This file is indexed.

/usr/include/polymake/graph/Closure.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/* Copyright (c) 1997-2018
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#ifndef POLYMAKE_GRAPH_LATTICE_CLOSURE_H
#define POLYMAKE_GRAPH_LATTICE_CLOSURE_H

#include "polymake/list"
#include "polymake/FaceMap.h"
#include "polymake/FacetList.h"
#include "polymake/graph/Decoration.h"

namespace polymake { namespace graph { namespace lattice {

  /*
   * This stores the indexing data of a node in the Hasse diagram algorithm.
   * It informs, whether the node is: Unknown so far, has been marked unwanted or what its index is.
   * It also includes methods to set the index or mark a node as unwanted.
   */
  	struct FaceIndexingData {
		int& index;
		bool is_unknown;
		bool is_marked_unwanted;
		FaceIndexingData(int& i, bool iu, bool im) : index(i), is_unknown(iu), is_marked_unwanted(im) {}
		void set_index(int j) { index = j; is_unknown = false;}
		void mark_face_as_unwanted() { index = -2; is_marked_unwanted = true; }
   };

	/*
    * Given a closure operator, this can iterate over all closed sets lying "above" a given set (from the point of
    * view of the algorithm).
    */
   template <typename ClosureOperator>
      class closures_above_iterator {

         public:
				typedef typename ClosureOperator::ClosureData ClosureData;
            typedef std::forward_iterator_tag iterator_category;
            typedef ClosureData value_type;
            typedef const value_type& reference;
            typedef const value_type* pointer;
            typedef ptrdiff_t difference_type;

            closures_above_iterator() {}
            closures_above_iterator( const ClosureOperator& cop,
                                     const ClosureData &H_arg,
                                     const Set<int>& relevant_candidates) :
               H(&H_arg), CO(&cop), total_size(cop.total_set_size()), candidates(relevant_candidates - H->get_face()), done(false)  {
                  find_next();
               }

            reference operator* () const { return result; }
            pointer operator->() const { return &result; }

            closures_above_iterator& operator++ () { find_next(); return *this; }

            const closures_above_iterator operator++ (int) { closures_above_iterator copy = *this; operator++(); return copy; }

            bool operator== (const closures_above_iterator& it) const { return candidates==it.candidates; }
            bool operator!= (const closures_above_iterator& it) const { return !operator==(it); }
            bool at_end() const { return done; }

         protected:
            void find_next()
            {
               while (!candidates.empty()) {
                  int v=candidates.front();  candidates.pop_front();
                  result= ClosureData( *CO, H->get_dual_face() * CO->get_facets().col(v)); 
                  //The full set is rarely the minimal set - and if so, it is so for the last candidate
                  //This saves a lot of checks in the next step.
                  const Set<int>& rface = result.get_face();
                  if(rface.size() == total_size && !candidates.empty()) continue;
                  if ((rface * candidates).empty() && (rface * minimal).empty()) {
                     minimal.push_back(v);
                     return;
                  }
               }
               done=true;
            }

            const ClosureData* H;
            const ClosureOperator* CO;
            const int total_size;
            Set<int> candidates, minimal;
            value_type result;
            bool done;
      };

	/*
    * A closure operator needs to provide the following interface:
    *
    * - It needs to define a type ClosureData (e.g. via a typedef or as a nested class). This type represents
    *   all the operator needs to associate with a node in the lattice algorithm.
    * - It is templated with the type of a Decoration
    * - It needs to have the following methods
    *   - const ClosureData closure_of_empty_set() const: Computes the initial node in the algorithm
    *   - FaceIndexingData get_indexing_data(const ClosureData& d): Given a node, this computes the indexing
    *     data (i.e. potential index, whether it is new, etc...)
    *   - const ClosureData compute_closure_data(const Decoration& face) const: Given a decorated node (e.g. from
    *     an initial lattice given to the algorithm), this computes all the necessary closure data.
    *   - Iterator get_closure_iterator(const ClosureData& d) const: Given a node in the lattice, this provides
    *     an iterator over all the nodes lying "above" this node.
    */


	/*
	 * The basic closure operator: The closure of a set is the intersection of all "facets" containing it.
	 * If no facet contains the set, the closure is the full set.
	 */
	template <typename Decoration = BasicDecoration>
		class BasicClosureOperator {
			public:

            // The basic closure data consists of a face and its dual face (i.e. the intersection over
            // all columns indexed by the elements of the face).
            // Since computing the dual face is much cheaper, the primal face is computed lazily.
				class ClosureData {
					protected:
						mutable Set<int> face;
						Set<int> dual_face;
						mutable bool primal_computed;
						const BasicClosureOperator<Decoration>* parent;

					public:
						ClosureData() {}
                  ClosureData(const ClosureData& other) {
                     dual_face = other.dual_face;
                     face = other.face;
                     primal_computed = other.primal_computed;
                     parent = other.parent;
                  }

						ClosureData(const BasicClosureOperator<Decoration>& parent, const Set<int>& df) : dual_face(df), primal_computed(false), parent(&parent) {}

						template <typename TSet1, typename TSet2>
							ClosureData(const GenericSet<TSet1,int>& f, const GenericSet<TSet2,int>& df) : face(f), dual_face(df), primal_computed(true), parent(0) {}

                  bool has_face() const { return primal_computed; }
						const Set<int>& get_dual_face() const { return dual_face;}
						const Set<int>& get_face() const {
							if(!primal_computed) {
								if(dual_face.empty())
                           face = parent->get_total_set();
                        else 
                           face = accumulate(rows(parent->get_facets().minor(dual_face,All)),
                                 operations::mul());
								primal_computed = true;
							}
							return face;
						}
				};

            // Constructors

				BasicClosureOperator() {}
				BasicClosureOperator(const int total, const IncidenceMatrix<> &fct) : facets(fct),
				total_size(total), total_set(sequence(0,total_size)), total_data(total_set, Set<int>()) {}

            // Closure operator interface

				const ClosureData closure_of_empty_set() const {
					return ClosureData(accumulate(rows(facets), operations::mul()), sequence(0,facets.rows()));
				}

				closures_above_iterator<BasicClosureOperator<Decoration> > get_closure_iterator(const ClosureData& face) const {
					return closures_above_iterator<BasicClosureOperator<Decoration> >(*this,face, total_set);
				}

				const ClosureData compute_closure_data(const Decoration &face) const {
					return ClosureData(face.face,
							accumulate( cols(facets.minor(All,face.face)), operations::mul()));
				}

				FaceIndexingData get_indexing_data(const ClosureData& data) {
					int& fi = face_index_map[data.get_dual_face()];
					return FaceIndexingData(fi, fi == -1, fi == -2);
				}
				
            // Auxiliary methods

            int total_set_size() const { return total_size;}
            const IncidenceMatrix<>& get_facets() const { return facets;}
            const Set<int>& get_total_set() const { return total_set;}

			protected:
				IncidenceMatrix<> facets;
				int total_size;
				Set<int> total_set;
				ClosureData total_data;
				FaceMap<> face_index_map;

		};


}}}

#endif