This file is indexed.

/usr/include/polymake/polytope/is_regular.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/* Copyright (c) 1997-2018
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#ifndef POLYMAKE_POLYTOPE_IS_REGULAR_H
#define POLYMAKE_POLYTOPE_IS_REGULAR_H

#include "polymake/PowerSet.h"
#include "polymake/Matrix.h"
#include "polymake/ListMatrix.h"
#include "polymake/Rational.h"
#include "polymake/Array.h"
#include "polymake/linalg.h"
#include <fstream>

namespace polymake { namespace polytope {

namespace {    

template<typename Scalar, typename SetInt>
Vector<Scalar>
new_row(int i,
        const Matrix<Scalar>& vertices,
        const SetInt& basis,
        int basis_sign,
        Scalar basis_det)
{
   Vector<Scalar> new_row(vertices.rows());
   int s = basis_sign;
   new_row[i] = s * basis_det;
   for (const auto& k: basis) {
      s=-s;
      new_row[k] = s * det(vertices[i] / vertices.minor(basis-scalar2set(k), All));
   }
   return new_row;
}	
  
} // end anonymous namespace
  
template<typename Scalar, typename SetInt>
std::pair<const Matrix<Scalar>, const Matrix<Scalar>>
secondary_cone_ineq(const Matrix<Scalar> &verts, const Array<SetInt>& subdiv, perl::OptionSet options)
{
   const int n_vertices  = verts.rows();
   const int ambient_dim = verts.cols()-1;
   const int n_facets    = subdiv.size();

   //compute the set of all points that is not used in any face
   SetInt not_used(sequence(0,n_vertices));
   for (const auto& sd: subdiv)
      not_used -= sd;

   //compute a full-dimensional orthogonal projection if verts is not full_dimensional
   const Matrix<Scalar> affine_hull = null_space(verts);
   const int codim = affine_hull.rows();
   SetInt coords;
   for (auto i=entire(all_subsets_of_k(sequence(0,ambient_dim),codim)); !i.at_end(); ++i) {
     if (!is_zero(det(affine_hull.minor(All, *i)))) {
       coords = *i;
       break;
     }
   }
   const Matrix<Scalar> vertices = verts.minor(All,~coords);  
   const int dim = vertices.cols()-1;

   // the equations and inequalities for the possible weight vectors
   // (without right hand side which will be 0)
   ListMatrix<Vector<Scalar>> equats(0,n_vertices);
   ListMatrix<Vector<Scalar>> inequs(0,n_vertices);

   Matrix<Scalar> eqs;
   if (options["equations"] >> eqs)
      equats /= eqs;

   Set<int> tozero = options["lift_to_zero"];
   int face;
   if (!equats.rows() && tozero.empty() && options["lift_face_to_zero"]>>face)
      tozero += subdiv[face];

   for (const auto& j: tozero)
      equats /= unit_vector<Scalar>(n_vertices,j);


   // generate the equation and inequalities
   for (int i=0; i<n_facets; ++i) {
      const SetInt b(basis_rows(vertices.minor(subdiv[i],All)));

      // we have to map the numbers the right way:
      SetInt basis;
      int k = 0;
      auto l = entire(subdiv[i]);
      for(auto j=entire(b); !j.at_end(); ++j, ++k, ++l) {
         while(k<*j) {
            ++k;
            ++l;
         }
         basis.push_back(*l);
      }
      const Scalar basis_det  = det(vertices.minor(basis,All));
      const int    basis_sign = basis_det>0 ? 1 : -1;
      const SetInt non_basis  = subdiv[i]-basis;

      // for each maximal face F, all points have to be lifted to the same facet
      for (const auto& j: non_basis)
         equats /= new_row(j, vertices, basis, basis_sign, basis_det);

      // for all adjacent maximal faces, all vertices not contained in F have to be lifted
      // in the same direction
      for (int l=i+1; l<n_facets; ++l)
         if (rank(vertices.minor(subdiv[i]*subdiv[l],All)) == dim)
            inequs /= new_row(*((subdiv[l]-subdiv[i]).begin()), vertices, basis, basis_sign, basis_det);

      // additional equations for the non-used points
      for (const auto& l: not_used)
         inequs /= new_row(l, vertices, basis, basis_sign, basis_det);

   }
   return std::pair<const Matrix<Scalar>,const Matrix<Scalar>>(inequs, equats);
}

} }

#endif // POLYMAKE_POLYTOPE_IS_REGULAR_H

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: