This file is indexed.

/usr/include/polymake/topaz/poset_tools.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/* Copyright (c) 1997-2018
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#ifndef POLYMAKE_TOPAZ_POSET_TOOLS_H
#define POLYMAKE_TOPAZ_POSET_TOOLS_H

#include "polymake/Array.h"
#include "polymake/Set.h"
#include "polymake/Graph.h"
#include <list>

/** Tools to treat posets
 *
 *  A poset is represented as directed graph that contains _all_ comparison relations, not just the minimal ones.
 */


namespace polymake { namespace topaz {

typedef Array<int> Homomorphism;
typedef std::vector<Homomorphism> HomList;
   
template<typename Record>
class RecordKeeper {
   Record record;
public:
   RecordKeeper() : record(Record()) {}
   void add(const Homomorphism& h) {}
   Record result() const { return record; }
   Record& result() { return record; }
};

template<>
void RecordKeeper<HomList>::add(const Homomorphism& h) {
   record.push_back(h);
}

template<>
void RecordKeeper<int>::add(const Homomorphism&) {
   ++record;
}
      
namespace {

typedef std::vector<std::pair<int,int>> EdgeList;

enum PEdgeStatus {
   not_fixed,
   compatible_with_map,
   incompatible_with_map
};   
   
template<typename Poset, typename Iterator>
PEdgeStatus compatibility_status(const Poset& Q, const Iterator& it, const Array<int>& mapping) {
   if (mapping[it.from_node()] == -1 ||
       mapping[it.  to_node()] == -1) {
      return not_fixed;
   } else {
      return Q.edge_exists(mapping[it.from_node()],
                           mapping[it.  to_node()])
         ? compatible_with_map
         : incompatible_with_map;
   }
}

// all edges of Q are relevant if both images of it.front(), it.back() are variable
// otherwise, an edge q of Q is relevant if exactly one of the images is variable, and q is incident to the non-variable end;
template<typename Poset, typename Iterator>
const EdgeList& relevant_q_edges(const Poset& Q,
                                 const Iterator& it,
                                 const Array<int>& mapping,
                                 const EdgeList& Qedges,
                                 EdgeList& relevant_q_edges) 
{
   const int 
      mf (mapping[it.from_node()]),
      mt (mapping[it.  to_node()]);
   if (mf == -1 && mt != -1) {
      for (auto qit = entire(Q.in_adjacent_nodes(mt)); !qit.at_end(); ++qit) {
         relevant_q_edges.push_back({ *qit, mt });
      }
   }
   if (mf != -1 && mt == -1) {
      for (auto qit = entire(Q.out_adjacent_nodes(mf)); !qit.at_end(); ++qit) {
         relevant_q_edges.push_back({ mf, *qit });
      }
   }
   return relevant_q_edges.size()
      ? relevant_q_edges
      : Qedges;
}

// check if the edge of P indicated by peit can be added to the current map, then recurse, produce output or return because of incompatibility   
template<typename PosetP, typename PosetQ, typename Record>
void complete_map(const PosetP& P,
                  const PosetQ& Q,
                  const EdgeList& Qedges,
                  const typename Entire<Edges<PosetP>>::const_iterator peit,
                  int p_edges_placed, // edge count of edges in P; synchronized with peit 
                  Array<int> current_map, // intentionally pass a copy
                  RecordKeeper<Record>& record_keeper)
{
   assert(p_edges_placed < P.edges()); // cannot handle P with no edges 
   const PEdgeStatus es(compatibility_status(Q, peit, current_map));
   if (es == incompatible_with_map) {
      return;
   }
   if (es == compatible_with_map) { // no modification of current_map necessary, placed compatible p-edge
      ++p_edges_placed;
      if (p_edges_placed == P.edges()) { // map is complete
         record_keeper.add(current_map);
         return;
      }
      // compatible edge, recursing further
      auto next_peit(peit); ++next_peit;
      complete_map(P, Q, Qedges, next_peit, p_edges_placed, current_map, record_keeper);
      return;
   }
   // now es == not_fixed
   const int 
      pf(peit.from_node()),
      pt(peit.  to_node()),
      old_f(current_map[pf]),
      old_t(current_map[pt]);
   assert(old_f == -1 || old_t == -1);
   EdgeList relevant_q_edge_list;
   for (auto qeit = entire(relevant_q_edges(Q, peit, current_map, Qedges, relevant_q_edge_list)); !qeit.at_end(); ++qeit) {
      // map *peit to *qeit
      assert(current_map[pf] == -1 || current_map[pf] == qeit->first);
      current_map[pf] = qeit->first;

      assert(current_map[pt] == -1 || current_map[pt] == qeit->second);
      current_map[pt] = qeit->second;

      auto next_peit(peit);
      ++p_edges_placed; ++next_peit;

      if (p_edges_placed == P.edges()) {
         record_keeper.add(current_map);
      } else {
         complete_map(P, Q, Qedges, next_peit, p_edges_placed, current_map, record_keeper);
      }
      --p_edges_placed;

      // reinstate map
      current_map[pf] = old_f;
      current_map[pt] = old_t;
   }
}

template<typename Poset>
void
classify_isolated_vertices(const Poset& P,
                           const Array<int>& prescribed_map,
                           Set<int>&     prescribed,
                           Set<int>& not_prescribed)
{
   Set<int> isolated_vertices(sequence(0, P.nodes()));

   // first remove vertices incident to edges
   for(auto eit = entire(edges(P)); !eit.at_end(); ++eit) {
      isolated_vertices -= eit.from_node();
      isolated_vertices -= eit.to_node();
   }

   // then classify isolated vertices according to whether their image is prescribed or not
   for (auto iit = entire(isolated_vertices); !iit.at_end(); ++iit) {
      if (prescribed_map[*iit] == -1) 
         not_prescribed += *iit;
      else
             prescribed += *iit;
   }
}

template<typename PosetP, typename PosetQ>
void map_isolated_vertices(const PosetP& P,
                           const PosetQ& Q,
                           const Array<int>& prescribed_map,
                           RecordKeeper<HomList>& record_keeper)
{
   Set<int> 
          prescribed_isolated_vertices,
      not_prescribed_isolated_vertices;
   classify_isolated_vertices(P, prescribed_map, prescribed_isolated_vertices, not_prescribed_isolated_vertices);

   if (record_keeper.result().size() == 0) {
      record_keeper.result().push_back(Array<int>(P.nodes(), -1));
   }
   
   for (auto vit = entire(not_prescribed_isolated_vertices); !vit.at_end(); ++vit) {
      // the image of *vit will be -1 in all homomorphisms, so first replace that -1 with the first node of Q throughout
      HomList tmp_homs;
      for (auto hit = entire(record_keeper.result()); !hit.at_end(); ++hit) {
         Array<int> hom(*hit);
         hom[*vit] = 0;
         for (auto pvit = entire(prescribed_isolated_vertices); !pvit.at_end(); ++pvit)
            hom[*pvit] = prescribed_map[*pvit];
         tmp_homs.push_back(hom);
      }
      record_keeper.result().swap(tmp_homs); // do it like this so that the Set tree doesn't have to be rebuilt so often by removing the array with -1 and adding the one with 0 back in

      // now process the rest of the vertices
      for (int i=1; i<Q.nodes(); ++i) {
         for (auto hit = entire(tmp_homs); !hit.at_end(); ++hit) {
            Array<int> hom(*hit);
            hom[*vit] = i;
            record_keeper.result().push_back(hom);
         }
      }
   }
}

template<typename PosetP, typename PosetQ>
void map_isolated_vertices(const PosetP& P,
                           const PosetQ& Q,
                           const Array<int>& prescribed_map,
                           RecordKeeper<int>& record_keeper)
{
   Set<int> 
          prescribed_isolated_vertices,
      not_prescribed_isolated_vertices;
   classify_isolated_vertices(P, prescribed_map, prescribed_isolated_vertices, not_prescribed_isolated_vertices);

   // any not prescribed isolated vertex can go to any vertex in Q
   if (not_prescribed_isolated_vertices.size()) {
      if (record_keeper.result() == 0) { // no edges
         record_keeper.result() = 1;
      }
      record_keeper.result() *= not_prescribed_isolated_vertices.size() * Q.nodes();
   }
}


// compare two functions f,g: P --> Q by
// f <= g iff f(p) <= g(p) for all p in P.
template<typename Poset>
bool f_less_or_equal_g(const Array<int>& f, const Array<int>& g, const Poset& Q)
{
   assert(f.size() == g.size());
   for (int i=0; i<f.size(); ++i)
      if (f[i] != g[i] &&
          !Q.edge_exists(f[i], g[i]))
         return false;
   return true;
}

} // end anonymous namespace


template<typename PosetP, typename PosetQ, typename Record>
auto poset_homomorphisms_impl(const PosetP& P, 
                              const PosetQ& _Q,
                              RecordKeeper<Record>& record_keeper,
                              Array<int> prescribed_map = Array<int>(),
                              bool allow_loops = true)
{
   PosetQ Q(_Q);

   if (allow_loops) {
      // include loops in Q, to allow for contracting edges of P
      for (int i=0; i<Q.nodes(); ++i)
         Q.edge(i,i);
   }
   
   if (!prescribed_map.size())
      prescribed_map = Array<int>(P.nodes(), -1);
   else if (prescribed_map.size() != P.nodes())
      throw std::runtime_error("The size of the given prescribed map does not match that of the domain poset");

   EdgeList Qedges;
   for (auto eit = entire(edges(Q)); !eit.at_end(); ++eit)
      Qedges.push_back({ eit.from_node(), eit.to_node() });

   if (P.edges()) {
      complete_map(P, Q, Qedges, entire(edges(P)), 0, prescribed_map, record_keeper);
   }
   map_isolated_vertices(P, Q, prescribed_map, record_keeper);

   return record_keeper.result();
}


template<typename PosetQ>
PosetQ hom_poset_impl(const HomList& homs, const PosetQ& Q)
{
   PosetQ H(homs.size());
   int i(0), j(0);
   for (auto hit1 = entire(homs); !hit1.at_end(); ++hit1, ++i) {
      auto hit2 = hit1;
      for (++hit2, j=i+1; !hit2.at_end(); ++hit2, ++j) {
         if (f_less_or_equal_g(*hit1, *hit2, Q))
            H.edge(i,j);
         else if (f_less_or_equal_g(*hit2, *hit1, Q))
            H.edge(j,i);
      }
   }
   return H;
}

template<typename PosetQ>
PosetQ hom_poset_impl(const Array<Array<int>>& homs, const PosetQ& Q)
{
   return hom_poset_impl(HomList(homs.begin(), homs.end()), Q);
}

template<typename PosetP, typename PosetQ>
auto hom_poset_impl(const PosetP& P, const PosetQ& Q)
{
   RecordKeeper<HomList> record_keeper;
   return hom_poset_impl(poset_homomorphisms_impl(P, Q, record_keeper), Q);
}

template<typename Poset>
Poset covering_relations_impl(const Poset& P)
{
   std::list<std::vector<int>> path_queue;
   Poset covers(P);
   for (int i=0; i<P.nodes(); ++i)
      if (!P.in_degree(i) && P.out_degree(i)) {
         std::vector<int> path;
         path.push_back(i);
         path_queue.push_back(path);
      }
   
   while (path_queue.size()) {
      const std::vector<int> path(path_queue.front()); path_queue.pop_front();
      for (auto oit = entire(P.out_adjacent_nodes(path.back())); !oit.at_end(); ++oit) {
         for (size_t j=0; j<path.size()-1; ++j)
            covers.delete_edge(path[j], *oit);
         if (P.out_degree(*oit))  {
            std::vector<int> new_path(path);
            new_path.push_back(*oit);
            path_queue.push_back(new_path);
         }
      }
   }
   return covers;
}

} }

#endif // POLYMAKE_TOPAZ_POSET_TOOLS_H

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: