/usr/include/polymake/polytope/cocircuit_equations.h is in libpolymake-dev-common 3.2r2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | /* Copyright (c) 1997-2018
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#include "polymake/Rational.h"
#include "polymake/SparseVector.h"
#include "polymake/SparseMatrix.h"
#include "polymake/ListMatrix.h"
#include "polymake/IncidenceMatrix.h"
#include "polymake/linalg.h"
#include "polymake/hash_map"
#include "polymake/common/lattice_tools.h"
#include "polymake/group/representations.h"
#include "polymake/group/isotypic_components.h"
#include "polymake/group/action.h"
#include <iostream>
#include <fstream>
#include <vector>
namespace polymake { namespace polytope {
namespace {
template<typename SparseSetType>
using IndexOfType = hash_map<SparseSetType, int>;
/*
We make cocircuit equations available as two data types:
hash_map<SetType, int> and SparseVector<int>.
Since the SparseVector<int> needs the additional data structure
index_of that maps (facet) sets to indices, we abstract the data
type to a class that we specialize as needed.
*/
// The generic instance is for CocircuitEquationType = hash_map<SetType, int>
template<typename CocircuitEquationType, typename SetType>
class CocircuitEquation {
CocircuitEquationType cce;
public:
CocircuitEquation() {}
inline
void set (const SetType& facet, int sigma) {
cce[facet] = sigma;
}
CocircuitEquationType equation() const {
return cce;
}
};
// The specialized one is for SparseVector<int>
template<typename SetType>
class CocircuitEquation<SparseVector<int>, SetType> {
SparseVector<int> cce;
const IndexOfType<SetType>& index_of;
public:
CocircuitEquation(const IndexOfType<SetType>& index_of)
: cce(index_of.size())
, index_of(index_of)
{}
inline
void set (const SetType& facet, int sigma) {
cce[index_of.at(facet)] = sigma;
}
SparseVector<int> equation() const {
return cce;
}
};
// the following function implements the calculation of the cocircuit
// equation corresponding to a given ridge. It is templated on the
// desired data type.
template<typename Scalar, typename SetType, typename CocircuitEquationType>
void
cocircuit_equation_of_ridge_impl_impl(const Matrix<Scalar>& points,
const SetType& ridge,
CocircuitEquationType& eq) {
const SparseVector<Scalar> nv = null_space(points.minor(ridge, All)).row(0);
int row_index(0);
for (typename Entire<Rows<Matrix<Scalar> > >::const_iterator vit = entire(rows(points)); !vit.at_end(); ++vit, ++row_index) {
const int sigma = sign(nv * (*vit));
if (sigma != 0) {
SetType facet(ridge);
facet += row_index;
eq.set(facet, sigma);
}
}
}
// next, the two variants that are supposed to be called from other functions.
template<typename Scalar, typename SetType>
auto
cocircuit_equation_of_ridge_impl(const Matrix<Scalar>& points,
const SetType& ridge,
const IndexOfType<SetType>& index_of)
{
CocircuitEquation<SparseVector<int>, SetType> eq(index_of);
cocircuit_equation_of_ridge_impl_impl(points, ridge, eq);
return eq.equation();
}
template<typename Scalar, typename SetType>
auto
cocircuit_equation_of_ridge_impl(const Matrix<Scalar>& points,
const SetType& ridge)
{
CocircuitEquation<group::SparseSimplexVector<SetType>, SetType> eq;
cocircuit_equation_of_ridge_impl_impl(points, ridge, eq);
return eq.equation();
}
} // end anonymous namespace
template<typename Scalar, typename SetType>
ListMatrix<SparseVector<int>>
cocircuit_equations_impl(int d,
const Matrix<Scalar>& points,
const IncidenceMatrix<>& VIF,
const Array<SetType>& interior_ridge_simplices,
const Array<SetType>& interior_simplices,
perl::OptionSet options)
{
const bool reduce_rows = options["reduce_rows"];
const int log_frequency = options["log_frequency"];
const std::string filename = options["filename"];
std::ofstream outfile(filename.c_str(), std::ios_base::trunc);
int n_facets = 0;
IndexOfType<SetType> index_of;
for (const auto& s : interior_simplices)
index_of[s] = n_facets++;
ListMatrix<SparseVector<int>> cocircuit_eqs(0, n_facets);
int ct(0);
time_t start_time, current_time;
time(&start_time);
for (const auto& ir : interior_ridge_simplices) {
if (log_frequency && (++ct % log_frequency == 0)) {
time(¤t_time);
cerr << ct << " " << difftime(current_time, start_time) << endl;
}
SparseVector<int> eq(cocircuit_equation_of_ridge_impl(points, ir, index_of));
if (eq.size()) {
if (reduce_rows) eq = common::divide_by_gcd(eq);
cocircuit_eqs /= eq;
if (filename.size()) wrap(outfile) << eq << endl;
}
}
return cocircuit_eqs;
}
template<typename Scalar, typename SetType>
ListMatrix<SparseVector<int> >
foldable_cocircuit_equations_impl(int d,
const Matrix<Scalar>& points,
const IncidenceMatrix<>& VIF,
const Array<SetType>& interior_ridge_simplices, // FIXME: Map
const Array<SetType>& max_interior_simplices,
perl::OptionSet options,
bool partial_equations)
{
const bool reduce_rows = options["reduce_rows"];
const int log_frequency = options["log_frequency"];
const std::string filename = options["filename"];
std::ofstream outfile(filename.c_str(), std::ios_base::trunc);
IndexOfType<SetType> index_of;
int n_facets = 0; // number of full-dimensional simplices
for (const auto& s: max_interior_simplices)
index_of[s] = n_facets++;
ListMatrix<SparseVector<int>> cocircuit_eqs(0, 2*n_facets);
// use int instead of Rational to save time;
SparseVector<int> eq_0_first, eq_1_first;
int ct(0);
time_t start_time, current_time;
time(&start_time);
// for each interior ridge rho and c in {0,1}:
// sum_{sigma > rho, orientation=+} x_{c,sigma} = sum_{sigma > rho, orientation=-} x_{1-c,sigma}
for (const auto& ir: interior_ridge_simplices) {
if (log_frequency && (++ct % log_frequency == 0)) {
time(¤t_time);
cerr << ct << " " << difftime(current_time, start_time) << endl;
}
eq_0_first = SparseVector<int>(2*n_facets);
eq_1_first = SparseVector<int>(2*n_facets);
const SparseVector<Scalar> nv = null_space(points.minor(ir, All)).row(0);
int row_index(0);
for (typename Entire<Rows<Matrix<Scalar> > >::const_iterator vit = entire(rows(points)); !vit.at_end(); ++vit, ++row_index) {
const int orientation = sign(nv * (*vit));
if (orientation != 0) {
const SetType this_facet(ir + scalar2set(row_index));
if (partial_equations && !index_of.exists(this_facet)) continue;
const int iof(index_of.at(this_facet));
if (orientation>0) {
eq_0_first[2*iof] = 1;
eq_1_first[2*iof+1] = -1;
} else {
eq_0_first[2*iof+1] = -1;
eq_1_first[2*iof] = 1;
}
}
}
if (!eq_0_first.size()) continue;
if (reduce_rows) {
eq_0_first = common::divide_by_gcd(eq_0_first);
eq_1_first = common::divide_by_gcd(eq_1_first);
}
cocircuit_eqs /= eq_0_first;
cocircuit_eqs /= eq_1_first;
if (filename.size())
wrap(outfile) << eq_0_first << "\n" << eq_1_first << endl;
}
return cocircuit_eqs;
}
} }
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|