/usr/include/polymake/topaz/DomeVolumeVisitor.h is in libpolymake-dev-common 3.2r2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 | /* Copyright (c) 1998-2016
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germainy)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#ifndef POLYMAKE_DOME_VOLUME_VISITOR_H
#define POLYMAKE_DOME_VOLUME_VISITOR_H
#include "polymake/client.h"
#include "polymake/Graph.h"
#include "polymake/Set.h"
#include "polymake/Vector.h"
#include "polymake/Matrix.h"
#include "polymake/graph/graph_iterators.h"
#include "polymake/graph/DoublyConnectedEdgeList.h"
namespace polymake { namespace topaz {
using namespace graph;
typedef std::list<int> flip_sequence;
/*
A decorated edge consists of the half edge index and a matrix for the two decorating horocycles.
*/
typedef std::pair< int , Matrix<Rational> > DecoratedEdge;
/*
Each DecoratedEdge that appears in the BFS will get an unique index via this map.
*/
typedef Map< int , DecoratedEdge > EdgeMap;
/*
Forward declaration of the function that computes the third horocycle, given the three lambda-lengths of a triangle and two of its horocycles (given via [p,q]-identification).
*/
Vector<Rational> thirdHorocycle( Vector<Rational> horo_u , Vector<Rational> horo_v , Rational lambda_uv , Rational lambda_vw , Rational lambda_wu );
class DomeVolumeVisitor : public NodeVisitor<> {
friend class DoublyConnectedEdgeList;
private:
/*
The graph we want to iterate through.
Gets build during iteration.
Part of the dual spanning tree of the triangulation of the universal covering H^2.
*/
Graph< Directed >& dome_graph;
/*
The triangulation of the surface.
*/
DoublyConnectedEdgeList& dcel;
/*
A map from the node-indices from the dome_graph to a pair of a half edge and its two horocycles.
*/
EdgeMap edge_map;
/*
The GKZ vector. Gets updated during iteration.
*/
Vector<Rational> gkz_vector;
/*
A global lower bound for the prism volumes.
If the volume of a prism gets smaller we stop the computation of the GKZ vector in that direction.
*/
Rational lower_bound_volume;
/*
Horocycle scaling:
By definition the GKZ vectors should be computed w.r.t. a fixed weight (1,...,1).
The surfaces we are given do not have these weights, but instead the weights that come with the
chosen lambda lengths (the angle sums = angleVec).
We calculate the prism volumes w.r.t. these weights and rescale them afterwards.
*/
Vector<Rational> angleVec;
/*
A count of the nodes that were visited already.
*/
int num_visited;
public:
/* This is needed for the BFS-iterator to not just stop in depth one. */
static const bool visit_all_edges=true;
/*
The DVV gets initialized with the given graph G (usually only one node for the first half edge),
the triangulation dcel (containing the lambda lengths of the edges),
the position of the first half edge via two horocycles [p_1,q_1] and [p_2,q_2]
*/
DomeVolumeVisitor( Graph<Directed>& G, DoublyConnectedEdgeList& dcel, Matrix<Rational> first_halfedge_horo )
: dome_graph(G)
, dcel(dcel)
, gkz_vector( dcel.getNumVertices() )
, angleVec(dcel.angleVector())
, num_visited(0)
{
layFirstEdge( first_halfedge_horo );
}
int numVisited() const{ return num_visited; }
Vector<Rational> getGKZvector() const{ return gkz_vector; }
bool operator()( int n ){ return operator()( n , n ); }
/* The operator used by the BFS iterator. It visits a new triangle, updates the GKZ vector,
* and discovers the two adjacent triangles, adding them to the dual graph queue.
*/
bool operator()( int n_from , int n_to )
{
if ( visited.contains( n_to ) ) return false;
/*
The node n_to was not viseted yet, therefore the corresponding triangle (its known halfedge)
did not contribute to the GKZ vector. We extract the known half edge as well as the two known
horocycles from the edge_map. Then we compute the position of the third horocycle, and put two
new adjacent triangles (half edges) in the queue.
*/
DecoratedEdge edge_pair = edge_map[n_to];
Vector<Rational> horo_u = edge_pair.second[0];
Vector<Rational> horo_v = edge_pair.second[1];
HalfEdge uv = *dcel.getHalfEdge(edge_pair.first);
HalfEdge vw = *(uv.getNext());
HalfEdge wu = *(vw.getNext());
int u_id = dcel.getVertexId( wu.getHead() );
int v_id = dcel.getVertexId( uv.getHead() );
int w_id = dcel.getVertexId( vw.getHead() );
Vector<Rational> horo_w = thirdHorocycle( horo_u , horo_v , uv.getLength(), vw.getLength(), wu.getLength());
/*
Scaling of horocycles
*/
Rational u_scaling = 1/angleVec[u_id];
Rational v_scaling = 1/angleVec[v_id];
Rational w_scaling = 1/angleVec[w_id];
/*
Calculate the volume of the skew prism over the triangle (u,v,w) with repect to weights (1,...,1).
Add it to the GKZ vector.
*/
Vector<Rational> vol = volumeSummands( horo_u , horo_v , horo_w , u_scaling , v_scaling , w_scaling );
gkz_vector[u_id] += vol[0];
gkz_vector[v_id] += vol[1];
gkz_vector[w_id] += vol[2];
/*
Add the two new half edges to the queue, update the edge_map and the dome_graph.
Note that we change the sign of the second horocycle (head of wv and uw) since we want to guarantee a positive determinant.
*/
Matrix<Rational> M_wv(2,2); M_wv[0] = horo_w; M_wv[1] = -1*horo_v;
Matrix<Rational> M_uw(2,2); M_uw[0] = horo_u; M_uw[1] = -1*horo_w;
DecoratedEdge edge_pair_wv;
edge_pair_wv.first = dcel.getHalfEdgeId(vw.getTwin()); edge_pair_wv.second = M_wv;
DecoratedEdge edge_pair_uw;
edge_pair_uw.first = dcel.getHalfEdgeId(wu.getTwin()); edge_pair_uw.second = M_uw;
int wv_node_id = dome_graph.add_node();
dome_graph.add_edge( n_to , wv_node_id );
edge_map[wv_node_id] = edge_pair_wv;
int uw_node_id = dome_graph.add_node();
dome_graph.add_edge( n_to , uw_node_id );
edge_map[uw_node_id] = edge_pair_uw;
visited += n_to;
++num_visited;
return true;
}
/*
Lay out the first half edge (index=0) in H^2, according to the horocycles given by the two
rows of the matrix first_halfedge_horo.
*/
void layFirstEdge( Matrix<Rational> first_halfedge_horo )
{
DecoratedEdge edge_pair;
Matrix<Rational> M_edge = first_halfedge_horo;
edge_pair.first = 0; edge_pair.second = M_edge;
edge_map[0] = edge_pair;
DecoratedEdge twin_edge_pair;
Matrix<Rational> M_twin_edge(2,2);
M_twin_edge[0] = M_edge[1]; M_twin_edge[1] = -M_edge[0];
twin_edge_pair.first = 1; twin_edge_pair.second = M_twin_edge;
int new_node_id = dome_graph.add_node();
dome_graph.add_edge( 0 , new_node_id );
edge_map[new_node_id] = twin_edge_pair;
}
/*
Projects a vector from the hyperboloid to the half-sphere model.
The isometry from horocycles {[p,q]} to the half sphere light cylinder is given by
(p,q) -> 1/(p^2+q^2)(p^2-q^2,-2pq,1).
*/
Vector<Rational> projectToHalfSphere(Vector<Rational> v){
Vector<Rational> v_halfsphere(3);
Rational factor = 1 / ( v[0]*v[0]+v[1]*v[1] );
v_halfsphere[0] = factor * ( v[1]*v[1]-v[0]*v[0] );
v_halfsphere[1] = factor * ( 2*v[0]*v[1] );
v_halfsphere[2] = factor;
return v_halfsphere;
}
/*
Return a 3-vector containing the respective gkz summand for each vertex of the triangle uvw.
The scaling of a height in the light cylinder: z(weight)=weight*z(1).
Here u_scaling=1/u_weight, where u_weight is the angle sum around the cusp with index u.
*/
Vector<Rational> volumeSummands( Vector<Rational> u ,Vector<Rational> v , Vector<Rational> w , Rational u_scaling , Rational v_scaling , Rational w_scaling )
{
/*
The area of the base triangle (u,v,w) is given by A=1/2*|det[[u_1,u_2,1],[v_1,v_2,1],[w_1,w_2,1]]|.
*/
Matrix<Rational> M(3,3);
M[0] = projectToHalfSphere(u);
M[1] = projectToHalfSphere(v);
M[2] = projectToHalfSphere(w);
Rational area = det(M.minor(All,sequence(0,2))|ones_vector<Rational>(3)) / 2;
if( area < 0 ) area = -1*area;
Vector<Rational> vol(3);
vol[0] = u_scaling*M[0][2];
vol[1] = v_scaling*M[1][2];
vol[2] = w_scaling*M[2][2];
return area*vol;
}
}; // end class dome volume visitor
/* this wraps a bfs iterator over the dual graph of the infinite triangulation.
* it has a method to compute the gkz vector up to a specified depth.
* the part of the graph that is computed already gets stored in memory.
* TODO maybe we don't have to store the whole graph in order to iterate?
*/
class DomeBuilder{
Graph<Directed> dual_tree; //part of the dual tree of the triangulation
int cur_depth;
BFSiterator< Graph<Directed>, VisitorTag<topaz::DomeVolumeVisitor> > bfs_it;
public:
// construct from a dcel and the horo matrix of the first edge
DomeBuilder(DoublyConnectedEdgeList& dcel, Matrix<Rational> first_halfedge_horo):
dual_tree(1), //start with a one-node graph
cur_depth(0),
bfs_it(dual_tree, DomeVolumeVisitor(dual_tree, dcel, first_halfedge_horo), nodes(dual_tree).front())
{};
int getDepth(){ return cur_depth; }
// get the gkz vector up to a given depth
Vector<Rational> computeGKZVector(int depth){
cur_depth = depth;
int num_nodes = 3*( pow(2,depth) -1 )+1; //number of nodes of a binary tree with ternary root of given depth
while(bfs_it.node_visitor().numVisited() < num_nodes)
++bfs_it;
return bfs_it.node_visitor().getGKZvector();
}
};
} //end topaz namespace
} //end polymake namespace
#endif // DOME_VOLUME_VISITOR_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|