This file is indexed.

/usr/include/polymake/tropical/psi_classes.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
/*
	This program is free software; you can redistribute it and/or
	modify it under the terms of the GNU General Public License
	as published by the Free Software Foundation; either version 2
	of the License, or (at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the Free Software
	Foundation, Inc., 51 Franklin Street, Fifth Floor,
	Boston, MA  02110-1301, USA.

	---
	Copyright (C) 2011 - 2015, Simon Hampe <simon.hampe@googlemail.com>

	Functions to compute psi classes and products thereof.
	*/

#ifndef POLYMAKE_ATINT_PSI_CLASSES_H
#define POLYMAKE_ATINT_PSI_CLASSES_H

#include "polymake/client.h"
#include "polymake/Matrix.h"
#include "polymake/Rational.h"
#include "polymake/Vector.h"
#include "polymake/PowerSet.h"
#include "polymake/tropical/moduli_rational.h"

namespace polymake { namespace tropical {

	//Documentation see perl wrapper
	template <typename Addition>
		perl::Object psi_product(int n, Vector<int> exponents) {

			//First we make sure that the exponent vector is valid
			if(exponents.dim() != n) {
				throw std::runtime_error("Cannot compute psi class product: Exponent vector length is not n.");
			}
			int k_sum = 0;
			for(int i = 0; i < exponents.dim(); i++) {
				if(exponents[i] < 0) {
					throw std::runtime_error("Cannot compute psi class product: Negative exponents are not allowed.");
				}
				k_sum += exponents[i];
			}

			//Check the trivial cases
			if(n < 3 || k_sum > n-3) {
				return call_function("zero_cycle");
			}

			//We have to divide each weight by this:
			Integer divisor = 1;
			for(int k = 0; k < exponents.dim(); k++) {
				divisor *= Integer::fac(exponents[k]);
			}

			if(k_sum == n-3) {
				//Compute the weight of the origin
				Matrix<Rational> norays(1,(n*(n-3))/2 + 2);
					norays(0,0) = 1;
				Vector<Set<int> > vertexcone; vertexcone |= scalar2set(0);
				Vector<Integer> singleweight; singleweight |= (Integer::fac(k_sum) / divisor);
				perl::Object origin(perl::ObjectType::construct<Addition>("Cycle"));
				origin.take("PROJECTIVE_VERTICES") << norays;
				origin.take("MAXIMAL_POLYTOPES") << vertexcone;
				origin.take("WEIGHTS") << singleweight;
				return origin;
			}

			// ORDER EXPONENT VECTOR ------------------------------------------------------

			//We have to put the exponent vector in descending order, i.e. we have to apply a permutation to
			//the exponents and later to the resulting Pruefer sequence
			Vector<int> ordered_exponents;
			Vector<int> permutation;
			Set<int> assigned;
			while(ordered_exponents.dim() < exponents.dim()) {
				int max = -1; int max_index = 0;
				for(int i = 0; i < exponents.dim(); i++) {
					if(exponents[i] > max && !assigned.contains(i)) {
						max = exponents[i]; max_index = i;
					}
				}

				ordered_exponents |= max;
				permutation |= max_index;
				assigned += max_index;
			}

			// PRÜFER SEQUENCE COMPUTATION ------------------------------------------------


			//Prepare all variables for the Prüfer sequence computation

			//The vertex we currently try to place in the sequence
			//More precisely: The vertex is current_vertex + n
			int current_vertex = 0;
			//At [i][j] contains the positions in the sequence (counting from 0)
			//that we have already tried for the (j+1)-st occurence of vertex i
			//for the given placement of 0,..,current_vertex-1
			Vector<Vector<Vector<int> > > placements_tried(n-2-k_sum);
			placements_tried[0] |= Vector<int>();
			//The current Prüfer sequence (0 = entry we haven't filled yet)
			Vector<int> current_sequence(2*n - 4 - k_sum);
			//The exponent weights of each entry. The first n are the exponents, the rest is 0
			Vector<int> weight = ordered_exponents | zero_vector<int>(n - 4 - k_sum);
			Vector<int> orig_weight = exponents | zero_vector<int>(n - 4 - k_sum);
			//At entry i contains the number of occurences we still need for vertex i
			//given the current placement
			Vector<int> numbers_needed = 2*ones_vector<int>(n-2-k_sum);

			//This will contain the resulting sequences
			Matrix<int> result_sequences(0,2*n-4-k_sum);


			while(current_vertex >= 0) {


				//Find the next free space after the last tried position
				int next_pos = -1;
				int occurences_so_far = 0;
				//If the vertex index is too large, we have found a solution
				if(current_vertex < numbers_needed.dim()) {
					occurences_so_far = placements_tried[current_vertex].dim()-1;
					//If its' the first occurence (or the last vertex), we always take the first free position, so we only
					//have to look something up, if it's not the first occurence and not the last vertex
					if(occurences_so_far > 0 && current_vertex < numbers_needed.dim() - 1) {
						int placements_so_far = (placements_tried[current_vertex])[occurences_so_far].dim() ;
						//If we have tried any placements so far, we try to take the next free position after
						//the last one tried, otherwise we take the first free entry after the placement of
						//the last occurence
						if(placements_so_far > 0) {
							next_pos = ((placements_tried[current_vertex])[occurences_so_far] )[ placements_so_far-1];
						}
						else {
							int last_placements = (placements_tried[current_vertex])[occurences_so_far-1].dim();
							next_pos = ((placements_tried[current_vertex]) [occurences_so_far-1])[last_placements-1];
						}
					}
					//If it is the first occurence, we still have to check if we already tried the first free
					//position
					else {
						if( (placements_tried[current_vertex])[occurences_so_far].dim() > 0) {
							next_pos = current_sequence.dim();
						}
					}
					do {
						next_pos++;
						if(next_pos >= current_sequence.dim()) break;
					}while(current_sequence[next_pos] != 0);
				}
				else {
					if(!(Set<int>(current_sequence)).contains(0)) {
						result_sequences /= current_sequence;
					}
					next_pos = current_sequence.dim();

				}


				//STEP DOWN: If we cannot place the vertex, we go back a step
				if (next_pos >= current_sequence.dim()) {
					//Remove placements of the current step
					if (current_vertex < numbers_needed.dim())
						placements_tried[current_vertex] = placements_tried[current_vertex].slice(
								~scalar2set(occurences_so_far));
					//and go back one vertex if this is the first occurence
					if (occurences_so_far == 0) {
						current_vertex--;
					}

					if(current_vertex >= 0) {
						//Remove the occurence of the step we moved back to, since we want to recompute it
						int occurence_to_remove = placements_tried[current_vertex].dim();
						int placement_to_remove = (placements_tried[current_vertex])[occurence_to_remove-1].dim();
						int position_to_remove = ((placements_tried[current_vertex])[occurence_to_remove-1])
							[placement_to_remove-1];

						current_sequence[position_to_remove] = 0;
						numbers_needed[current_vertex] += (1 - weight[position_to_remove]);
					}

				}//END step down
				//INSERT
				else {
					//Insert current vertex and recompute number of entries needed
					current_sequence[next_pos] = current_vertex + n ;
					numbers_needed[current_vertex] += (weight[next_pos] -1);
					((placements_tried[current_vertex])[occurences_so_far]) |= next_pos;
					//STEP UP
					//If we still need entries with this vertex, we try the next placement,
					//otherwise we go to the next vertex
					if (numbers_needed[current_vertex] == 0) {
						current_vertex++;
					}
					if(current_vertex < numbers_needed.dim()) placements_tried[current_vertex] |= Vector<int>();

				}//END Insert and step up

			}//END compute Prüfer sequences


			//Now we have to permute the columns of the sequences back according to the reordering on the
			//exponents
			result_sequences.minor(All,sequence(0,n)) = permuted_inv_cols(result_sequences.minor(All,sequence(0,n)), permutation);


			// MODULI CONE CONVERSION -----------------------------------------------------------


			//Prepare variables for the tropical fan
			Matrix<Rational> rays(0, (n*(n-3))/2 + 1);
			Vector<Rational> newray( (n*(n-3))/2 + 1);
			Vector<Set<int> > cones;
			Vector<Integer> tropical_weights;

			//First we create the edge index matrix E(i,j) that contains at element i,j the edge index of edge (i,j)
			//in the complete graph on n-1 nodes
			int nextindex = 0;
			Matrix<int> E(n-1,n-1);
			for(int i = 0; i < n-1; i++) {
				for(int j = i+1; j < n-1; j++) {
					E(i,j) = nextindex;
					E(j,i) = nextindex;
					nextindex++;
				}
			}

			//Iterate all Pruefer sequences
			for(int s = 0; s < result_sequences.rows(); s++) {

				//Convert to partition list
				Vector<Set<int> > partitions = decodePrueferSequence(result_sequences.row(s),n);

				Set<int> newcone;

				//Go through each partition and compute its ray
				for(int p = 0; p < partitions.dim(); p++) {
					newray.fill(0);
					for(pm::Subsets_of_k_iterator<const pm::Set<int>& > raypair = entire(all_subsets_of_k(partitions[p],2)); !raypair.at_end(); raypair++) {
						int smaller_index = (*raypair).front();
						int larger_index = (*raypair).back();
						newray[ E(smaller_index,larger_index)] = Addition::orientation();
					}//END iterate pairs in partition

					//Now see if the ray is already in our list, otherwise add it
					int ray_index = -1;
					for(int oray = 0; oray < rays.rows(); oray++) {
						if(rays.row(oray) == newray) {
							ray_index = oray; break;
						}
					}
					if(ray_index == -1) {
						rays /= newray;
						ray_index = rays.rows()-1;
					}

					newcone += ray_index;


				}//END iterate partitions


				//Add the cone
				cones |= newcone;

				//Compute its weight from the Pruefer sequence
				Vector<int> weights_at_vertices(newcone.size() +1);
				//Read off the k-weight at each vertex from the sequence
				for(int i = 0; i < n; i++) {
					weights_at_vertices[result_sequences(s,i) - n] += orig_weight[i];
				}
				Integer w = 1;
				for(int i = 0; i < weights_at_vertices.dim(); i++) {
					w *= Integer::fac(weights_at_vertices[i]);
				}
				tropical_weights |= (w / divisor);


			}//END iterate sequences


			//Add a vertex
			rays = zero_vector<Rational>() | rays;
			rays /= unit_vector<Rational>(rays.cols(),0);

			for(int mc = 0; mc < cones.dim(); mc++) {
				cones[mc] += scalar2set(rays.rows()-1);
			}

			perl::Object result(perl::ObjectType::construct<Addition>("Cycle"));
			result.take("PROJECTIVE_VERTICES") << rays;
			result.take("MAXIMAL_POLYTOPES") << cones;
			result.take("WEIGHTS") << tropical_weights;
			return result;

		}//END function psi_product

	
	//Documentation see perl wrapper
	template <typename Addition>
		perl::Object psi_class(int n, int i) {
			if(n < 0 || i < 1 || i > n) {
				throw std::runtime_error("Cannot compute psi_class: Invalid parameters");
			}
			return psi_product<Addition>(n, unit_vector<int>(n,i-1));
		}//END function psi_class

	///////////////////////////////////////////////////////////////////////////////////////
}}

#endif