This file is indexed.

/usr/include/polymake/topaz/DomeVolumeVisitor.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
/* Copyright (c) 1998-2016
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germainy)
http://www.polymake.org

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#ifndef POLYMAKE_DOME_VOLUME_VISITOR_H
#define POLYMAKE_DOME_VOLUME_VISITOR_H

#include "polymake/client.h"
#include "polymake/Graph.h"
#include "polymake/Set.h"
#include "polymake/Vector.h"
#include "polymake/Matrix.h"
#include "polymake/graph/graph_iterators.h"
#include "polymake/graph/DoublyConnectedEdgeList.h"

namespace polymake { namespace topaz {

using namespace graph;

typedef std::list<int> flip_sequence;
/*
A decorated edge consists of the half edge index and a matrix for the two decorating horocycles. 
*/
typedef std::pair< int , Matrix<Rational> > DecoratedEdge;
/*
Each DecoratedEdge that appears in the BFS will get an unique index via this map.
*/
typedef Map< int , DecoratedEdge > EdgeMap;

/*
Forward declaration of the function that computes the third horocycle, given the three lambda-lengths of a triangle and two of its horocycles (given via [p,q]-identification).
*/
Vector<Rational> thirdHorocycle( Vector<Rational> horo_u , Vector<Rational> horo_v , Rational lambda_uv , Rational lambda_vw , Rational lambda_wu );

class DomeVolumeVisitor : public NodeVisitor<> {

friend class DoublyConnectedEdgeList;

private:

/*
The graph we want to iterate through.
Gets build during iteration.
Part of the dual spanning tree of the triangulation of the universal covering H^2.
*/
Graph< Directed >& dome_graph;

/*
The triangulation of the surface.
*/
DoublyConnectedEdgeList& dcel;

/*
A map from the node-indices from the dome_graph to a pair of a half edge and its two horocycles.
*/
EdgeMap edge_map;

/*
The GKZ vector. Gets updated during iteration.
*/
Vector<Rational> gkz_vector;

/*
A global lower bound for the prism volumes. 
If the volume of a prism gets smaller we stop the computation of the GKZ vector in that direction.
*/
Rational lower_bound_volume;

/* 
Horocycle scaling:
By definition the GKZ vectors should be computed w.r.t. a fixed weight (1,...,1).
The surfaces we are given do not have these weights, but instead the weights that come with the
chosen lambda lengths (the angle sums = angleVec).
We calculate the prism volumes w.r.t. these weights and rescale them afterwards.
*/
Vector<Rational> angleVec;

/*
A count of the nodes that were visited already.
*/
int num_visited;

public:

/* This is needed for the BFS-iterator to not just stop in depth one. */
static const bool visit_all_edges=true;

/*
The DVV gets initialized with the given graph G (usually only one node for the first half edge),
the triangulation dcel (containing the lambda lengths of the edges),
the position of the first half edge via two horocycles [p_1,q_1] and [p_2,q_2]
*/
DomeVolumeVisitor( Graph<Directed>& G, DoublyConnectedEdgeList& dcel, Matrix<Rational> first_halfedge_horo )
   : dome_graph(G)
   , dcel(dcel)
   , gkz_vector( dcel.getNumVertices() )
   , angleVec(dcel.angleVector())
   , num_visited(0)
{
   layFirstEdge( first_halfedge_horo );
}

int numVisited() const{ return num_visited; }

Vector<Rational> getGKZvector() const{ return gkz_vector; }

bool operator()( int n ){ return operator()( n , n ); }

/* The operator used by the BFS iterator. It visits a new triangle, updates the GKZ vector,
 * and discovers the two adjacent triangles, adding them to the dual graph queue.
 */
bool operator()( int n_from , int n_to )
{
   if ( visited.contains( n_to ) ) return false;
   /*
   The node n_to was not viseted yet, therefore the corresponding triangle (its known halfedge)
   did not contribute to the GKZ vector. We extract the known half edge as well as the two known
   horocycles from the edge_map. Then we compute the position of the third horocycle, and put two
   new adjacent triangles (half edges) in the queue.
   */
   DecoratedEdge edge_pair = edge_map[n_to];
   Vector<Rational> horo_u = edge_pair.second[0];
   Vector<Rational> horo_v = edge_pair.second[1];
   HalfEdge uv = *dcel.getHalfEdge(edge_pair.first);
   HalfEdge vw = *(uv.getNext());
   HalfEdge wu = *(vw.getNext());
   int u_id = dcel.getVertexId( wu.getHead() );
   int v_id = dcel.getVertexId( uv.getHead() );
   int w_id = dcel.getVertexId( vw.getHead() );

   Vector<Rational> horo_w = thirdHorocycle( horo_u , horo_v , uv.getLength(), vw.getLength(), wu.getLength());

   /* 
   Scaling of horocycles
   */
   Rational u_scaling = 1/angleVec[u_id];
   Rational v_scaling = 1/angleVec[v_id];
   Rational w_scaling = 1/angleVec[w_id];

   /*
   Calculate the volume of the skew prism over the triangle (u,v,w) with repect to weights (1,...,1).
   Add it to the GKZ vector.
   */
   Vector<Rational> vol = volumeSummands( horo_u , horo_v , horo_w , u_scaling , v_scaling , w_scaling );
   gkz_vector[u_id] += vol[0];
   gkz_vector[v_id] += vol[1];
   gkz_vector[w_id] += vol[2];

   /*
   Add the two new half edges to the queue, update the edge_map and the dome_graph.
   Note that we change the sign of the second horocycle (head of wv and uw) since we want to guarantee a positive determinant.
   */
   Matrix<Rational> M_wv(2,2); M_wv[0] = horo_w; M_wv[1] = -1*horo_v;
   Matrix<Rational> M_uw(2,2); M_uw[0] = horo_u; M_uw[1] = -1*horo_w;

   DecoratedEdge edge_pair_wv;
   edge_pair_wv.first = dcel.getHalfEdgeId(vw.getTwin()); edge_pair_wv.second = M_wv;
   DecoratedEdge edge_pair_uw;
   edge_pair_uw.first = dcel.getHalfEdgeId(wu.getTwin()); edge_pair_uw.second = M_uw;

   int wv_node_id = dome_graph.add_node();
   dome_graph.add_edge( n_to , wv_node_id );
   edge_map[wv_node_id] = edge_pair_wv;
   int uw_node_id = dome_graph.add_node();
   dome_graph.add_edge( n_to , uw_node_id );
   edge_map[uw_node_id] = edge_pair_uw;

   visited += n_to;
   ++num_visited;
   return true;
}


/*
Lay out the first half edge (index=0) in H^2, according to the horocycles given by the two
rows of the matrix first_halfedge_horo.
*/
void layFirstEdge( Matrix<Rational> first_halfedge_horo )
{
   DecoratedEdge edge_pair;
   Matrix<Rational> M_edge = first_halfedge_horo;
   edge_pair.first = 0; edge_pair.second = M_edge;
   edge_map[0] = edge_pair;

   DecoratedEdge twin_edge_pair;
   Matrix<Rational> M_twin_edge(2,2);
   M_twin_edge[0] = M_edge[1]; M_twin_edge[1] = -M_edge[0];
   twin_edge_pair.first = 1; twin_edge_pair.second = M_twin_edge;

   int new_node_id = dome_graph.add_node();
   dome_graph.add_edge( 0 , new_node_id );
   edge_map[new_node_id] = twin_edge_pair;
}

/*
 Projects a vector from the hyperboloid to the half-sphere model.
The isometry from horocycles {[p,q]} to the half sphere light cylinder is given by
(p,q) -> 1/(p^2+q^2)(p^2-q^2,-2pq,1).
*/
Vector<Rational> projectToHalfSphere(Vector<Rational> v){
   Vector<Rational> v_halfsphere(3);
   Rational factor = 1 / ( v[0]*v[0]+v[1]*v[1] );
   v_halfsphere[0] = factor * ( v[1]*v[1]-v[0]*v[0] );
   v_halfsphere[1] = factor * ( 2*v[0]*v[1] );
   v_halfsphere[2] = factor;
   return v_halfsphere;
}

/*
Return a 3-vector containing the respective gkz summand for each vertex of the triangle uvw.
The scaling of a height in the light cylinder: z(weight)=weight*z(1).
Here u_scaling=1/u_weight, where u_weight is the angle sum around the cusp with index u.
*/
Vector<Rational> volumeSummands( Vector<Rational> u ,Vector<Rational> v , Vector<Rational> w , Rational u_scaling , Rational v_scaling , Rational w_scaling )
{
   /*
   The area of the base triangle (u,v,w) is given by A=1/2*|det[[u_1,u_2,1],[v_1,v_2,1],[w_1,w_2,1]]|.
   */
   Matrix<Rational> M(3,3);
   M[0] = projectToHalfSphere(u);
   M[1] = projectToHalfSphere(v);
   M[2] = projectToHalfSphere(w);
   Rational area = det(M.minor(All,sequence(0,2))|ones_vector<Rational>(3)) / 2;
   if( area < 0 ) area = -1*area;

   Vector<Rational> vol(3);
   vol[0] = u_scaling*M[0][2];
   vol[1] = v_scaling*M[1][2];
   vol[2] = w_scaling*M[2][2];

   return area*vol;
}

}; // end class dome volume visitor


/* this wraps a bfs iterator over the dual graph of the infinite triangulation.
 * it has a method to compute the gkz vector up to a specified depth.
 * the part of the graph that is computed already gets stored in memory.
 * TODO maybe we don't have to store the whole graph in order to iterate?
 */
class DomeBuilder{
   Graph<Directed> dual_tree; //part of the dual tree of the triangulation
   int cur_depth;
   BFSiterator< Graph<Directed>, VisitorTag<topaz::DomeVolumeVisitor> > bfs_it;

   public:

   // construct from a dcel and the horo matrix of the first edge
   DomeBuilder(DoublyConnectedEdgeList& dcel, Matrix<Rational> first_halfedge_horo):
     dual_tree(1), //start with a one-node graph
     cur_depth(0),
     bfs_it(dual_tree, DomeVolumeVisitor(dual_tree, dcel, first_halfedge_horo), nodes(dual_tree).front())
   {};

   int getDepth(){ return cur_depth; }

   // get the gkz vector up to a given depth
   Vector<Rational> computeGKZVector(int depth){
      cur_depth = depth;
      int num_nodes = 3*( pow(2,depth) -1 )+1; //number of nodes of a binary tree with ternary root of given depth

      while(bfs_it.node_visitor().numVisited() < num_nodes)
         ++bfs_it;

      return bfs_it.node_visitor().getGKZvector();
   }
};

} //end topaz namespace
} //end polymake namespace
#endif // DOME_VOLUME_VISITOR_H

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: