This file is indexed.

/usr/include/polymake/next/linalg.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
/* Copyright (c) 1997-2018
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#ifndef POLYMAKE_LINALG_H
#define POLYMAKE_LINALG_H

#include "polymake/Matrix.h"
#include "polymake/SparseMatrix.h"
#include "polymake/SparseVector.h"
#include "polymake/ListMatrix.h"
#include "polymake/Set.h"
#include "polymake/Rational.h"  // need this for algebraic_traits of int and Integer

#include "polymake/internal/linalg_exceptions.h"
#include "polymake/internal/dense_linalg.h"
#include "polymake/internal/sparse_linalg.h"

namespace pm { namespace operations {

template <typename OpRef,
          typename Discr=typename object_traits<typename deref<OpRef>::type>::generic_tag>
class normalize_impl;

template <typename OpRef>
class normalize_impl<OpRef, is_vector>
   : public div_impl<OpRef, typename deref<OpRef>::type::element_type, cons<is_vector, is_scalar> > {
public:
   typedef OpRef argument_type;
   typedef typename deref<OpRef>::type::element_type scalar_type;
   typedef div_impl<OpRef, scalar_type, cons<is_vector, is_scalar> > _super;

   typename _super::result_type operator() (typename function_argument<OpRef>::const_type v) const
   {
      const scalar_type norm=sqrt(sqr(v));
      return _super::operator()(v, is_zero(norm) ? one_value<scalar_type>() : norm);
   }

   void assign(typename lvalue_arg<OpRef>::type v) const
   {
      const scalar_type norm=sqrt(sqr(v));
      if (!is_zero(norm))
         v /= norm;
   }
};

template <typename OpRef>
class normalize_vectors : public normalize_impl<OpRef> {};

template <typename OpRef,
          typename Discr=typename object_traits<typename deref<OpRef>::type>::generic_tag>
class dehomogenize_impl;

template <typename OpRef,
          typename Discr=typename object_traits<typename deref<OpRef>::type>::generic_tag>
class dehomogenize_trop_impl;

template <typename OpRef>
class dehomogenize_impl<OpRef, is_vector> {
protected:
   typedef IndexedSlice<typename attrib<OpRef>::plus_const_ref, sequence> slice;
   typedef typename container_traits<OpRef>::const_reference element_ref;
   static const bool is_sparse=check_container_ref_feature<OpRef, sparse>::value;
   typedef LazyVector2<slice, constant_value_container<element_ref>, polymake::operations::div>
      lazy_vector;
public:
   typedef OpRef argument_type;
   typedef ContainerUnion< cons<slice, lazy_vector> > result_type;
protected:
   static
   result_type impl(typename function_argument<OpRef>::const_type v, std::false_type)
   {
      typename container_traits<OpRef>::const_reference first=v.front();
      if (is_zero(first) || is_one(first)) return v.slice(1);
      return lazy_vector(v.slice(1), first);
   }
   static
   result_type impl(typename function_argument<OpRef>::const_type v, std::true_type)
   {
      typename container_traits<OpRef>::const_iterator first=v.begin();
      if (first.at_end() || first.index() || is_one(*first)) return v.slice(1);
      return lazy_vector(v.slice(1), *first);
   }
public:
   result_type operator() (typename function_argument<OpRef>::const_type v) const
   {
      return impl(v, bool_constant<is_sparse>());
   }
};

template <typename OpRef>
class dehomogenize_trop_impl<OpRef, is_vector> {
protected:
   typedef IndexedSlice<typename attrib<OpRef>::plus_const_ref, sequence> slice;
   typedef typename container_traits<OpRef>::const_reference element_ref;
   static const bool is_sparse=check_container_ref_feature<OpRef, sparse>::value;
   typedef LazyVector2<slice, typename std::conditional<is_sparse, SameElementVector<element_ref>, constant_value_container<element_ref> >::type, polymake::operations::sub>
      lazy_vector;
public:
   typedef OpRef argument_type;
   typedef ContainerUnion< cons<slice, lazy_vector> > result_type;
protected:
   static
   result_type impl(typename function_argument<OpRef>::const_type v, std::false_type)
   {
      typename container_traits<OpRef>::const_reference first=v.front();
      if (is_zero(first)) return v.slice(1);
      return lazy_vector(v.slice(1), first);
   }
   static
   result_type impl(typename function_argument<OpRef>::const_type v, std::true_type)
   {
      typename container_traits<OpRef>::const_iterator first=v.begin();
      if (first.at_end() || first.index()) return v.slice(1);
      return lazy_vector(v.slice(1), SameElementVector<element_ref>(*first,v.dim()-1));
   }
public:
   result_type operator() (typename function_argument<OpRef>::const_type v) const
   {
      return impl(v, bool_constant<is_sparse>());
   }
};

template <typename OpRef>
class dehomogenize_vectors : public dehomogenize_impl<OpRef> {};

template <typename OpRef>
class dehomogenize_trop_vectors : public dehomogenize_trop_impl<OpRef> {};

template <typename OpRef>
struct get_numerator {
   typedef OpRef argument_type;
   typedef decltype(numerator(std::declval<std::add_const_t<std::remove_reference_t<OpRef>>>())) result_type;

   result_type operator() (typename function_argument<OpRef>::const_type x) const
   {
      return numerator(x);
   }
};

template <typename OpRef>
struct get_denominator {
   typedef OpRef argument_type;
   typedef decltype(denominator(std::declval<std::add_const_t<std::remove_reference_t<OpRef>>>())) result_type;

   result_type operator() (typename function_argument<OpRef>::const_type x) const
   {
      return denominator(x);
   }
};

} } // end namespace pm::operations

namespace polymake { namespace operations {
   typedef BuildUnary<pm::operations::normalize_vectors> normalize_vectors;
   typedef BuildUnary<pm::operations::dehomogenize_vectors> dehomogenize_vectors;
   typedef BuildUnary<pm::operations::dehomogenize_trop_vectors> dehomogenize_trop_vectors;
   typedef BuildUnary<pm::operations::get_numerator> get_numerator;
   typedef BuildUnary<pm::operations::get_denominator> get_denominator;
} }

namespace pm {

/// Divide each vector in a sequence thru its length (L2-norm)
template <typename Iterator> inline
void normalize(Iterator dst)
{
   perform_assign(dst, polymake::operations::normalize_vectors());
}

template <typename Matrix> inline
typename Matrix::persistent_nonsymmetric_type
normalized(const GenericMatrix<Matrix>& m)
{
   return typename Matrix::persistent_type(m.rows(), m.cols(),
                                           entire(attach_operation(rows(m), polymake::operations::normalize_vectors())));
}

/// Compute the average over the rows of a matrix
template <typename Matrix, typename E>
Vector<E> barycenter(const GenericMatrix<Matrix, E>& V)
{
   return average(rows(V));
}

/// Compute the determinant of a matrix using the Gauss elimination method
template <typename TMatrix, typename E> inline
typename std::enable_if<is_field<E>::value, E>::type
det(const GenericMatrix<TMatrix, E>& m)
{
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
      if (m.rows() != m.cols())
         throw std::runtime_error("det - non-square matrix");
   }
   return det(typename TMatrix::persistent_nonsymmetric_type(m));
}

/// Compute the trace of a matrix
template <typename TMatrix, typename E> inline
E trace(const GenericMatrix<TMatrix, E>& m)
{
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
      if (m.rows() != m.cols())
         throw std::runtime_error("trace - non-square matrix");
   }
   E trace(zero_value<E>());
   accumulate_in(entire(m.diagonal()), BuildBinary<operations::add>(), trace);
   return trace;
}


template <typename TMatrix, typename E> inline
typename std::enable_if<!std::is_same<E, typename algebraic_traits<E>::field_type>::value, E>::type
det(const GenericMatrix<TMatrix, E>& m)
{
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
      if (m.rows() != m.cols())
         throw std::runtime_error("det - non-square matrix");
   }
   return convert_to<E>(det(typename GenericMatrix<TMatrix, typename algebraic_traits<E>::field_type>::persistent_nonsymmetric_type(m)));
}

/// Reduce a vector with a given matrix using the Gauss elimination method
template <typename TMatrix, typename TVector, typename E> inline
typename std::enable_if<is_field<E>::value, typename TVector::persistent_type>::type
reduce(const GenericMatrix<TMatrix, E>& A, const GenericVector<TVector, E>& V)
{
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value || !Unwary<TVector>::value) {
      if (V.dim() != A.cols())
         throw std::runtime_error("reduce - dimension mismatch");
   }
   typedef typename std::conditional<TMatrix::is_sparse, SparseVector<E>, Vector<E>>::type vector_type;
   return reduce(typename TMatrix::persistent_nonsymmetric_type(A), vector_type(V));
}

template <typename TMatrix, typename TVector, typename E> inline
typename std::enable_if<!std::is_same<E, typename algebraic_traits<E>::field_type>::value,
                        Vector<typename algebraic_traits<E>::field_type> >::type
reduce(const GenericMatrix<TMatrix, E>& A, const GenericVector<TVector, E>& V)
{
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value || !Unwary<TVector>::value) {
      if (V.dim() != A.cols())
         throw std::runtime_error("reduce - dimension mismatch");
   }
   typedef typename algebraic_traits<E>::field_type Field;
   typedef typename std::conditional<TMatrix::is_sparse, SparseVector<Field>, Vector<Field>>::type vector_type;
   return reduce(typename GenericMatrix<TMatrix, Field>::persistent_nonsymmetric_type(A), vector_type(V));
}

/** Compute the inverse matrix $A^-1$ using the Gauss elimination method.
    @exception degenerate_matrix if det(A)==0
*/
template <typename TMatrix, typename E> inline
typename std::enable_if<is_field<E>::value, typename TMatrix::persistent_nonsymmetric_type>::type
inv(const GenericMatrix<TMatrix, E>& m)
{
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
      if (m.rows() != m.cols())
         throw std::runtime_error("inv - non-square matrix");
   }
   return inv(typename TMatrix::persistent_nonsymmetric_type(m));
}

template <typename TMatrix, typename E> inline
typename std::enable_if<!std::is_same<E, typename algebraic_traits<E>::field_type>::value,
                        typename GenericMatrix<TMatrix, typename algebraic_traits<E>::field_type>::persistent_nonsymmetric_type>::type
inv(const GenericMatrix<TMatrix, E>& m)
{
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
      if (m.rows() != m.cols())
         throw std::runtime_error("inv - non-square matrix");
   }
   return inv(typename GenericMatrix<TMatrix, typename algebraic_traits<E>::field_type>::persistent_nonsymmetric_type(m));
}

/** Solve the linear system A*x==b
    @return xapps/polytope/src/reverse_search_graph.cco
    @exception degenerate_matrix if det(A) == 0
    @exception infeasible if rank(A) != rank(A|b)
*/
template <typename TMatrix, typename TVector, typename E> inline
typename std::enable_if<is_field<E>::value, Vector<E>>::type
lin_solve(const GenericMatrix<TMatrix, E>& A, const GenericVector<TVector, E>& b)
{
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value || !Unwary<TVector>::value) {
      if (b.dim() != A.rows())
         throw std::runtime_error("lin_solve - dimension mismatch");
   }
   return lin_solve(typename TMatrix::persistent_nonsymmetric_type(A), Vector<E>(b));
}

template <typename TMatrix, typename TVector, typename E> inline
typename std::enable_if<!std::is_same<E, typename algebraic_traits<E>::field_type>::value,
                        Vector<typename algebraic_traits<E>::field_type> >::type
lin_solve(const GenericMatrix<TMatrix, E>& A, const GenericVector<TVector, E>& b)
{
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value || !Unwary<TVector>::value) {
      if (b.dim() != A.rows())
         throw std::runtime_error("lin_solve - dimension mismatch");
   }
   typedef typename algebraic_traits<E>::field_type Field;
   return lin_solve(typename GenericMatrix<TMatrix, Field>::persistent_nonsymmetric_type(A), Vector<Field>(b));
}

template <typename TMatrix, typename TVector, typename E> inline
typename std::enable_if<is_field<E>::value, Vector<E>>::type
cramer(const GenericMatrix<TMatrix, E>& A, const GenericVector<TVector, E>& b) {
   const int d=A.rows();
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value || !Unwary<TVector>::value) {
      if (A.cols() != d)
         throw std::runtime_error("cramer - non square matrix");
      if (b.dim() != d)
         throw std::runtime_error("cramer - dimension mismatch");
   }
   const E det_A = det(A);
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
      if (det_A == 0)
         throw std::runtime_error("cramer - matrix singular");
   }
   Vector<E> x(d);
   for (int i=0; i<d; ++i) {
      x[i] = det(A.minor(All,sequence(0,i)) | b | A.minor(All,sequence(i+1,d-i-1))) / det_A;
   }
   return x;
}

/**
   if the row referenced by h is not orthogonal to v, 
   project out *h from all subsequent rows so that they become orthogonal to v
   @param h row iterator over a matrix
   @param v the vector that the rows should become orthogonal to
   @param row_basis_consumer output iterator consuming the indices of basis rows (=vectors)
   @param col_basis_consumer output iterator consuming the indices of basis columns (=coordinates)
   @return true if the matrix has been modified, false otherwise
*/
template<typename AHRowIterator, typename VectorType, typename RowBasisOutputIterator, typename ColBasisOutputIterator>
bool project_rest_along_row (AHRowIterator &h, const VectorType& v, RowBasisOutputIterator row_basis_consumer, ColBasisOutputIterator col_basis_consumer, int i=0)
{ 
   const typename iterator_traits<AHRowIterator>::value_type::element_type pivot = (*h) * v;
   if (is_zero(pivot)) // *h is already orthogonal to v, nothing to do
      return false;

   // else *h is not orthogonal to v. 
   // Project each row *h2 that comes after *h along *h until *h2 becomes orthogonal to v.

   // first, bookkeeping if desired
   if (!is_derived_from_instance_of<RowBasisOutputIterator, black_hole>::value)
      *row_basis_consumer++ = i;
   if (!is_derived_from_instance_of<ColBasisOutputIterator, black_hole>::value)
      *col_basis_consumer++ = h->rbegin().index();

   AHRowIterator h2 = h;
   while (!(++h2).at_end()) { // don't project h itself, only later rows
      const typename iterator_traits<AHRowIterator>::value_type::element_type x = (*h2) * v;
      if (!is_zero(x)) 
         reduce_row(h2, h, pivot, x); // project h2 along h until orthogonal to v
   }
   return true;
}

/** Compute a basis of (subspace spanned by the rows of H) intersect (orthogonal complement of v)
    Projects all row vectors in H onto the orthogonal complement of v, and keeps a basis of rowspan(H) intersect orthogonal(v)
    @param v input iterator over the vectors
    @param row_basis_consumer output iterator consuming the indices of basis rows (=vectors)
    @param col_basis_consumer output iterator consuming the indices of basis columns (=coordinates)
    @return modified_H boolean value indicating whether the kernel matrix H has been modified
*/
template <typename VectorType, typename RowBasisOutputIterator, typename ColBasisOutputIterator, typename E>
bool
basis_of_rowspan_intersect_orthogonal_complement(ListMatrix< SparseVector<E> >& H, const VectorType& v, RowBasisOutputIterator row_basis_consumer, ColBasisOutputIterator col_basis_consumer, int i=0)
{
   typedef ListMatrix< SparseVector<E> > AH_matrix;
   for (typename Entire< Rows<AH_matrix> >::iterator h=entire(rows(H)); !h.at_end(); ++h) 
      if (project_rest_along_row(h, v, row_basis_consumer, col_basis_consumer, i)) {
         H.delete_row(h);
         return true;
      }
   return false;
}


/** add a row to a matrix M iff this increases the rowspan of M. As a side effect, update the kernel of M.
    @param M a matrix, implemented as a ListMatrix so that the row addition is cheap
    @param kernel_so_far a matrix whose rows are supposed to be orthogonal to the rows of M.
    @param v a vector to be added to M iff this increases the dimension of the rowspan of M. We allow the entries of v and kernel_so_far to be of different type, e.g. T=Integer, R=Rational
*/
template<typename T, typename R>
bool add_row_if_rowspace_increases(ListMatrix<SparseVector<T> >& M, const SparseVector<T>& v, ListMatrix<SparseVector<R> >& kernel_so_far)
{
   const bool modified = basis_of_rowspan_intersect_orthogonal_complement(kernel_so_far, v, black_hole<int>(), black_hole<int>());
    if (modified) M.insert_row(rows(M).begin(), v);
    return modified;
}

template <typename Iterator, typename E> inline
typename std::enable_if<is_field<E>::value, void>::type
reduce_row(Iterator& h2, Iterator& h, const E& pivot, const E& x)
{
   *h2 -= (x/pivot)*(*h);
}

template <typename Iterator, typename E> inline
typename std::enable_if<!is_field<E>::value, void>::type
reduce_row(Iterator& h2, Iterator& h, const E& pivot, const E& x)
{
   *h2 *= pivot;  *h2 -= x*(*h);
}

template <typename TMatrix> inline
typename std::enable_if<is_gcd_domain<typename TMatrix::element_type>::value, void>::type
simplify_rows(GenericMatrix<TMatrix>& M)
{
   for (auto r=entire(rows(M)); !r.at_end(); ++r) {
      const auto g=gcd(*r);
      if (!is_one(g)) r->div_exact(g);
   }
}

template <typename TMatrix> inline
typename std::enable_if<!is_gcd_domain<typename TMatrix::element_type>::value, void>::type
simplify_rows(GenericMatrix<TMatrix>& M)
{}


/** Compute the basis of the subspaces spanned by a sequence of vectors and orthogonal one.
    Projects all row vectors in H into the orthogonal complement of the vectors that v iterates over, 
    and keeps a basis of rowspan(H) intersect orthogonal(v_i)
    @param v input iterator over the vectors
    @param row_basis_consumer output iterator consuming the indices of basis rows (=vectors)
    @param col_basis_consumer output iterator consuming the indices of basis columns (=coordinates)
*/
template <typename VectorIterator, typename RowBasisOutputIterator, typename ColBasisOutputIterator, typename AH_matrix>
void
null_space(VectorIterator v, RowBasisOutputIterator row_basis_consumer, ColBasisOutputIterator col_basis_consumer, AH_matrix& H, bool simplify=false)
{
   for (int i=0; H.rows()>0 && !v.at_end(); ++v, ++i) 
      basis_of_rowspan_intersect_orthogonal_complement(H, *v, row_basis_consumer, col_basis_consumer, i);
   if (simplify) simplify_rows(H);
}


template <typename Matrix, typename E> inline
typename Matrix::persistent_nonsymmetric_type
null_space(const GenericMatrix<Matrix, E>& M)
{
   ListMatrix< SparseVector<E> > H=unit_matrix<E>(M.cols());
   null_space(entire(rows(M)), black_hole<int>(), black_hole<int>(), H, true);
   return H;
}

template <typename Vector, typename E> inline
ListMatrix< SparseVector<E> >
null_space(const GenericVector<Vector, E>& V)
{
   ListMatrix< SparseVector<E> > H=unit_matrix<E>(V.dim());
   null_space(entire(item2container(V.top())), black_hole<int>(), black_hole<int>(), H, true);
   return H;
}

/// @param req_sign expected sign of det( null_space(V) / V )
template <typename Vector, typename E>
ListMatrix< SparseVector<E> >
null_space_oriented(const GenericVector<Vector, E>& V, int req_sign)
{
   ListMatrix< SparseVector<E> > H=unit_matrix<E>(V.dim());
   null_space(entire(item2container(V.top())), black_hole<int>(), black_hole<int>(), H, true);
   typename ensure_features<Vector, pure_sparse>::const_iterator v_pivot=ensure(V.top(), (pure_sparse*)0).begin();
   if (v_pivot.at_end() && req_sign)
      throw infeasible("null_space_oriented: zero vector has no orientation");
   if ((sign(*v_pivot)==req_sign) == ((v_pivot.index()+V.dim()+1)%2))
      rows(H).back().negate();
   return H;
}

template <typename Matrix, typename E> inline
typename Matrix::persistent_nonsymmetric_type
lineality_space(const GenericMatrix<Matrix, E>& M)
{
   ListMatrix< SparseVector<E> > H=unit_matrix<E>(M.cols()-1);
   null_space(entire(rows(M.minor(All, range(1,M.cols()-1)))), black_hole<int>(), black_hole<int>(), H, true);
   return zero_vector<E>(H.rows()) | H;
}

template <typename VectorIterator> inline
Set<int>
basis_vectors(VectorIterator v)
{
   typedef typename iterator_traits<VectorIterator>::value_type::element_type E;
   ListMatrix< SparseVector<E> > H=unit_matrix<E>(v.at_end() ? 0 : v->dim());
   Set<int> b;
   null_space(v, std::back_inserter(b), black_hole<int>(), H);
   return b;
}

template <typename Matrix, typename E> inline
Set<int>
basis_rows(const GenericMatrix<Matrix, E>& M)
{
   ListMatrix< SparseVector<E> > H=unit_matrix<E>(M.cols());
   Set<int> b;
   null_space(entire(rows(M)), std::back_inserter(b), black_hole<int>(), H);
   return b;
}

template <typename Matrix> inline
Set<int>
basis_cols(const GenericMatrix<Matrix>& M)
{
   return basis_rows(T(M));
}

template <typename Matrix, typename E> inline
std::pair< Set<int>, Set<int> >
basis(const GenericMatrix<Matrix, E>& M)
{
   ListMatrix< SparseVector<E> > H=unit_matrix<E>(M.cols());
   Set<int> br, bc;
   null_space(entire(rows(M)), std::back_inserter(br), inserter(bc), H);
   return std::make_pair(br,bc);
}

template <typename Matrix, typename E> inline
int rank(const GenericMatrix<Matrix, E>& M)
{
   if (M.rows() <= M.cols()) {
      ListMatrix< SparseVector<E> > H=unit_matrix<E>(M.rows());
      null_space(entire(cols(M)), black_hole<int>(), black_hole<int>(), H);
      return M.rows()-H.rows();
   }
   ListMatrix< SparseVector<E> > H=unit_matrix<E>(M.cols());
   null_space(entire(rows(M)), black_hole<int>(), black_hole<int>(), H);
   return M.cols()-H.rows();
}

template <typename Matrix> inline
Set<int>
basis_rows(const GenericMatrix<Matrix, double>& M)
{
   ListMatrix< SparseVector<double> > H=unit_matrix<double>(M.cols());
   Set<int> b;
   null_space(entire(attach_operation(rows(M), polymake::operations::normalize_vectors())),
              std::back_inserter(b), black_hole<int>(), H);
   return b;
}

template <typename Matrix> inline
std::pair< Set<int>, Set<int> >
basis(const GenericMatrix<Matrix, double>& M)
{
   ListMatrix< SparseVector<double> > H=unit_matrix<double>(M.cols());
   Set<int> br, bc;
   null_space(entire(attach_operation(rows(M), polymake::operations::normalize_vectors())),
              std::back_inserter(br), inserter(bc), H);
   return std::make_pair(br,bc);
}

template <typename Matrix> inline
int rank(const GenericMatrix<Matrix, double>& M)
{
   if (M.rows() <= M.cols()) {
      ListMatrix< SparseVector<double> > H=unit_matrix<double>(M.rows());
      null_space(entire(attach_operation(cols(M), polymake::operations::normalize_vectors())),
                 black_hole<int>(), black_hole<int>(), H);
      return M.rows()-H.rows();
   }
   ListMatrix< SparseVector<double> > H=unit_matrix<double>(M.cols());
   null_space(entire(attach_operation(rows(M), polymake::operations::normalize_vectors())),
              black_hole<int>(), black_hole<int>(), H);
   return M.cols()-H.rows();
}

/// The same as basis(), but ignoring the first column of the matrix.
template <typename Matrix, typename E> inline
std::pair< Set<int>, Set<int> >
basis_affine(const GenericMatrix<Matrix, E>& M)
{
   int ad=M.cols()-1;
   ListMatrix< SparseVector<E> > H=unit_matrix<E>(ad);
   Set<int> br, bc;
   null_space(entire(rows(M.minor(All,range(1,ad)))), std::back_inserter(br),
              make_output_transform_iterator(inserter(bc), operations::fix2<int, operations::add<int,int> >(1)),
              H);
   return std::make_pair(br,bc);
}

/// Project u to v.
template <typename E, typename Vector1, typename Vector2> inline
typename Vector2::persistent_type
proj(const GenericVector<Vector1,E>& u, const GenericVector<Vector2,E>& v)
{
   return (u*v)/sqr(v)*v;
}

/// project the rows of M into the orthogonal complement of N
/// the rows of N need to be orthogonal
template <typename Matrix1, typename Matrix2> inline
void 
project_to_orthogonal_complement(Matrix1& M, const Matrix2& N)
{
    for (typename Entire<Rows<Matrix2> >::const_iterator nit = entire(rows(N)); !nit.at_end(); ++nit) {
       const typename Matrix2::element_type normsquared = sqr(*nit);
       if (POLYMAKE_DEBUG || !Unwary<Matrix2>::value) {
         for (typename Entire<Rows<Matrix2> >::const_iterator nit2 = nit+1; !nit2.at_end(); ++nit2)
           if(!is_zero((*nit) * (*nit2))) throw std::runtime_error("project_to_orthogonal_complement: error: non-orthogonal matrix");
       }
       if (!is_zero(normsquared))
          for (typename Entire<Rows<Matrix1> >::iterator mit = entire(rows(M)); !mit.at_end(); ++mit) {
             const typename Matrix1::element_type pivot = (*mit) * (*nit);
             if (!is_zero(pivot))
                *mit -= pivot/normsquared * (*nit);
          }
    }
}

/// the indices of nonzero entries
template <typename Vector>
Set<int> support(const GenericVector<Vector>& v)
{
   return indices(ensure(v.top(), (pure_sparse*)0));
}

/// reflect u in the plane normal to nv
template <typename Vector1Type, typename Vector2Type> inline
Vector1Type reflect(const Vector1Type& u, const Vector2Type& nv) 
{
   if (!nv.empty() && nv.begin().index()==0)
      throw std::runtime_error("cannot reflect in a vector at infinity (first coordinate zero)");
   return u - (2 * (u.slice(1)*nv.slice(1)) / sqr(nv.slice(1))) * nv; 
}

/// Divide by the first element and strip it off.
/// As a special case, an empty vector is passed unchanged.
template <typename Vector>
typename GenericVector<Vector>::persistent_type
dehomogenize(const GenericVector<Vector>& V)
{
   if (V.dim()==0)
      return typename GenericVector<Vector>::persistent_type();

   return operations::dehomogenize_vectors<const Vector&>()(V.top());
}

/// Divide rowwise by the elements of the first column and strip it off.
/// As a special case, an empty matrix is passed unchanged.
template <typename Matrix>
typename GenericMatrix<Matrix>::persistent_nonsymmetric_type
dehomogenize(const GenericMatrix<Matrix>& M)
{
   if (M.cols()==0)
      return typename GenericMatrix<Matrix>::persistent_nonsymmetric_type();

   return typename GenericMatrix<Matrix>::persistent_nonsymmetric_type(M.rows(), M.cols()-1,
                                                                       entire(attach_operation(rows(M), polymake::operations::dehomogenize_vectors())));
}

/// Subtract the first element and strip it off.
/// As a special case, an empty vector is passed unchanged.
template <typename Vector>
typename GenericVector<Vector>::persistent_type
dehomogenize_trop(const GenericVector<Vector>& V)
{
   if (V.dim()==0)
      return typename GenericVector<Vector>::persistent_type();

   return operations::dehomogenize_trop_vectors<const Vector&>()(V.top());
}

/// Subtract rowwise the elements of the first column and strip it off.
/// As a special case, an empty matrix is passed unchanged.
template <typename Matrix>
typename GenericMatrix<Matrix>::persistent_nonsymmetric_type
dehomogenize_trop(const GenericMatrix<Matrix>& M)
{
   if (M.cols()==0)
      return typename GenericMatrix<Matrix>::persistent_nonsymmetric_type();

   return typename GenericMatrix<Matrix>::persistent_nonsymmetric_type(M.rows(), M.cols()-1,
                                                                       entire(attach_operation(rows(M), polymake::operations::dehomogenize_trop_vectors())));
}

/// Remove all matrix rows that contain only zeros.
template <typename Matrix, typename Scalar>
typename Matrix::persistent_nonsymmetric_type
remove_zero_rows(const GenericMatrix<Matrix,Scalar>& m)
{
   auto subset = attach_selector(rows(m),polymake::operations::non_zero());
   return typename Matrix::persistent_nonsymmetric_type(subset.size(),m.cols(),entire(subset));
}

template <typename VectorIterator, typename OutputIterator>
void orthogonalize(VectorIterator v, OutputIterator sqr_consumer)
{
   typedef typename iterator_traits<VectorIterator>::value_type vector_type;
   typedef typename vector_type::element_type E;
   // the first vector will not be modified
   while (!v.at_end()) {
      const E s=sqr(*v);
      if (!is_zero(s)) {
         VectorIterator v2=v;
         for (++v2; !v2.at_end(); ++v2) {
            const E x=(*v2) * (*v);
            if (!is_zero(x)) reduce_row(v2, v, s, x);
         }
      }
      *sqr_consumer++ = s;
      ++v;
   }
}

template <typename VectorIterator, typename OutputIterator>
void orthogonalize_affine(VectorIterator v, OutputIterator sqr_consumer)
{
   typedef typename iterator_traits<VectorIterator>::value_type vector_type;
   typedef typename vector_type::element_type E;
   // the first vector will not be modified
   while (!v.at_end()) {
      const E s=sqr(v->slice(1));
      if (!is_zero(s)) {
         VectorIterator v2=v;
         for (++v2; !v2.at_end(); ++v2) {
            const E x=v2->slice(1) * v->slice(1);
            if (!is_zero(x)) reduce_row(v2, v, s, x);
         }
      }
      *sqr_consumer++ = s;
      ++v;
   }
}

/// Apply the Gram-Schmidt orthogonalization to the vector sequence.
template <typename VectorIterator> inline
void orthogonalize(VectorIterator v)
{
   orthogonalize(v, black_hole<typename iterator_traits<VectorIterator>::value_type::element_type>());
}

/** The same as orthogonalize(.), but making the affine parts of the resulting vectors
    (without 0-th coordinate) orthogonal
*/
template <typename VectorIterator> inline
void orthogonalize_affine(VectorIterator v)
{
   orthogonalize_affine(v, black_hole<typename iterator_traits<VectorIterator>::value_type::element_type>());
}

/// Find row indices of all far points (that is, having zero in the first column).
template <typename Matrix> inline
Set<int>
far_points(const GenericMatrix<Matrix>& M)
{
   if(M.cols() == 0) return Set<int>();
	return indices(attach_selector(M.col(0), polymake::operations::is_zero()));
}

/// Find indices of rows orthogonal to the given vector
template <typename E, typename Matrix, typename Vector> inline
Set<int>
orthogonal_rows(const GenericMatrix<Matrix,E>& M, const GenericVector<Vector,E>& v)
{
   return indices(attach_selector(attach_operation(rows(M), constant(v), polymake::operations::mul()),
                                  polymake::operations::is_zero()));
}

template <typename Iterator> inline
typename iterator_traits<Iterator>::value_type
gcd_of_sequence(Iterator it)
{
   typedef typename iterator_traits<Iterator>::value_type T;
   if (it.at_end()) return zero_value<T>();
   T res=abs(*it);
   while (!is_one(res) && !(++it).at_end())
      res=gcd(res, *it);
   return res;
}


template <typename Iterator> inline
typename iterator_traits<Iterator>::value_type
lcm_of_sequence(Iterator it)
{
   typedef typename iterator_traits<Iterator>::value_type T;
   if (it.at_end()) return zero_value<T>();
   T res=abs(*it);
   while (!(++it).at_end())
      if (!is_one(*it)) res=lcm(res, *it);
   return res;
}

template <typename TVector, typename E> inline
E gcd(const GenericVector<TVector, E>& v)
{
   return gcd_of_sequence(entire(v.top()));
}

template <typename TVector, typename E> inline
E lcm(const GenericVector<TVector, E>& v)
{
   return lcm_of_sequence(entire(v.top()));
}

template <typename TVector, typename E> inline
typename std::enable_if<is_field_of_fractions<E>::value,
                        LazyVector1<const TVector&, polymake::operations::get_numerator> >::type
numerators(const GenericVector<TVector, E>& v)
{
   return apply_operation(v, polymake::operations::get_numerator());
}

template <typename TVector, typename E> inline
typename std::enable_if<is_field_of_fractions<E>::value,
                        LazyVector1<const TVector&, polymake::operations::get_denominator> >::type
denominators(const GenericVector<TVector, E>& v)
{
   return apply_operation(v, polymake::operations::get_denominator());
}

template <typename TMatrix, typename E> inline
typename std::enable_if<is_field_of_fractions<E>::value,
                        LazyMatrix1<const TMatrix&, polymake::operations::get_numerator> >::type
numerators(const GenericMatrix<TMatrix, E>& m)
{
   return apply_operation(m, polymake::operations::get_numerator());
}

template <typename TMatrix, typename E> inline
typename std::enable_if<is_field_of_fractions<E>::value,
                        LazyMatrix1< const TMatrix&, polymake::operations::get_denominator> >::type
denominators(const GenericMatrix<TMatrix, E>& m)
{
   return apply_operation(m, polymake::operations::get_denominator());
}

template <typename T, typename std::enable_if<std::is_same<typename object_traits<T>::generic_tag,is_matrix>::value, int>::type=0>
typename T::persistent_nonsymmetric_type pow(const T& base, int exp)
{
   if (POLYMAKE_DEBUG || !Unwary<T>::value) {
      if (base.rows() != base.cols())
         throw std::runtime_error("pow - non-square matrix");
   }
   auto one = unit_matrix<typename T::value_type>(base.rows());
   if (exp < 0) {
      return pow_impl<typename T::persistent_nonsymmetric_type>(inv(base),one,abs(exp));
   } else if (exp == 0) {
      return one;
   }
   return pow_impl<typename T::persistent_nonsymmetric_type>(base,one,exp);
}



} // end namespace pm

namespace polymake {
   using pm::null_space;
   using pm::lineality_space;
   using pm::basis_vectors;
   using pm::orthogonalize;
   using pm::orthogonalize_affine;
   using pm::normalize;
   using pm::gcd_of_sequence;
   using pm::lcm_of_sequence;
}

#endif // POLYMAKE_LINALG_H

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: