) = nmlVertices.row(v);
for(int w = 0; w < lVertices.rows(); w++) {
vertex.slice(~S) = lVertices.row(w);
newface += binaryIndex(vertex);
}
raycones |= newface;
}
}//End create k-1-skeleton
//We add a copy of each vertex and consider it a ray.
//Now, for each face S of the k-1-skeleton, we add a cone that contains for each i in S:
//The vertex i and its corresponding ray
if(k > 0) rays = rays / rays;
int iter = raycones.size();
for(int c = 0; c < iter; c++) {
Set<int> newface;
Set<int> cubeface = raycones[c];
for(Entire<Set<int> >::iterator v = entire(cubeface); !v.at_end(); v++) {
newface += *v;
int rayindex = *v + vertexnumber;
newface += rayindex;
}
cones |= newface;
}
//In the degenerate case, where h = 0, we replace all nonfar vertices by a single one.
if(h == 0) {
rays = zero_vector<Rational>(rays.cols()) / rays.minor(~sequence(0,vertexnumber),All);
rays = unit_vector<Rational>(rays.rows(),0) | rays;
//Re-index cones and remove bounded ones
Set<int> bad_indices = sequence(0,vertexnumber);
Set<int> bounded_cones;
for(int c = 0; c < cones.dim(); c++) {
Set<int> bad_of_c = cones[c] * bad_indices;
if(bad_of_c.size() == cones[c].size()) {
bounded_cones += c;
}
else {
Set<int> rest_of_c = cones[c] - bad_indices;
cones[c] = Set<int>();
for(Entire<Set<int> >::iterator shiftindex = entire(rest_of_c); !shiftindex.at_end(); shiftindex++) {
cones[c] += (*shiftindex - vertexnumber + 1);
}
cones[c] += 0;
}
}
cones = cones.slice(~bounded_cones);
}
//Otherwise scale vertices appropriately
else {
rays.minor(sequence(0,vertexnumber),All) *= h;
Vector<Rational> leading_coordinate = ones_vector<Rational>(vertexnumber) | zero_vector<Rational>(vertexnumber);
rays = leading_coordinate | rays;
}
perl::Object result(perl::ObjectType::construct<Addition>("Cycle"));
result.take("VERTICES") << thomog(rays);
result.take("MAXIMAL_POLYTOPES") << cones;
result.take("WEIGHTS") << weight * ones_vector<Integer>(cones.dim());
return result;
}
}}
#endif
|