This file is indexed.

/usr/include/polymake/next/Plucker.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/* Copyright (c) 1997-2018
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#ifndef POLYMAKE_PLUCKER_H
#define POLYMAKE_PLUCKER_H

#include "polymake/Integer.h"
#include "polymake/Vector.h"
#include "polymake/Map.h"
#include "polymake/PowerSet.h"
#include "polymake/permutations.h"

namespace pm {

namespace {

template <typename T, typename Iterator>   
void make_index (Iterator it, Map<T, int>& index_of)
{
   int index(0);
   while (!it.at_end()) {
      index_of[*it] = index++;
      ++it;
   }
}

Vector<int> squeeze(const Vector<int>& v, const Set<int>& s)
{
   Map<int,int> index_of;
   make_index(entire(s), index_of);
   Vector<int> w(v.size());
   Entire<Vector<int> >::iterator wit = entire(w);
   for (Entire<Vector<int> >::const_iterator vit = entire(v); !vit.at_end(); ++vit)
      *wit++ = index_of[*vit];
   return w;
}

}  // end anonymous namespace

template <typename T> 
class Plucker {         // a class to hold and process Plücker coordinates of a subspace ("flat")
public:
   typedef Map<Set<int>, T> CooType;

protected:
   int _d     // the dimension of the ambient space
      , _k;   // the dimension of the flat
   CooType _coos;  // the binom{_d,_k}-tuple of Plücker coordinates of the flat

public:
   template <typename>
   friend struct spec_object_traits;

   Plucker()
      : _d(0)
      , _k(0)
      , _coos(CooType()) {}

   template <typename E>
   explicit Plucker(const Vector<E>& v)  
      : _d(v.size())
      , _k(1)
      , _coos(CooType()) {
      typename Entire<Vector<E> >::const_iterator vit = entire(v);
      for (int i=0; i<_d; ++i, ++vit)
         _coos[scalar2set(i)] = *vit;
   }

   template <typename E>
   explicit Plucker(int d, int k, const Vector<E>& v)  
      : _d(d)
      , _k(k)
      , _coos(CooType()) {
      if (v.size() != Integer::binom(d, k))
         throw std::runtime_error("The number of coordinates is not the expected one, binom(d,k)");
      typename Entire<Vector<E> >::const_iterator vit = entire(v);
      for (auto fit = entire(all_subsets_of_k(sequence(0,_d), _k)); !fit.at_end(); ++fit, ++vit) 
         _coos[*fit] = *vit;
   }

   explicit Plucker(int d, int k)
      : _d(d)
      , _k(k)
      , _coos(CooType()) {}

   const int d() const { return _d; }
   const int k() const { return _k; }
   const T& operator[] (const Set<int> &s) const { return _coos[s]; }

   const Vector<T> coordinates() const
   {
      Vector<T> v(int(Integer::binom(_d,_k)));
      auto vit = entire(v);
      for (auto cit = entire(_coos); !cit.at_end(); ++cit, ++vit)
         *vit = cit->second;
      return v;
   }

   const Vector<T> point() const
   {
      if (_k!=1) {
         cerr << *this << endl;
         throw std::runtime_error("The dimension is not 1; can't convert this flat to a point");
      }
      return coordinates();
   }

   template <typename Permutation>
   Plucker<T> permuted(const Permutation& perm)const{
      if(perm.size()!=_d)
         throw std::runtime_error("The size of the permutation is not the expected one.");
      Plucker<T> plucker(_d,_k);
      for (typename Entire<CooType>::const_iterator cit = entire(_coos); !cit.at_end(); ++cit)
         plucker._coos[pm::permuted(cit->first,perm)] = cit->second;
      return plucker;
   }

   friend Plucker join (const Plucker& p1, const Plucker& p2) {
      if (p1.d() != p2.d())
         throw std::runtime_error("Ambient dimensions of p1 and p2 are distinct");
      const int d = p1.d(), k = p1.k() + p2.k();
      if (k>d)
         throw std::runtime_error("The sum of the dimensions of the flats is greater than that of the ambient space, so I can't join them");

      // We iterate over all pairs of sets (A,B), A in binom{[d],k1}, B in binom{[d],k2}
      // such that A and B are disjoint.
      Plucker result(d,k);
      for (Entire<Subsets_of_k<const sequence&> >::const_iterator Ait = entire(all_subsets_of_k(sequence(0,p1.d()), p1.k())); !Ait.at_end(); ++Ait) {
         Set<int> rest(sequence(0,d) - *Ait);
         for (Entire<Subsets_of_k<const Set<int>&> >::const_iterator Bit = entire(all_subsets_of_k(rest, p2.k())); !Bit.at_end(); ++Bit) {
            Set<int> U(*Ait); U += *Bit;
            const Vector<int> perm = Vector<int>(p1.k(), entire(*Ait)) | Vector<int>(p2.k(), entire(*Bit));
            result._coos[U] += permutation_sign(squeeze(perm, U)) * p1[*Ait] * p2[*Bit];
         } 
      }
      return result;
   }

   friend Plucker meet (const Plucker& p1, const Plucker& p2)  {
      if (p1.d() != p2.d())
         throw std::runtime_error("Ambient dimensions of p1 and p2 are distinct");
      const int d = p1.d(), k = p1.k() + p2.k() - d;
      if (k<0) {
         cerr << p1 << endl << p2 << endl;
         throw std::runtime_error("The sum of the dimensions of the flats is less than that of the ambient space, so I can't intersect them");
      }

      // We iterate over all pairs of sets (A,B), A in binom{[d],k1}, B in binom{[d],k2},
      // such that |A cap B| = k = k1+k2-d. 
      // For this, we decompose A into A = A1 cup S with S = A cap B, so that B = S cup B1
      // for a (d-k1)-set B1.
      Plucker result(d,k);
      for (Entire<Subsets_of_k<const sequence&> >::const_iterator Ait = entire(all_subsets_of_k(sequence(0,p1.d()), p1.k())); !Ait.at_end(); ++Ait) {
         const Set<int> 
            A(*Ait),
            rest (sequence(0,d) - A);
         for (Entire<Subsets_of_k<const Set<int>&> >::const_iterator Sit = entire(all_subsets_of_k(A, k)); !Sit.at_end(); ++Sit) {
            const Set<int> S(*Sit);
            for (Entire<Subsets_of_k<const Set<int>&> >::const_iterator B1it = entire(all_subsets_of_k(rest, d-p1.k())); !B1it.at_end(); ++B1it) {
               const Set<int> 
                  B1(*B1it),
                  B(S + B1),
                  A1(A - S);
               const Vector<int> perm = Vector<int>(A1.size(), entire(A1)) | Vector<int>(B1.size(), entire(B1));
               result._coos[*Sit] += permutation_sign(squeeze(perm, A1+B1)) * p1[A] * p2[B];
            }
         } 
      }
      return result;
   }

   inline friend Plucker operator+ (const Plucker& p1, const Plucker& p2) { return join(p1,p2); }
   inline friend Plucker operator* (const Plucker& p1, const Plucker& p2) { return meet(p1,p2); }

   /** This function takes a 2-flat F and a vector v that is supposed to be contained in it,
    *  and gives back a vector that spans the orthogonal complement of v in F.
    */
   Vector<T> project_out (const Vector<T>& v) {
      if (_k!=2) throw std::runtime_error("Only projecting from planes is implemented");
      SparseMatrix<T> M(int(Integer::binom(_d,2))+1, _d);
      int row_ct(0);
      for (Entire<Subsets_of_k<const sequence&> >::const_iterator fit = entire(all_subsets_of_k(sequence(0,_d), _k)); !fit.at_end(); ++fit, ++row_ct) {
         M(row_ct, fit->front()) = -v[fit->back()];
         M(row_ct, fit->back())  =  v[fit->front()];
      }
      M.row(row_ct) = v;
      const Vector<T> vs = coordinates() | 1;
      return lin_solve(M, vs).dehomogenize();
   }

   inline SparseVector<T> project_out (const Plucker& p) { return project_out(p.point()); }

   template <typename Output> friend
   Output& operator<< (GenericOutput<Output>& outs, const Plucker& e)
   {
      return outs.top() << "(" << e.d() << " " << e.k() << " [" << e.coordinates() << "])";
   }
   
};

} // end namespace pm

namespace polymake {
   using pm::Plucker;
}

/*
namespace std {
   template <typename T>
   struct numeric_limits<pm::Plucker<T> > {
      //      static const bool is_integer = false;
      //      static const bool is_signed = false;
   };
}
*/

#endif // POLYMAKE_PLUCKER_H

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: