This file is indexed.

/usr/include/polymake/TransformedContainer.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
/* Copyright (c) 1997-2018
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#ifndef POLYMAKE_TRANSFORMED_CONTAINER_H
#define POLYMAKE_TRANSFORMED_CONTAINER_H

#include "polymake/internal/sparse.h"

namespace pm {
/* ----------------------
 *  TransformedContainer
 * ---------------------- */

template <typename ContainerRef, typename Operation>
class TransformedContainer
   : public modified_container_base<ContainerRef, Operation>,
     public modified_container_impl< TransformedContainer<ContainerRef, Operation>,
                                     mlist< ContainerTag< ContainerRef >,
                                            OperationTag< Operation > > > {
   typedef modified_container_base<ContainerRef, Operation> base_t;
public:
   TransformedContainer(typename base_t::arg_type src_arg,
                        const typename base_t::operation_type& op_arg=typename base_t::operation_type())
      : base_t(src_arg, op_arg) {}

   using base_t::get_operation;
};

template <typename ContainerRef, typename Operation>
struct check_container_feature<TransformedContainer<ContainerRef, Operation>, sparse>
   : check_container_ref_feature<ContainerRef, sparse> { };

template <typename ContainerRef, typename Operation>
struct check_container_feature<TransformedContainer<ContainerRef, Operation>, pure_sparse>
   : check_container_ref_feature<ContainerRef, pure_sparse> { };

template <typename ContainerRef, typename Operation>
struct spec_object_traits< TransformedContainer<ContainerRef, Operation> >
   : spec_object_traits<is_container> {
   static const bool is_temporary=true,
      is_always_const=std::is_same<typename TransformedContainer<ContainerRef, Operation>::reference,
                                   typename TransformedContainer<ContainerRef, Operation>::const_reference>::value;
};

template <typename Container, typename Operation> inline
TransformedContainer<Container&, Operation>
attach_operation(Container& src, const Operation& op)
{
   return TransformedContainer<Container&, Operation> (src,op);
}

template <typename Container, typename Operation> inline
TransformedContainer<const Container&, Operation>
attach_operation(const Container& src, const Operation& op)
{
   return TransformedContainer<const Container&, Operation> (src,op);
}

template <typename Container, typename dummy_arg> inline
Container& attach_operation(Container& src, operations::identity<dummy_arg>)
{
   return src;
}

template <typename Container, typename dummy_arg> inline
const Container& attach_operation(const Container& src, operations::identity<dummy_arg>)
{
   return src;
}

template <typename Container, typename Class, typename Member> inline
TransformedContainer<Container&, operations::var_member<Class&,Member> >
attach_member_accessor(Container& c, Member Class::*ptr)
{
   return TransformedContainer<Container&, operations::var_member<Class&,Member> > (c,ptr);
}

template <typename Container, typename Class, typename Member> inline
TransformedContainer<const Container&, operations::var_member<const Class&,Member> >
attach_member_accessor(const Container& c, Member Class::*ptr)
{
   return TransformedContainer<const Container&, operations::var_member<const Class&,Member> > (c,ptr);
}

template <typename Container, typename Class, typename Member, Member Class::*Ptr> inline
TransformedContainer<Container&, operations::member<Class,Member,Ptr> >
attach_member_accessor(Container& c, ptr2type<Class, Member, Ptr>)
{
   return c;
}

template <typename Container, typename Class, typename Member, Member Class::*Ptr> inline
TransformedContainer<const Container&, operations::member<Class,Member,Ptr> >
attach_member_accessor(const Container& c, ptr2type<Class, Member, Ptr>)
{
   return c;
}

/* --------------------------
 *  TransformedContainerPair
 * -------------------------- */

template <typename ContainerRef1, typename ContainerRef2, typename Operation>
struct TransformedContainerPair_helper1 {
   typedef typename deref<ContainerRef1>::type container1;
   typedef typename deref<ContainerRef2>::type container2;
   typedef typename binary_op_builder<Operation, void, void,
                                      typename container_traits<ContainerRef1>::reference,
                                      typename container_traits<ContainerRef2>::reference>::operation
      element_operation;

   static const bool
      partially_defined = operations::is_partially_defined<element_operation>::value,
      sparse1 = check_container_feature<container1, sparse>::value,
      sparse2 = check_container_feature<container2, sparse>::value,
      constant1 = object_classifier::what_is<container1>::value == object_classifier::is_constant,
      constant2 = object_classifier::what_is<container2>::value == object_classifier::is_constant,
      use_sparse_coupler = (sparse1 || sparse2) && (partially_defined || !constant1 && !constant2),
      sparse_result = partially_defined ? sparse1 && sparse2 : sparse1 || sparse2;
};

template <typename Operation, bool use_sparse_coupler, bool partially_defined>
struct TransformedContainerPair_helper2 {
   typedef Operation operation;
   typedef OperationTag<operation> params2;
};

template <typename Operation, bool partially_defined>
struct TransformedContainerPair_helper2<Operation, true, partially_defined> {
   typedef typename std::conditional<partially_defined, set_union_zipper, set_intersection_zipper>::type controller;
   typedef typename std::conditional<partially_defined,
                                     pair<Operation, BuildBinaryIt<operations::zipper_index>>,
                                     Operation>::type
      operation;

   typedef mlist< IteratorCouplerTag< sparse_coupler<controller> >,
                  IteratorConstructorTag< binary_transform_constructor< BijectiveTag<std::false_type>,
                                                                        PartiallyDefinedTag<bool_constant<partially_defined>> > >,
                  OperationTag<operation> > params2;
};

template <typename ContainerRef1, typename ContainerRef2, typename Operation>
struct TransformedContainerPair_helper
   : TransformedContainerPair_helper1<ContainerRef1, ContainerRef2, Operation> {
   typedef TransformedContainerPair_helper1<ContainerRef1, ContainerRef2, Operation> base_t;
   typedef typename std::conditional<!base_t::sparse1 && !base_t::constant1 && base_t::sparse2,
                                     masquerade_add_features<ContainerRef1, sparse_compatible>, ContainerRef1>::type
      first_type;
   typedef typename std::conditional<!base_t::sparse2 && !base_t::constant2 && base_t::sparse1,
                                     masquerade_add_features<ContainerRef2, sparse_compatible>, ContainerRef2>::type
      second_type;

   typedef TransformedContainerPair_helper2<Operation, base_t::use_sparse_coupler, base_t::partially_defined> helper2;
   typedef typename mlist_concat< Container1Tag<first_type>, Container2Tag<second_type>, typename helper2::params2>::type params;
   typedef typename helper2::operation operation;
   typedef modified_container_pair_base<first_type, second_type, operation> base;
   typedef typename is_identity_transform<Operation>::type op_arg_type;

   static const op_arg_type& get_operation(const op_arg_type& op_arg, std::true_type)
   {
      return op_arg;
   }
   static operation get_operation(const Operation& op_arg, std::false_type)
   {
      return operation(op_arg, typename operation::second_type());
   }
};

template <typename ContainerRef1, typename ContainerRef2, typename Operation>
class TransformedContainerPair
   : public TransformedContainerPair_helper<ContainerRef1, ContainerRef2, Operation>::base,
     public modified_container_pair_impl< TransformedContainerPair<ContainerRef1, ContainerRef2, Operation>,
               typename TransformedContainerPair_helper<ContainerRef1, ContainerRef2, Operation>::params
            > {
   typedef modified_container_pair_impl<TransformedContainerPair> impl_t;
   typedef TransformedContainerPair_helper<ContainerRef1, ContainerRef2, Operation> helper;
   typedef typename helper::base base_t;
   static const bool simple_operation=std::is_same<Operation, typename helper::operation>::value;
protected:
   int size_impl(std::false_type, std::false_type) const { return impl_t::size(); }
   int size_impl(std::true_type, std::false_type) const { return this->get_container1().size(); }
   int size_impl(std::false_type, std::true_type) const { return this->get_container2().size(); }
public:
   TransformedContainerPair(typename base_t::first_arg_type src1_arg, typename base_t::second_arg_type src2_arg,
                            const typename helper::op_arg_type& op_arg=typename helper::op_arg_type())
      : base_t(src1_arg, src2_arg, helper::get_operation(op_arg, bool_constant<simple_operation>())) { }

   using base_t::get_operation;

   int size() const
   {
      return size_impl(bool_constant<helper::use_sparse_coupler && (helper::partially_defined ? !helper::sparse1 : !helper::sparse2)>(),
                       bool_constant<helper::use_sparse_coupler && (helper::partially_defined ? !helper::sparse2 : !helper::sparse1)>());
   }
};

template <typename ContainerRef1, typename ContainerRef2, typename Operation>
struct check_container_feature<TransformedContainerPair<ContainerRef1, ContainerRef2, Operation>, sparse> {
   static const bool value=TransformedContainerPair_helper<ContainerRef1, ContainerRef2, Operation>::sparse_result;
};

template <typename ContainerRef1, typename ContainerRef2, typename Operation>
struct check_container_feature<TransformedContainerPair<ContainerRef1, ContainerRef2, Operation>, sparse_compatible> {
   static const bool value=check_container_ref_feature<ContainerRef1, sparse_compatible>::value ||
                           check_container_ref_feature<ContainerRef2, sparse_compatible>::value;
};

template <typename ContainerRef1, typename ContainerRef2, typename Operation>
struct spec_object_traits< TransformedContainerPair<ContainerRef1, ContainerRef2, Operation> >
   : spec_object_traits<is_container> {
   static const bool is_temporary=true,
                     is_always_const=std::is_same<typename TransformedContainerPair<ContainerRef1, ContainerRef2, Operation>::reference,
                                                  typename TransformedContainerPair<ContainerRef1, ContainerRef2, Operation>::const_reference>::value;
};

template <typename Container1, typename Container2, typename Operation> inline
TransformedContainerPair<Container1&, Container2&, Operation>
attach_operation(Container1& c1, Container2& c2, Operation op)
{
   return TransformedContainerPair<Container1&, Container2&, Operation> (c1,c2,op);
}

template <typename Container1, typename Container2, typename Operation> inline
TransformedContainerPair<const Container1&, Container2&, Operation>
attach_operation(const Container1& c1, Container2& c2, Operation op)
{
   return TransformedContainerPair<const Container1&, Container2&, Operation> (c1,c2,op);
}

template <typename Container1, typename Container2, typename Operation> inline
TransformedContainerPair<Container1&, const Container2&, Operation>
attach_operation(Container1& c1, const Container2& c2, Operation op)
{
   return TransformedContainerPair<Container1&, const Container2&, Operation> (c1,c2,op);
}

template <typename Container1, typename Container2, typename Operation> inline
TransformedContainerPair<const Container1&, const Container2&, Operation>
attach_operation(const Container1& c1, const Container2& c2, Operation op)
{
   return TransformedContainerPair<const Container1&, const Container2&, Operation> (c1,c2,op);
}

template <typename Container, typename Scalar> inline
TransformedContainerPair<const Container&, constant_value_container<const Scalar&>, BuildBinary<operations::add> >
translate(const Container& c, const Scalar& x)
{
   return TransformedContainerPair<const Container&, constant_value_container<const Scalar&>, BuildBinary<operations::add> > (c,x);
}

template <typename Container, typename Scalar> inline
TransformedContainerPair<const Container&, constant_value_container<const Scalar&>, BuildBinary<operations::mul> >
scale(const Container& c, const Scalar& x)
{
   return TransformedContainerPair<const Container&, constant_value_container<const Scalar&>, BuildBinary<operations::mul> > (c,x);
}

/* ------------------
 *  ContainerProduct
 * ------------------ */

/** Common base for iterators over cartesian product of two sequences
    It runs over all possible pairs of data items, with the second component changing first.
*/
template <typename Iterator1, typename Iterator2, bool has_state1=false, bool has_state2=false>
class iterator_product : public Iterator1 {
public:
   typedef Iterator1 first_type;
   typedef Iterator2 second_type;
   Iterator2 second;

   typedef forward_iterator_tag iterator_category;
   typedef iterator_product<typename iterator_traits<Iterator1>::iterator,
                            typename iterator_traits<Iterator2>::iterator, has_state1, has_state2>
      iterator;
   typedef iterator_product<typename iterator_traits<Iterator1>::const_iterator,
                            typename iterator_traits<Iterator2>::const_iterator, has_state1, has_state2>
      const_iterator;

   iterator_product() { }

   iterator_product(const iterator& it)
      : first_type(static_cast<const typename iterator::first_type&>(it))
      , second(it.second) { }

   template <typename SourceIterator1, typename SourceIterator2,
             typename suitable1=typename suitable_arg_for_iterator<SourceIterator1, Iterator1>::type,
             typename suitable2=typename suitable_arg_for_iterator<SourceIterator2, Iterator2>::type>
   iterator_product(const SourceIterator1& first_arg, const SourceIterator2& second_arg)
      : first_type(prepare_iterator_arg<Iterator1>(first_arg))
      , second(prepare_iterator_arg<Iterator2>(second_arg)) { }

   iterator_product& operator= (const iterator& it)
   {
      first_type::operator=(static_cast<const typename iterator::first_type&>(it));
      second=it.second;
      return *this;
   }

   iterator_product& operator++()
   {
      ++second;
      if (second.at_end()) {
         first_type::operator++();
         second.rewind();
      }
      return *this;
   }

   const iterator_product operator++(int) { iterator_product copy=*this; operator++(); return copy; }

   template <typename Other>
   typename std::enable_if<is_derived_from_any<Other, iterator, const_iterator>::value, bool>::type
   operator== (const Other& it) const
   {
      return static_cast<const first_type&>(*this)==static_cast<const typename Other::first_type&>(it)  &&  second==it.second;
   }
   template <typename Other>
   typename std::enable_if<is_derived_from_any<Other, iterator, const_iterator>::value, bool>::type
   operator!= (const Other& it) const
   {
      return !operator==(it);
   }

private:
   void operator--();
   void operator+=(int);
   void operator-=(int);
   void operator+(int);
   void operator-(int);
   void operator[](int);

   template <typename,typename,bool,bool> friend class iterator_product;
};

template <typename Iterator1, typename Iterator2, bool has_state1>
class iterator_product<Iterator1, Iterator2, has_state1, true>
   : public iterator_product<Iterator1, Iterator2, has_state1, false> {
   typedef iterator_product<Iterator1, Iterator2, has_state1, false> base_t;
   template <typename,typename,bool,bool> friend class iterator_product;
protected:
   int state;

   void set_state(std::false_type)
   {
      state= this->second.state & zipper_gt ? zipper_lt : this->second.state;
   }
   void set_state(std::true_type)
   {
      state= (this->second.state & zipper_gt) && (base_t::state & zipper_eq) ? zipper_lt : base_t::state;
   }
   void set_state()
   {
      set_state(bool_constant<has_state1>());
   }

   void incr(std::false_type)
   {
      base_t::operator++();
      set_state(std::false_type());
   }
   void incr(std::true_type)
   {
      if (base_t::state & zipper_eq) {
         base_t::operator++();
         set_state(std::true_type());
      } else {
         typedef typename base_t::super super1;
         typedef typename Iterator2::super super2;
         this->second.super2::operator++();
         if (this->second.super2::at_end()) {
            super1::operator++();
            this->second.rewind();
            set_state(std::true_type());
         }
      }
   }

public:
   typedef iterator_product<typename iterator_traits<Iterator1>::iterator,
                            typename iterator_traits<Iterator2>::iterator, has_state1, true>
      iterator;
   typedef iterator_product<typename iterator_traits<Iterator1>::const_iterator,
                            typename iterator_traits<Iterator2>::const_iterator, has_state1, true>
      const_iterator;

   iterator_product() { }
   iterator_product(const iterator& it)
      : base_t(static_cast<const typename iterator::base_t&>(it)) { }

   template <typename SourceIterator1, typename SourceIterator2,
             typename enable=typename std::enable_if<is_const_compatible_with<SourceIterator1, Iterator1>::value &&
                                                     is_const_compatible_with<SourceIterator2, Iterator2>::value>::type>
   iterator_product(const SourceIterator1& first_arg, SourceIterator2& second_arg)
      : base_t(first_arg, second_arg)
   {
      set_state();
   }

   iterator_product& operator= (const iterator& it)
   {
      base_t::operator=(static_cast<const typename iterator::base_t&>(it));
      return *this;
   }

   iterator_product& operator++ ()
   {
      incr(bool_constant<has_state1>());
      return *this;
   }

   const iterator_product operator++(int) { iterator_product copy=*this; operator++(); return copy; }

   void rewind()
   {
      static_assert(check_iterator_feature<Iterator1, rewindable>::value, "iterator is not rewindable");
      base_t::rewind(); set_state();
   }
};

template <typename Iterator1, typename Iterator2, bool has_state1, bool has_state2, typename Feature>
struct check_iterator_feature<iterator_product<Iterator1, Iterator2, has_state1, has_state2>, Feature>
   : check_iterator_feature<Iterator1,Feature> { };

template <typename Iterator1, typename Iterator2, bool has_state1, bool has_state2>
struct check_iterator_feature<iterator_product<Iterator1, Iterator2, has_state1, has_state2>, indexed> : std::false_type { };

template <typename Iterator1, typename Iterator2, bool has_state1, bool has_state2>
struct has_partial_state< iterator_product<Iterator1, Iterator2, has_state1, has_state2> > {
   static const bool value=has_state1 || has_state2;
};

struct product_index_accessor {
   typedef void first_argument_type;
   typedef void second_argument_type;
   typedef int result_type;

   template <typename Iterator1, typename Iterator2>
   result_type operator() (const Iterator1& it1, const Iterator2& it2) const
   {
      return it1.index()*dim2 + it2.index();
   }
   template <typename Iterator1, typename Iterator2>
   result_type operator() (operations::partial_left, const Iterator1& it1, const Iterator2& it2) const
   {
      return it1.index()*dim2 + *it2.second;
   }
   template <typename Iterator1, typename Iterator2>
   result_type operator() (operations::partial_right, const Iterator1& it1, const Iterator2& it2) const
   {
      return *it1.second*dim2 + it2.index();
   }

   product_index_accessor(int dim2_arg=0) : dim2(dim2_arg) { }
protected:
   int dim2;
};

template <typename Top, typename TParams>
class container_product_typebase : public manip_container_top<Top, TParams> {
   typedef manip_container_top<Top, TParams> base_t;
public:
   typedef typename mtagged_list_extract<TParams, Container1Tag>::type container1_ref;
   typedef typename mtagged_list_extract<TParams, Container2Tag>::type container2_ref;
   typedef typename deref<container1_ref>::minus_ref container1;
   typedef typename deref<container2_ref>::minus_ref container2;
   typedef typename temp_ref<container1_ref>::type container1_temp_ref;
   typedef typename temp_ref<container2_ref>::type container2_temp_ref;

   typedef typename container_traits<container1>::iterator iterator1;
   typedef typename container_traits<container2>::iterator iterator2;
   typedef typename mtagged_list_extract<TParams, OperationTag, operations::apply1< BuildUnaryIt<operations::dereference> > >::type
      value_operation;

   typedef typename binary_op_builder<value_operation, iterator1, iterator2>::operation value_operation_instance;
   static const bool
      sparse1=check_container_ref_feature<container1, sparse>::value,
      sparse2=check_container_ref_feature<container2, sparse>::value,
      partially_defined = (sparse1 || sparse2) && operations::is_partially_defined<value_operation_instance>::value,
      sparse_result = partially_defined ? sparse1 && sparse2 : sparse1 || sparse2,
      need_index= sparse_result || list_search<typename base_t::expected_features, indexed, absorbing_feature>::value;

   typedef typename mselect< std::enable_if< partially_defined && sparse1,
                                             masquerade<construct_dense_pair, container1_ref> >,
                             std::enable_if< !partially_defined && !sparse1 && sparse2,
                                             masquerade_add_features<container1_ref, sparse_compatible> >,
                             container1_ref >::type
      prep_container1_ref;
   typedef typename mselect< std::enable_if< partially_defined && sparse2,
                                             masquerade<construct_dense_pair, container2_ref> >,
                             std::enable_if< !partially_defined && !sparse2 && sparse1,
                                             masquerade_add_features<container2_ref, sparse_compatible> >,
                             container2_ref >::type
      prep_container2_ref;
   typedef typename deref<prep_container1_ref>::minus_ref prep_container1;
   typedef typename deref<prep_container2_ref>::minus_ref prep_container2;

   typedef typename std::conditional<need_index, pair<value_operation, product_index_accessor>, value_operation>::type operation;

   typedef typename mtagged_list_extract<TParams, IteratorConstructorTag, binary_transform_constructor<> >::type it_constructor;

   typedef iterator_product<typename container_traits<prep_container1>::iterator,
                            typename container_traits<prep_container2>::iterator,
                            partially_defined && sparse1, partially_defined && sparse2>
      first_try_it_pair;
   typedef typename it_constructor::template defs<first_try_it_pair, operation, typename base_t::expected_features>::needed_pair_features
      needed_pair_features;
   typedef typename std::conditional<need_index,
                                     typename mix_features<needed_pair_features, indexed>::type,
                                     needed_pair_features>::type
      needed_features1;
   typedef typename mix_features<needed_features1, cons<end_sensitive, rewindable> >::type
      needed_features2;
   typedef iterator_product<typename ensure_features<prep_container1, needed_features1>::iterator,
                            typename ensure_features<prep_container2, needed_features2>::iterator,
                            partially_defined && sparse1, partially_defined && sparse2>
      it_pair;
   typedef iterator_product<typename ensure_features<prep_container1, needed_features1>::const_iterator,
                            typename ensure_features<prep_container2, needed_features2>::const_iterator,
                            partially_defined && sparse1, partially_defined && sparse2>
      const_it_pair;
   typedef typename it_constructor::template defs<it_pair, operation, typename base_t::expected_features>::iterator
      iterator;
   typedef typename it_constructor::template defs<const_it_pair, operation, typename base_t::expected_features>::iterator
      const_iterator;

   // TODO: remove the first term after implementing random access
   typedef typename least_derived_class<bidirectional_iterator_tag,
                                        typename container_traits<container1>::category,
                                        typename container_traits<container2>::category>::type
      container_category;
   typedef typename mix_features<typename enforce_feature_helper<typename deref<prep_container1>::type>::must_enforce_features,
                                 typename enforce_feature_helper<typename deref<prep_container2>::type>::must_enforce_features>::type
      must_enforce_features;

   typedef typename iterator_traits<iterator>::value_type value_type;
   typedef typename iterator_traits<iterator>::reference reference;
   typedef typename iterator_traits<const_iterator>::reference const_reference;
protected:
   static prep_container1& prep1(container1& c1) { return reinterpret_cast<prep_container1&>(c1); }
   static prep_container2& prep2(container2& c2) { return reinterpret_cast<prep_container2&>(c2); }

   typedef typename std::conditional<attrib<container1>::is_const, type2type<container1>, container1>::type ct1;
   typedef typename std::conditional<attrib<container2>::is_const, type2type<container2>, container2>::type ct2;
   static const prep_container1& prep1(const ct1& c1) { return reinterpret_cast<const prep_container1&>(c1); }
   static const prep_container2& prep2(const ct2& c2) { return reinterpret_cast<const prep_container2&>(c2); }
};

template <typename Top, typename TParams>
class reverse_container_product_typebase {
   typedef container_product_typebase<Top, TParams> base_t;
   typedef iterator_product<typename ensure_features<typename base_t::prep_container1, typename base_t::needed_features1>::reverse_iterator,
                            typename ensure_features<typename base_t::prep_container2, typename base_t::needed_features2>::reverse_iterator,
                            base_t::partially_defined && base_t::sparse1, base_t::partially_defined && base_t::sparse2>
      reverse_it_pair;
   typedef iterator_product<typename ensure_features<typename base_t::prep_container1, typename base_t::needed_features1>::const_reverse_iterator,
                            typename ensure_features<typename base_t::prep_container2, typename base_t::needed_features2>::const_reverse_iterator,
                            base_t::partially_defined && base_t::sparse1, base_t::partially_defined && base_t::sparse2>
      const_reverse_it_pair;
public:
   typedef typename base_t::it_constructor::template defs<reverse_it_pair, typename base_t::operation,
                                                          typename base_t::expected_features>::iterator
      reverse_iterator;
   typedef typename base_t::it_constructor::template defs<const_reverse_it_pair, typename base_t::operation,
                                                          typename base_t::expected_features>::iterator
      const_reverse_iterator;
};

template <typename Top, typename TParams=typename Top::manipulator_params,
          typename Category=typename container_product_typebase<Top, TParams>::container_category>
class container_product_impl
   : public container_product_typebase<Top, TParams>
   , public modified_container_non_bijective_elem_access<Top, container_product_typebase<Top, TParams>,
                                                         is_derived_from<Category, bidirectional_iterator_tag>::value>
{
   typedef container_product_typebase<Top, TParams> base_t;
public:
   typedef container_product_impl<Top, TParams> manipulator_impl;
   typedef TParams manipulator_params;
   typedef typename base_t::iterator iterator;
   typedef typename base_t::const_iterator const_iterator;

   template <typename FeatureCollector>
   struct rebind_feature_collector {
      typedef container_product_impl<FeatureCollector, TParams> type;
   };

   iterator begin()
   {
      typename base_t::container1_temp_ref c1=this->manip_top().get_container1();
      typename base_t::container2_temp_ref c2=this->manip_top().get_container2();
      return iterator(c2.empty() ? ensure(base_t::prep1(c1), (typename base_t::needed_features1*)0).end()
                                 : ensure(base_t::prep1(c1), (typename base_t::needed_features1*)0).begin(),
                      ensure(base_t::prep2(c2), (typename base_t::needed_features2*)0).begin(),
                      create_operation());
   }
   iterator end()
   {
      typename base_t::container1_temp_ref c1=this->manip_top().get_container1();
      typename base_t::container2_temp_ref c2=this->manip_top().get_container2();
      return iterator(ensure(base_t::prep1(c1), (typename base_t::needed_features1*)0).end(),
                      ensure(base_t::prep2(c2), (typename base_t::needed_features2*)0).begin(),
                      create_operation());
   }
   const_iterator begin() const
   {
      const typename base_t::container1& c1=this->manip_top().get_container1();
      const typename base_t::container2& c2=this->manip_top().get_container2();
      return const_iterator(c2.empty() ? ensure(base_t::prep1(c1), (typename base_t::needed_features1*)0).end()
                                       : ensure(base_t::prep1(c1), (typename base_t::needed_features1*)0).begin(),
                            ensure(base_t::prep2(c2), (typename base_t::needed_features2*)0).begin(),
                            create_operation());
   }
   const_iterator end() const
   {
      return const_iterator(ensure(base_t::prep1(this->manip_top().get_container1()), (typename base_t::needed_features1*)0).end(),
                            ensure(base_t::prep2(this->manip_top().get_container2()), (typename base_t::needed_features2*)0).begin(),
                            create_operation());
   }
private:
   template <typename discr2>
   int size_impl(std::false_type, discr2) const
   {
      return this->manip_top().get_container1().size() * this->manip_top().get_container2().size();
   }
   int size_impl(std::true_type, std::false_type) const
   {
      return dim();
   }
   int size_impl(std::true_type, std::true_type) const
   {
      const int d1=get_dim(this->manip_top().get_container1()), d2=get_dim(this->manip_top().get_container2());
      return d1*d2 - (d1-this->manip_top().get_container1().size())*(d2-this->manip_top().get_container2().size());
   }

public:
   int size() const
   {
      return size_impl(bool_constant<base_t::partially_defined>(), bool_constant<base_t::sparse1 && base_t::sparse2>());
   }
   int dim() const
   {
      return get_dim(this->manip_top().get_container1()) * get_dim(this->manip_top().get_container2());
   }
   bool empty() const
   {
      return this->manip_top().get_container1().empty() || this->manip_top().get_container2().empty();
   }

private:
   typename base_t::value_operation
   create_operation_impl(std::false_type) const
   {
      return this->manip_top().get_operation();
   }

   typename base_t::operation
   create_operation_impl(std::true_type) const
   {
      return typename base_t::operation(this->manip_top().get_operation(), get_dim(this->manip_top().get_container2()));
   }
public:
   typename base_t::value_operation get_operation() const { return typename base_t::value_operation(); }
   typename base_t::operation create_operation() const { return create_operation_impl(bool_constant<base_t::need_index>()); }
};

template <typename Top, typename TParams>
class container_product_impl<Top, TParams, bidirectional_iterator_tag>
   : public container_product_impl<Top, TParams, forward_iterator_tag>,
     public reverse_container_product_typebase<Top, TParams> {
   typedef container_product_impl<Top, TParams, forward_iterator_tag> base_t;
   typedef reverse_container_product_typebase<Top, TParams> rbase_t;
public:
   typename rbase_t::reverse_iterator rbegin()
   {
      typename base_t::container1_temp_ref c1=this->manip_top().get_container1();
      typename base_t::container2_temp_ref c2=this->manip_top().get_container2();
      return typename rbase_t::reverse_iterator(c2.empty() ? ensure(base_t::prep1(c1), (typename base_t::needed_features1*)0).rend()
                                                           : ensure(base_t::prep1(c1), (typename base_t::needed_features1*)0).rbegin(),
                                                ensure(base_t::prep2(c2), (typename base_t::needed_features2*)0).rbegin(),
                                                this->create_operation());
   }
   typename rbase_t::reverse_iterator rend()
   {
      typename base_t::container1_temp_ref c1=this->manip_top().get_container1();
      typename base_t::container2_temp_ref c2=this->manip_top().get_container2();
      return typename rbase_t::reverse_iterator(ensure(base_t::prep1(c1), (typename base_t::needed_features1*)0).rend(),
                                                ensure(base_t::prep2(c2), (typename base_t::needed_features2*)0).rbegin(),
                                                this->create_operation());
   }
   typename rbase_t::const_reverse_iterator rbegin() const
   {
      const typename base_t::container1& c1=this->manip_top().get_container1();
      const typename base_t::container2& c2=this->manip_top().get_container2();
      return typename rbase_t::const_reverse_iterator(c2.empty() ? ensure(base_t::prep1(c1), (typename base_t::needed_features1*)0).rend()
                                                                 : ensure(base_t::prep1(c1), (typename base_t::needed_features1*)0).rbegin(),
                                                      ensure(base_t::prep2(c2), (typename base_t::needed_features2*)0).rbegin(),
                                                      this->create_operation());
   }
   typename rbase_t::const_reverse_iterator rend() const
   {
      return typename rbase_t::const_reverse_iterator(ensure(base_t::prep1(this->manip_top().get_container1()), (typename base_t::needed_features1*)0).rend(),
                                                      ensure(base_t::prep2(this->manip_top().get_container2()), (typename base_t::needed_features2*)0).rbegin(),
                                                      this->create_operation());
   }
};

template <typename Top, typename TParams>
class container_product_impl<Top, TParams, random_access_iterator_tag>
   : public container_product_impl<Top, TParams, bidirectional_iterator_tag> {
   typedef container_product_impl<Top, TParams, bidirectional_iterator_tag> base_t;
public:
   // TO BE DONE LATER
};

template <typename ContainerRef1, typename ContainerRef2, typename Operation>
class ContainerProduct
   : public modified_container_pair_base<ContainerRef1, ContainerRef2, Operation>
   , public container_product_impl< ContainerProduct<ContainerRef1, ContainerRef2, Operation>,
                                    mlist< Container1Tag<ContainerRef1>,
                                           Container2Tag<ContainerRef2>,
                                           OperationTag<Operation> > > {
   typedef modified_container_pair_base<ContainerRef1, ContainerRef2, Operation> base_t;
public:
   ContainerProduct(typename base_t::first_arg_type src1_arg, typename base_t::second_arg_type src2_arg,
                    const typename base_t::operation_type& op_arg=typename base_t::operation_type())
      : base_t(src1_arg, src2_arg, op_arg) {}

   using base_t::get_operation;
};

template <typename ContainerRef1, typename ContainerRef2, typename Operation>
struct check_container_feature<ContainerProduct<ContainerRef1, ContainerRef2, Operation>, sparse> {
   static const bool value=ContainerProduct<ContainerRef1, ContainerRef2, Operation>::sparse_result;
};

template <typename ContainerRef1, typename ContainerRef2, typename Operation>
struct spec_object_traits< ContainerProduct<ContainerRef1, ContainerRef2, Operation> >
   : spec_object_traits<is_container> {
   static const bool is_temporary=true,
                     is_always_const=std::is_same<typename ContainerProduct<ContainerRef1, ContainerRef2, Operation>::reference,
                                                  typename ContainerProduct<ContainerRef1, ContainerRef2, Operation>::const_reference>::value;
};

template <typename Container1, typename Container2, typename Operation> inline
ContainerProduct<Container1&, Container2&, Operation>
product(Container1& c1, Container2& c2, Operation op)
{
   return ContainerProduct<Container1&, Container2&, Operation> (c1,c2,op);
}

template <typename Container1, typename Container2, typename Operation> inline
ContainerProduct<const Container1&, Container2&, Operation>
product(const Container1& c1, Container2& c2, Operation op)
{
   return ContainerProduct<const Container1&, Container2&, Operation> (c1,c2,op);
}

template <typename Container1, typename Container2, typename Operation> inline
ContainerProduct<Container1&, const Container2&, Operation>
product(Container1& c1, const Container2& c2, Operation op)
{
   return ContainerProduct<Container1&, const Container2&, Operation> (c1,c2,op);
}

template <typename Container1, typename Container2, typename Operation> inline
ContainerProduct<const Container1&, const Container2&, Operation>
product(const Container1& c1, const Container2& c2, Operation op)
{
   return ContainerProduct<const Container1&, const Container2&, Operation> (c1,c2,op);
}

template <typename ContainerRef>
struct repeated_container {
   typedef ContainerProduct<count_down, ContainerRef, operations::apply2< BuildUnaryIt<operations::dereference> > > type;
   typedef typename type::manipulator_params params;
};

template <typename Container>
inline
const typename repeated_container<const Container&>::type
repeat(const Container& c, int n)
{
   return typename repeated_container<const Container&>::type(count_down(n),c);
}

} // end namespace pm

namespace polymake {
   using pm::attach_operation;
   using pm::attach_member_accessor;
   using pm::translate;
   using pm::scale;
   using pm::product;
   using pm::repeat;
}

#endif // POLYMAKE_TRANSFORMED_CONTAINER_H

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: