This file is indexed.

/usr/include/polymake/polytope/separating_hyperplane.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
/* Copyright (c) 1997-2018
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#ifndef POLYMAKE_POLYTOPE_SEPARATING_HYPERPLANE_H
#define POLYMAKE_POLYTOPE_SEPARATING_HYPERPLANE_H

#include "polymake/Vector.h"
#include "polymake/Matrix.h"
#include "polymake/linalg.h"
#include "polymake/polytope/to_interface.h"

namespace polymake { namespace polytope {

template<typename Scalar, typename VectorType, typename MatrixType>
Vector<Scalar> separating_hyperplane(const GenericVector<VectorType, Scalar>& q, 
                                     const GenericMatrix<MatrixType, Scalar>& points)
{
   /*
     construction of LP according to cdd redundancy check for points, see
     http://www.ifor.math.ethz.ch/~fukuda/polyfaq/node22.html#polytope:Vredundancy
    */
   const Matrix<Scalar> 
      extension(zero_vector<Scalar>(points.rows()) / ones_vector<Scalar>(points.rows())),
      ineqs(  (T(extension)|-points.minor(All,range(1,points.cols()-1))) 
              // z^t p_i - z_0 <= 0; CAUTION: p_i is affine part of i-th point! 
            / (ones_vector<Scalar>(2)|-q.slice(1)) ), 
              // z^t q - z_0 <= 1, prevents unboundedness
      affine_hull(null_space(points/q)),
      extension2(affine_hull.rows(), 2);
   Matrix<Scalar>
      affine_hull_minor(affine_hull.rows(), affine_hull.cols()-1);
   if (affine_hull.cols() > 1) {
      affine_hull_minor = affine_hull.minor(All, range(1, affine_hull.cols()-1));
   }
   const Matrix<Scalar> eqs(extension2 | -affine_hull_minor);
   const Vector<Scalar> obj(zero_vector<Scalar>(1) | -ones_vector<Scalar>(1) | q.slice(1)); // z^t q - z_0

   to_interface::solver<Scalar> S;
   /// @retval first: objective value, second: solution
   typedef std::pair<Scalar, Vector<Scalar> > lp_solution;

   lp_solution sol=S.solve_lp(ineqs, eqs, obj, true);
   if (sol.first <= 0) //q non-red. <=> obj_val > 0
      throw infeasible();

   // H: z^t x = z_0, i.e., z_0 - z^t x = 0
   Vector<Scalar> sep_hyp = -sol.second.slice(1); 
   sep_hyp[0] = sol.second[1]; 
   return sep_hyp;
}

}}

#endif

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: