This file is indexed.

/usr/include/polymake/tropical/double_description.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/* Copyright (c) 1997-2018
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.
   
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   --------------------------------------------------------------------------------
*/

/** @file Double_Description.h
    @brief Implementation of files for tropical double description
  */

#ifndef POLYMAKE_TROPICAL_DOUBLE_DESCRIPTION_H
#define POLYMAKE_TROPICAL_DOUBLE_DESCRIPTION_H

#include "polymake/Rational.h"
#include "polymake/TropicalNumber.h"
#include "polymake/Array.h"
#include "polymake/Matrix.h"
#include "polymake/Vector.h"
#include "polymake/Set.h"
#include "polymake/tropical/covectors.h"
#include "polymake/tropical/thomog.h"

namespace polymake {
   namespace tropical {

      /*
       *  @brief: check if point is contained in a tropical cone defined by
       *  inequalities which are given by their apices and INfeasible sectors
       */
      template <typename VectorTop, typename MatrixTop, typename Addition, typename Scalar>
      bool is_contained(const GenericVector<VectorTop, TropicalNumber<Addition, Scalar> >& point, const GenericMatrix<MatrixTop, TropicalNumber<Addition,Scalar> >& apices, const Array<Set<int>>& sectors)
      {
         bool check = true;
         int row_index = 0;
         IncidenceMatrix<> M(generalized_apex_covector(point, apices));
         for(const auto& r : rows(M)) {
            Set<int> t(r);
            if (incl(t,sectors[row_index])<=0) check = false;
            row_index++;
         }
         return check;
      }

      /*
       *  @brief: check if a point fulfills the inequality system A x <= B x for min resp. A x >= B x for max
       */
      template <typename VectorTop, typename Matrix1, typename Matrix2, typename Addition, typename Scalar>
      bool is_contained(const GenericVector<VectorTop, TropicalNumber<Addition, Scalar> >& point, const GenericMatrix<Matrix1, TropicalNumber<Addition,Scalar> >& lhs, const GenericMatrix<Matrix2, TropicalNumber<Addition,Scalar> >& rhs)
      {
         bool check = true;
         for(int i = 0; i < lhs.rows(); i++) {
            if (point * lhs > point * rhs) check = false;
         }
         return check;
      }
      
      /*
       *  @brief: convert inequality A x <= B x for min resp. A x >= B x for max
       *  to the description by
       *  apices and INfeasible sectors. Here, B is on the INfeasible side.
       */
      template <typename Addition, typename Scalar>
      std::pair< Matrix< TropicalNumber< Addition, Scalar> >, Array<Set<int> > > matrixPair2apexSet(const Matrix< TropicalNumber<Addition, Scalar> >& A, const Matrix< TropicalNumber<Addition,Scalar> >& B)
      {
         typedef TropicalNumber<Addition,Scalar> TNumber;
         Array<Set<int> > sectors(A.rows());
         Matrix<TNumber> W(A.rows(), A.cols());
         TNumber entry;
         for(int i = 0; i < A.rows(); i++) {
            for(int j = 0; j < A.cols(); j++) {
               if ( A(i,j) != B(i,j) ) {
                  entry = A(i,j) + B(i,j);
                  W(i,j) = entry;
                  if ( entry == B(i,j) ) sectors[i] += j;
               }
            }
         }
         return std::make_pair(W, sectors);
      }


      /*
       *  @brief: compute the extremals of a tropical cone given by the
       *  intersection of a tropical halfspace with another tropical cone
       *  which is given by an inner and and outer description.
       */
      template <typename MatrixTop, typename Addition, typename Scalar>
      Matrix<TropicalNumber<Addition, Scalar> > extremals_from_generators(const GenericMatrix<MatrixTop, TropicalNumber<Addition, Scalar> >& generators)
      {
         typedef TropicalNumber<Addition,Scalar> TNumber;
         ListMatrix<Vector<TNumber> > extremals;

         for(const auto& r : rows(generators)) {
            bool is_extremal = false;
            for (auto coord = entire(rows(single_covector(r, generators))); !coord.at_end(); coord++) {
               if (!((*coord).size() - 1)) { is_extremal = true; break; }
            }
            if (is_extremal) {
               extremals /= r;
            }
         }
         return extremals;
      }

      

      /*
       *  @brief: compute the extremals of a tropical cone given by the
       *  intersection of a tropical halfspace with another tropical cone
       *  which is given by its extremals.
       */
      template <typename MatrixTop, typename Vector1, typename Vector2, typename Addition, typename Scalar>
      Matrix<TropicalNumber<Addition, Scalar> > intersection_extremals(const GenericMatrix<MatrixTop, TropicalNumber<Addition, Scalar> >& generators, const GenericVector<Vector1, TropicalNumber<Addition, Scalar> >& infeasible_side, const GenericVector<Vector2, TropicalNumber<Addition, Scalar> >& feasible_side)
      {
         typedef TropicalNumber<Addition,Scalar> TNumber;

         Set<int> remaining_generators;
         int r_index = 0;
         
         // check for all generators if they are contained in the halfspace given by the pair
         // (feasible_side, infeasible_side)
         for(const auto& r : rows(generators)) {
            if (Addition::orientation()*Scalar(feasible_side*r) <= Addition::orientation()*Scalar(infeasible_side*r)) remaining_generators += r_index;
            r_index++;
         }
         //         ListMatrix<Vector<TNumber> > new_points(rows(generators.minor(remaining_generators,All)));
         Set<Vector<TNumber> > new_points;

         Vector<TNumber> k;
         
         for(auto g = entire(rows(generators.minor(remaining_generators,All))); !g.at_end(); ++g) {
            for(auto h = entire(rows(generators.minor(~remaining_generators,All))); !h.at_end(); ++h) {               
               k = (infeasible_side * (*h)) * (*g) + (feasible_side * (*g)) * (*h);
                new_points += normalized_first(k);
            }
         }
         
         Matrix<TNumber> new_generators(new_points.size(), feasible_side.dim(), entire(new_points));
         new_generators /= generators.minor(remaining_generators,All);
         
         return extremals_from_generators(new_generators);
      }


      
      /*
       *  @brief: compute the extremals of a monomial tropical cone given by the
       *  intersection of a tropical halfspace (defined via nondominated point) with a monomial tropical cone
       *  which is given by generators and apices.
       */
      template <typename Matrix1, typename Matrix2, typename VectorTop, typename Addition, typename Scalar>
      Matrix<TropicalNumber<Addition, Scalar> > monoextremals(const GenericMatrix<Matrix1, TropicalNumber<Addition, Scalar> >& generators, const GenericMatrix<Matrix2, TropicalNumber<Addition, Scalar> >& apices, const GenericVector<VectorTop, Scalar>& non_dominated_point)
      {
         typedef TropicalNumber<Addition,Scalar> TNumber;
         
         Set<int> remaining_generators;
         int r_index = 0;
         Vector<TNumber> infeasible_side(non_dominated_point.dim()+1);
         infeasible_side[0] = TNumber::one();

         Vector<TNumber> feasible_side(non_dominated_point.dim()+1);
         feasible_side.slice(~scalar2set(0)) = (-non_dominated_point);

         Vector<TNumber> new_apex((0|non_dominated_point));
         

         // check for all generators if they are contained in the halfspace given by the pair
         // (feasible_side, infeasible_side)
         for(const auto& r : rows(generators)) {
            if (Addition::orientation()*Scalar(feasible_side*r) <= Addition::orientation()*Scalar(infeasible_side*r)) remaining_generators += r_index;
            r_index++;
         }

         //ListMatrix<Vector<TNumber> > new_generators(rows(generators.minor(remaining_generators,All)));
         Set<Vector<TNumber> > new_generators;
         Vector<TNumber> k;

         for(auto g = entire(rows(generators.minor(remaining_generators,All))); !g.at_end(); ++g) {
            for(auto h = entire(rows(generators.minor(~remaining_generators,All))); !h.at_end(); ++h) {               
               k = (infeasible_side * (*h)) * (*g) + (feasible_side * (*g)) * (*h);
               
               Set<int> covered_sectors;
               Set<int> apex_sectors;
               for (auto apex : rows(apices)) {
                  // why does (apices/new_apex) not work??
                  apex_sectors = single_covector(apex, k);
                  if ((apex_sectors.contains(0)) & (apex_sectors.size()==2)) {
                     covered_sectors += apex_sectors;
                  }
               }
               apex_sectors = single_covector(new_apex, k);
               if (apex_sectors.contains(0)) {
                  covered_sectors += apex_sectors;
               }
               if (covered_sectors == support(k)) {
                  new_generators += normalized_first(k);
               }
            }
         }
         Matrix<TNumber> all_generators(new_generators.size(), new_apex.dim(), entire(new_generators)); 
            
         return (generators.minor(remaining_generators,All)/all_generators);
      }


      /*
       * @brief: determine the dual generators of dehomogenized monomial generators
       *
       * @return: a pair of dual generators and the incidences with the primal generators
       */
      template <typename MatrixTop, typename Scalar>
      std::pair< Matrix<TropicalNumber<Min, Scalar> >, IncidenceMatrix<> > dual_description(const GenericMatrix<MatrixTop, Scalar>& monomial_generators) {
         typedef TropicalNumber<Min, Scalar> TNumber;

         int dim = monomial_generators.cols();
         
         Matrix<TNumber> gen(unit_matrix<TNumber>(dim+1));
         ListMatrix<Vector<TNumber> > apices;
         
         for(const auto& mg : rows(monomial_generators) ) {
            gen = monoextremals(gen, apices, mg);
            Vector<TNumber> new_apex(1);
            new_apex[0] = TNumber::one();
            new_apex |= mg;
            apices /= new_apex;
         }

         ListMatrix<Vector<TNumber>> finite_gen;

         // select only those generators with first coord 0
         for(const auto& g : rows(gen) ) {
            if (g[0]==0) finite_gen /= g; 
         }

         // compute the incidences of primal and dual generators
         Array<Set<int> > vif(monomial_generators.rows());
         int i = 0;
         for (const auto& mg : rows(monomial_generators) ) {
            int j = 0;
            for (const auto& dg : rows(finite_gen) ) {
               Vector<Scalar> sg(dg.slice(~scalar2set(0)));
               if (accumulate(sg - mg, operations::min()) == Scalar(dg[0])) vif[i] += j;
               j++;
            }
            i++;
         }

         IncidenceMatrix<> VIF(vif);

         return std::make_pair(finite_gen,VIF);
      }

} }

#endif 

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: