This file is indexed.

/usr/include/polymake/polytope/beneath_beyond.tcc is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
/* Copyright (c) 1997-2018
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

namespace polymake { namespace polytope {

template <typename E> template <typename Iterator>
void beneath_beyond_algo<E>::compute(Iterator perm)
{
   if (perm.at_end()) return;

   // the first point
   int d2=points.cols()-2, p1=*perm;  ++perm;
   null_space(entire(item2container(points[p1])), black_hole<int>(), black_hole<int>(), AH);

   // look for the second point different from the first one
   while (true) {
      if (perm.at_end()) {
         // the special case: a single point
         triang_size=1;
         triangulation.push_back(scalar2set(p1));
         // There is one empty facet in this case and the point is also a facet normal
         int f0=dual_graph.add_node();
         facets[f0].vertices = Set<int>();
         facets[f0].normal = points[p1];
         return;
      }
      int p2=*perm;  ++perm;
      null_space(entire(item2container(points[p2])), black_hole<int>(), black_hole<int>(), AH);
      if (AH.rows()==d2) {
         // two different points found: initialize the polytope
         start_with_points(p1,p2);
         break;
      }
      if (!already_VERTICES) interior_points += p2;
   }

   // as long as the affine hull is not empty...
   while (AH.rows() && !perm.at_end()) {
      add_point_low_dim(*perm);
#if POLYMAKE_DEBUG
      if (debug==do_check) {
         check_p(*perm);
         if (!std::is_same<Iterator, sequence::iterator>::value) points_so_far+=*perm;
      }
#endif
      ++perm;
   }

   // then take the shortcut
   while (!perm.at_end()) {
      add_point_full_dim(*perm);
#if POLYMAKE_DEBUG
      if (debug==do_check) {
         check_p(*perm);
         if (!std::is_same<Iterator, sequence::iterator>::value) points_so_far+=*perm;
      }
#endif
      ++perm;
   }

   if (!facet_normals_valid) {
      facet_normals_low_dim();
      facet_normals_valid=true;
   }

   // sweep out the unneeded facets from the recycling list
   dual_graph.squeeze();
#if POLYMAKE_DEBUG
   if (debug >= do_dump) {
      cout << "final ";
      dump();
   }
#endif
}

template <typename E>
void beneath_beyond_algo<E>::start_with_points(int p1, int p2)
{
   int f0=dual_graph.add_node();
   facets[f0].vertices=scalar2set(p1);
   int f1=dual_graph.add_node();
   facets[f1].vertices=scalar2set(p2);
   dual_graph.edge(f0,f1);
   vertices_so_far=scalar2set(p1)+scalar2set(p2);
   triangulation.push_back(vertices_so_far);
   triang_size=1;
   facets[f0].simplices.push_back(incident_simplex(triangulation.front(),p2));
   facets[f1].simplices.push_back(incident_simplex(triangulation.front(),p1));
   valid_facet=0;
#if POLYMAKE_DEBUG
   if (debug >= do_dump)
      cout << "starting points: " << p1 << ' ' << p2 << "\nAH:\n" << AH << endl;
#endif
   if ((facet_normals_valid=!AH.rows())) {      // dimension==1, will need the facet normals immediately
      facets[f0].coord_full_dim(*this);
      facets[f1].coord_full_dim(*this);
   }
}

/** @param p the new point
    @param f the facet index to start from
    @retval index of the violated/incident facet or -1 if nothing found
*/
template <typename E>
int beneath_beyond_algo<E>::descend_to_violated_facet(int f, int p)
{

   visited_facets+=f;
   E fxp= facets[f].normal * points[p];
   if ((facets[f].orientation=sign(fxp))<=0) return f;

   // starting facet stays valid in this step: let's look for another one violated by p.
   // The search is performed in the dual graph, following the steepest descend of the
   // (square of the) distance between p and the facets

   if (!already_VERTICES) vertices_this_step += facets[f].vertices;
   fxp=fxp*fxp/facets[f].sqr_normal;    // square of the distance from p to the facet

   int nextf;
   do {
#if POLYMAKE_DEBUG
      if (debug >= do_full_dump)
         cout << " *" << f << '(' << fxp << ')';
#endif
      nextf=-1;
      for (Entire<Graph<>::adjacent_node_list>::iterator neighbor=entire(dual_graph.adjacent_nodes(f)); !neighbor.at_end(); ++neighbor) {
         const int f2=*neighbor;
         if (visited_facets.contains(f2)) continue;

         visited_facets+=f2;
         E f2xp= facets[f2].normal * points[p];
         if ((facets[f2].orientation=sign(f2xp))<=0) return f2;

         if (!already_VERTICES) vertices_this_step += facets[f2].vertices;
         f2xp=f2xp*f2xp/facets[f2].sqr_normal;
#if POLYMAKE_DEBUG
         if (debug >= do_full_dump)
            cout << ' ' << f2 << '(' << f2xp << ')';
#endif
         if (f2xp<=fxp) {
            nextf=f2;
            fxp=f2xp;
         }
      }
   } while ((f=nextf)>=0);

   return f;    // -1 : local minimum of sqr(distance) reached
}

template <typename Set> static inline
int first_or_none(const Set& set)
{
   typename Entire<Set>::const_iterator s=entire(set);
   return s.at_end() ? -1 : *s;
}

template <typename E>
void beneath_beyond_algo<E>::add_point_full_dim(int p)
{
#if POLYMAKE_DEBUG
   if (debug >= do_dump)
      cout << "point " << p << "=[ " << points[p] << " ] : valid facets";
#endif
   // reset the working variables
   visited_facets.clear();
   if (!already_VERTICES) vertices_this_step.clear();

   // first try the facet added last in the previous step
   int try_facet=valid_facet;
   do {
      if ((try_facet=descend_to_violated_facet(try_facet,p))>=0) {
         update_facets(try_facet,p);
         return;
      }
      for (Entire< Nodes< Graph<> > >::iterator f=entire(nodes(dual_graph)); !f.at_end(); ++f)
         if (!visited_facets.contains(f.index())) {
            try_facet=f.index(); break;
         }
   } while (try_facet>=0);

   // no violated facet found: p must be a redundant point

   if (!already_VERTICES) {
      interior_points += p;
#if POLYMAKE_DEBUG
      if (debug >= do_dump)
         cout << "\ninterior points: " << interior_points
              << "\n=======================================" << endl;
#endif
   }
}

template <typename E>
void beneath_beyond_algo<E>::facet_normals_low_dim()
{
   // facets must be orthogonal to the affine hull
   const int d=points.cols();
   facet_nullspace=unit_matrix<E>(d);
   SparseMatrix<E> AHaff=AH;
   // make all hyperplanes going thru the origin, but leave the far hyperplane untouched
   for (typename Entire< Rows< SparseMatrix<E> > >::iterator r=entire(rows(AHaff));  !r.at_end();  ++r)
      if (*r != unit_vector<E>(d,0))
         r->erase(0);
   null_space(entire(rows(AHaff)), black_hole<int>(), black_hole<int>(), facet_nullspace);

   for (typename Entire<facets_t>::iterator f=entire(facets);  !f.at_end();  ++f) {
      f->coord_low_dim(*this);
#if POLYMAKE_DEBUG
      if (debug >= do_dump) cout << f.index() << ": =[" << f->normal << " ]\n";
#endif
   }
}

template <typename E>
void beneath_beyond_algo<E>::add_point_low_dim(int p)
{
   // update the affine hull
   int codim=AH.rows();
   null_space(entire(item2container(points[p])), black_hole<int>(), black_hole<int>(), AH);

   if (AH.rows()<codim) {
      // point set dimension increased
      if (facet_nullspace.rows()) {
         generic_position=false;        // the base facet is more than a simplex
         facet_nullspace.clear();
      }

      // build a pyramid with the former polytope as a base and the point as an apex
      int nf_index=dual_graph.add_node();
      facet_info& nf=facets[nf_index];
      nf.vertices=vertices_so_far;
      vertices_so_far+=p;

      // triangulation simplices are 'pyramidized' too
      for (typename Entire<Triangulation>::iterator simplex=entire(triangulation); !simplex.at_end(); ++simplex) {
         *simplex += p;
         nf.simplices.push_back(incident_simplex(*simplex,p));
      }

      for (Entire<ridges_t>::iterator r=entire(ridges); !r.at_end(); ++r)
         *r += p;
      facet_normals_valid=!AH.rows();
      for (Entire< Nodes< Graph<> > >::iterator f=entire(nodes(dual_graph));  !f.at_end();  ++f) {
         // for all facets, except the new one
         if (f.index() != nf_index) {
            ridges(f.index(),nf_index)=facets[*f].vertices;
            facets[*f].vertices+=p;
         }
         if (facet_normals_valid)
            // the polytope became full-dimensional: will need the facet coordinates the whole rest of the time
            facets[*f].coord_full_dim(*this);
      }
#if POLYMAKE_DEBUG
      if (debug >= do_dump) cout << "point " << p << ": dim increased\nAH:\n" << AH << endl;
#endif
   } else {
      // point set dimension not increased
      if (!facet_normals_valid) {
         // the polytope was a simplex, the facet coordinates are still not computed;
         // now we need them for the visibility region search.
         facet_normals_low_dim();
         facet_normals_valid=true;
      }
      add_point_full_dim(p);
   }
}

template <typename E> inline
void beneath_beyond_algo<E>::update_facets(int f, int p)
{
#if POLYMAKE_DEBUG
   if (debug >= do_dump) cout << "\nupdating:";
#endif
   // queue for BFS
   std::list<int> Q;
   Q.push_back(f);
   if (!already_VERTICES) interior_points_this_step.clear();
   std::list<int> incident_facets;
   if (facets[f].orientation==0) {
      facets[f].vertices += p;
      generic_position=false;
      incident_facets.push_back(f);
   }

   /* BFS in the visible hemisphere.
      We visit all facets violated by or incident with p.
      Incident facets are important since they can contain redundant points not discovered before this iteration.
   */
   while (!Q.empty()) {
      f=Q.front(); Q.pop_front();
      int f_orientation=facets[f].orientation;
      // remember the position where the new simplices will end
      typename Triangulation::iterator new_simplex_end=triangulation.begin();

      if (f_orientation<0) {
         // the facet is violated
#if POLYMAKE_DEBUG
         if (debug >= do_dump) cout << " -" << f;
#endif
         if (!already_VERTICES) interior_points_this_step += facets[f].vertices;

         // build new triangulation simplices using the triangulation of the facet
         for (typename Entire<typename facet_info::simplex_list>::iterator is=entire(facets[f].simplices);
              !is.at_end(); ++is) {
            triangulation.push_front(*is->simplex);
            ++triang_size;
            // just take the existing simplex and replace the vertex behind the facet by the new point
            (triangulation.front() -= is->opposite_vertex) += p;
         }
#if POLYMAKE_DEBUG
      } else {
         if (debug >= do_dump) cout << " " << f;
#endif
      }

      // check the neighbor facets
      for (Entire<Graph<>::out_edge_list>::iterator e=entire(dual_graph.out_edges(f)); !e.at_end(); ++e) {
         const int f2=e.to_node();
         facet_info& nbf=facets[f2];
         if (!visited_facets.contains(f2)) {
            visited_facets+=f2;
            nbf.orientation=sign(nbf.normal * points[p]);
            if (nbf.orientation==0) {
               // incident facet
               nbf.vertices += p;
               generic_position=false;
               incident_facets.push_back(f2);
            }
            if (nbf.orientation<=0)
               Q.push_back(f2);
            else if (!already_VERTICES)
               vertices_this_step += nbf.vertices;
         }

         if (f_orientation<0) {
            if (nbf.orientation>0) {
               // found a ridge on the visibility border: create a new facet
               int nf_index=dual_graph.add_node();
               facet_info& nf=facets[nf_index];
               nf.vertices=ridges[*e] + p;
               if (AH.rows())
                  nf.coord_low_dim(*this);
               else
                  nf.coord_full_dim(*this);
#if POLYMAKE_DEBUG
               if (debug==do_check) check_f(nf_index, p);
#endif
               ridges(nf_index,f2)=ridges[*e];
               incident_facets.push_back(nf_index);
               nf.add_incident_simplices(triangulation.begin(), new_simplex_end);
            } else if (nbf.orientation==0) {
               nbf.add_incident_simplices(triangulation.begin(), new_simplex_end);
            }
         } else if (nbf.orientation==0) {
            ridges[*e] += p;    // include the point into the edge, since it's incident to both facets
         }
      }

      if (f_orientation<0) dual_graph.delete_node(f);
   }

   if (!already_VERTICES) {
      if (interior_points_this_step.empty()) { // = no violated facets visited
         interior_points += p;
#if POLYMAKE_DEBUG
         if (debug >= do_full_dump)
            cout << "\ninterior points: " << interior_points
                 << "\n=======================================" << endl;
#endif
         return;
      } else {
         interior_points_this_step -= vertices_this_step;
         interior_points += interior_points_this_step;
      }
   }

   /// The final phase of the step: create new edges in the dual graph
   int min_ridge=points.cols()-AH.rows()-2;

   for (typename Entire< std::list<int> >::iterator f_it=entire(incident_facets); !f_it.at_end(); ++f_it) {
      f=*f_it;
      const bool vis=visited_facets.contains(f);

      typename Entire< std::list<int> >::iterator f2_it=f_it;
      for (++f2_it; !f2_it.at_end(); ++f2_it) {
         const int f2=*f2_it;
         // if both facets are incident to p, they could already have a connecting edge
         if (vis && visited_facets.contains(f2) && dual_graph.edge_exists(f,f2)) continue;

         const Set<int> ridge= facets[f].vertices * facets[f2].vertices;
         if (ridge.size()>=min_ridge) {
            bool add=true;
            Entire<Graph<>::out_edge_list>::iterator e=entire(dual_graph.out_edges(f));
            while (!e.at_end()) {
               int inc=incl(ridges[*e],ridge);
               if (inc==2) {
                  ++e;
               } else {
                  if (inc<=0) dual_graph.out_edges(f).erase(e++);
                  if (inc>=0) { add=false; break; }
               }
            }
            if (add) ridges(f,f2)=ridge;
         }
      }
   }

   if (AH.rows()) vertices_so_far+=p;
#if POLYMAKE_DEBUG
   if (debug>=do_dump) {
      dump();
      cout << "\ninterior points: " << interior_points
           << "\n=======================================" << endl;
   }
#endif
   valid_facet=f;
}

template <typename E> inline
void beneath_beyond_algo<E>::facet_info::coord_full_dim (const beneath_beyond_algo<E>& A)
{
   normal=rows(null_space(A.points.minor(vertices,All))).front();
   if (normal * A.points[(A.vertices_so_far - vertices).front()] < 0) normal.negate();
   sqr_normal=sqr(normal);
}

template <typename E>
void beneath_beyond_algo<E>::facet_info::coord_low_dim (const beneath_beyond_algo<E>& A)
{
   ListMatrix< SparseVector<E> > Fn=A.facet_nullspace;
   null_space(entire(rows(A.points.minor(vertices,All))), black_hole<int>(), black_hole<int>(), Fn);
   normal=rows(Fn).front();
   if (normal * A.points[(A.vertices_so_far - vertices).front()] < 0) normal.negate();
   sqr_normal=sqr(normal);
}

template <typename Top> inline
int single_or_nothing(const GenericSet<Top,int>& s)
{
   int x=-1;
   typename Entire<Top>::const_iterator e=entire(s.top());
   if (!e.at_end()) {
      x=*e; ++e;
      if (!e.at_end()) x=-1;
   }
   return x;
}

template <typename E> template <typename Iterator> inline
void beneath_beyond_algo<E>::facet_info::add_incident_simplices(Iterator s, Iterator s_end)
{
   for (; s != s_end; ++s) {
      int opv=single_or_nothing(*s-vertices);
      if (opv>=0) simplices.push_back(incident_simplex(*s,opv));
   }
}

#if POLYMAKE_DEBUG
template <typename E>
void beneath_beyond_algo<E>::dump() const
{
   cout << "dual_graph:\n";
   const bool show_normals= debug==do_full_dump && (!AH.rows() || facet_nullspace.rows());
   for (Entire< Nodes< Graph<> > >::const_iterator f=entire(nodes(dual_graph)); !f.at_end(); ++f) {
      cout << f.index() << ": " << facets[*f].vertices;
      if (show_normals) cout << "=[ " << facets[*f].normal << " ]";
      if (debug==do_full_dump) {
         for (Entire< Graph<>::out_edge_list >::const_iterator e=entire(f.out_edges()); !e.at_end(); ++e)
            cout << " (" << e.to_node() << ' ' << ridges[*e] << ')';
         cout << " <<";
         for (typename Entire<typename facet_info::simplex_list>::const_iterator s=entire(facets[*f].simplices); !s.at_end(); ++s)
         cout << ' ' << *s->simplex << '-' << s->opposite_vertex;
         cout << " >>" << endl;
      } else {
         cout << ' ' << f.adjacent_nodes() << endl;
      }
   }
}

template <typename E> inline
void beneath_beyond_algo<E>::check_fp(int f_index, const facet_info& f, int p, std::ostringstream& errors) const
{
   const E prod= points[p] * f.normal;
   if (f.vertices.contains(p)) {
      if (prod!=0)
         wrap(errors) << "facet(" << f_index << ") * incident vertex(" << p << ")=" << prod << endl;
   } else {
      if (prod<=0)
         wrap(errors) << "facet(" << f_index << ") * non-incident vertex(" << p << ")=" << prod << endl;
   }
}

// various consistency checks
template <typename E>
void beneath_beyond_algo<E>::check_p(int p) const
{
   if (!AH.rows() || facet_nullspace.rows()) {
      std::ostringstream errors;

      for (Entire< Nodes< Graph<> > >::const_iterator f=entire(nodes(dual_graph)); !f.at_end(); ++f)
         check_fp(f.index(), facets[*f], p, errors);

      if (!errors.str().empty())
         throw std::runtime_error("beneath_beyond_algo - consistency checks failed:\n" + errors.str());
   }
}

template <typename E>
void beneath_beyond_algo<E>::check_f(int f, int last_p) const
{
   std::ostringstream errors;
   const facet_info& fi=facets[f];

   if (points_so_far.empty()) {
      for (typename Entire<sequence>::const_iterator p=entire(range(0,last_p)); !p.at_end(); ++p)
         check_fp(f, fi, *p, errors);
   } else {
      for (typename Entire<Bitset>::const_iterator p=entire(points_so_far); !p.at_end(); ++p)
         check_fp(f, fi, *p, errors);
   }

   if (!errors.str().empty())
      throw std::runtime_error("beneath_beyond_algo - consistency checks failed:\n" + errors.str());
}

template <typename E>
void beneath_beyond_algo<E>::dump_p(int p) const
{
   if (!AH.rows() || facet_nullspace.rows()) {
      for (Entire< Nodes< Graph<> > >::const_iterator f=entire(nodes(dual_graph)); !f.at_end(); ++f)
         if (f.degree()) {
            E prod= points[p] * facets[*f].normal;
            cout << "facet(" << f.index() << "): prod=" << prod << ", sqr_dist=" << double(prod*prod/facets[*f].sqr_normal) << '\n';
         }
   }
}
#endif // POLYMAKE_DEBUG

} }

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: