This file is indexed.

/usr/include/polymake/next/integer_linalg.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/* Copyright (c) 1997-2018
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/


#ifndef POLYMAKE_HERMITE_NORMAL_FORM_H
#define POLYMAKE_HERMITE_NORMAL_FORM_H

#include <iostream>
#include "polymake/client.h"
#include "polymake/pair.h"
#include "polymake/SparseMatrix.h"
#include "polymake/Bitset.h"
#include "polymake/Array.h"
#include "polymake/linalg.h"
#include "polymake/numerical_functions.h"
#include "polymake/list"
#include "polymake/GenericStruct.h"

namespace pm {

template<typename E>
class HermiteNormalForm : 
   public GenericStruct<HermiteNormalForm<E> > {

public:
   DeclSTRUCT( DeclTemplFIELD(hnf, Matrix<E>)
               DeclTemplFIELD(companion, SparseMatrix<E>)
               DeclTemplFIELD(rank, int) );
   
};


template <typename MatrixTop, typename E>
int ranked_hermite_normal_form(const GenericMatrix<MatrixTop, E>& M, Matrix<E>& hnf, SparseMatrix<E>& companion, bool reduced = true){
   SparseMatrix2x2<E> U;
   SparseMatrix<E> R, S;
   Matrix<E> N(M);
   
   
   const int rows = M.rows();
   const int cols = M.cols();
   
   R = unit_matrix<E>(cols);

   int current_row = 0, current_col = 0;
   int rank = -1;

   for(int i = 0; i<rows; i++){
      bool nonzero = true;
      // cout << N(i,current_col) << endl;
      // Find a non-zero entry and move it to here.
      if(N(i,current_col) == 0){
         nonzero = false;
         for(int j = current_col; j<cols; j++){
            if(N(i,j) != 0){
               nonzero = true;
               U.i = current_col;
               U.j = j;
               U.a_ii = 0;
               U.a_ij = 1;
               U.a_ji = 1;
               U.a_jj = 0;
               R.multiply_from_right(U);
               N.multiply_from_right(U);
            }
         }
      }
      // cout << pm::Matrix<E>(N) << endl;
      if(!nonzero){
         // cout << "Continuing" << endl;
         current_row++;
         continue;
      } else {
         rank = current_col;
      }
      // GCD part of algorithm.
      for(int j = current_col+1; j<cols; j++){
         // cout << "  " << i << " " << j << endl;
         if(N(i,j) != 0){
            U.i = current_col;
            U.j = j;
            ExtGCD<E> egcd = ext_gcd(N(i,current_col), N(i,j));
            U.a_ii = egcd.p;
            U.a_ji = egcd.q;
            U.a_ij = egcd.k2;
            U.a_jj = -egcd.k1;
            R.multiply_from_right(U);
            N.multiply_from_right(U);
            // cout << U.i<<": "<<U.a_ii <<" " << U.a_ij<<endl<<U.j <<": " <<U.a_ji<<" " << U.a_jj << endl;
         }
         // cout << pm::Matrix<E>(N) << endl;
      }
      if(N(i,current_col)<0){
         S = unit_matrix<E>(cols);
         S(current_col,current_col) = -1;
         R = R*S;
         N = N*S;
      }
      if(reduced){
         for(int j=0; j<current_col; j++){
            U.i = j;
            U.j = current_col;
            E factor = N(i,j) % N(i,current_col);
            if(factor < 0) factor += N(i,current_col);
            factor = (N(i,j) - factor)/N(i,current_col);
            U.a_ii = 1;
            U.a_ji = -factor;
            U.a_ij = 0;
            U.a_jj = 1;
            R.multiply_from_right(U);
            N.multiply_from_right(U);
         }
      }
      current_col++;
      if(current_col == cols){
         break;
      }
      // cout << i << " " << current_row << endl;
   }
   
   rank++;
   

   hnf = N;
   companion = R;

   return rank;
}


template <typename MatrixTop, typename E>
HermiteNormalForm<E> hermite_normal_form(const GenericMatrix<MatrixTop, E>& M, bool reduced = true){
   HermiteNormalForm<E> res;
   res.rank = ranked_hermite_normal_form(M, res.hnf, res.companion, reduced);
   return res;
}

//returns indices of a minimal rowspace basis of a matrix in an euclidean ring
template<typename MatrixType>
Set<int> basis_rows_integer(MatrixType M){
	typedef typename MatrixType::value_type Coeff;
	HermiteNormalForm<Coeff> H = hermite_normal_form<MatrixType,Coeff>(M,false); //non-reduced form is faster, and we'll not use the matrix later so big entrys should not be an issue.
    int pos = 0;
	Set<int> basis;
	for(typename Entire<Cols<Matrix<Coeff> > >::iterator cit = entire(cols(H.hnf)); ((*cit) != zero_vector<Coeff>(H.hnf.rows())) && !cit.at_end(); ++cit){
		while((*cit)[pos]==0) ++pos; //find uppermost non-null entry in this col
		basis += pos;
    }
	return basis;
}

//returns as rows a basis of the null space in an euclidean ring
template<typename MatrixType>
SparseMatrix<typename MatrixType::value_type> null_space_integer(MatrixType M){
   typedef typename MatrixType::value_type Coeff;
   Matrix<Coeff> H;
   SparseMatrix<Coeff> R;
   int r = ranked_hermite_normal_form(M, H, R);
   return T(R.minor(All,range(r,R.cols()-1)));
}

} // namespace pm

namespace polymake {

   using pm::HermiteNormalForm;
   using pm::null_space_integer;
   using pm::basis_rows_integer;

}

#endif