/usr/include/polymake/SelectedSubset.h is in libpolymake-dev-common 3.2r2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 | /* Copyright (c) 1997-2018
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#ifndef POLYMAKE_SELECTED_SUBSET_H
#define POLYMAKE_SELECTED_SUBSET_H
#include "polymake/Series.h"
#include "polymake/internal/modified_containers.h"
#include "polymake/internal/comparators_ops.h"
namespace pm {
/** Iterator modifier skipping some elements.
* Only elements evaluated by the given functor to TRUE are shown.
* @tparam Iterator iterator over the source sequence.
* @tparam Predicate unary boolean functor.
*/
template <typename Iterator, typename Predicate>
class unary_predicate_selector : public Iterator {
protected:
typedef Iterator base_t;
typedef unary_helper<Iterator, Predicate> helper;
typename helper::operation pred;
void valid_position()
{
while (!this->at_end() && !pred(*helper::get(*this))) base_t::operator++();
}
template <typename, typename> friend class unary_predicate_selector;
public:
typedef typename least_derived_class<typename iterator_traits<Iterator>::iterator_category, bidirectional_iterator_tag>::type iterator_category;
typedef unary_predicate_selector<typename iterator_traits<Iterator>::iterator, Predicate> iterator;
typedef unary_predicate_selector<typename iterator_traits<Iterator>::const_iterator, Predicate> const_iterator;
unary_predicate_selector() {}
template <typename Predicate2>
unary_predicate_selector(const unary_predicate_selector<typename iterator_traits<Iterator>::iterator, Predicate2>& it)
: base_t(static_cast<const typename std::remove_reference_t<decltype(it)>::base_t&>(it))
, pred(helper::create(it.pred)) {}
template <typename Predicate2>
explicit unary_predicate_selector(const unary_predicate_selector<typename iterator_reversed<Iterator>::type, Predicate2>& it)
: base_t(iterator_reversed<Iterator>::reverse(it))
, pred(helper::create(it.pred)) {}
template <typename SourceIterator,
typename suitable=typename std::enable_if<std::is_default_constructible<Predicate>::value,
typename suitable_arg_for_iterator<SourceIterator, Iterator>::type>::type>
unary_predicate_selector(const SourceIterator& cur_arg, bool at_valid_position=false)
: base_t(prepare_iterator_arg<Iterator>(cur_arg))
, pred(helper::create(Predicate()))
{
if (!at_valid_position) valid_position();
}
template <typename SourceIterator,
typename suitable=typename suitable_arg_for_iterator<SourceIterator, Iterator>::type>
unary_predicate_selector(const SourceIterator& cur_arg, const Predicate& pred_arg, bool at_valid_position=false)
: base_t(prepare_iterator_arg<Iterator>(cur_arg))
, pred(helper::create(pred_arg))
{
if (!at_valid_position) valid_position();
}
unary_predicate_selector& operator++ ()
{
base_t::operator++();
valid_position();
return *this;
}
const unary_predicate_selector operator++ (int)
{
unary_predicate_selector copy=*this; operator++(); return copy;
}
void rewind()
{
static_assert(check_iterator_feature<base_t, rewindable>::value, "iterator is not rewindable");
base_t::rewind();
valid_position();
}
// it's the applications' responsibility not to call this at the first position
unary_predicate_selector& operator-- ()
{
static_assert(iterator_traits<base_t>::is_bidirectional, "iterator is not bidirectional");
do
base_t::operator--();
while (!pred(*helper::get(*this)));
return *this;
}
const unary_predicate_selector operator-- (int)
{
unary_predicate_selector copy=*this; operator--(); return copy;
}
private:
// make them undefined for the case of random_access Iterator
void operator+=(int);
void operator-=(int);
void operator+(int);
void operator-(int);
void operator[](int);
};
template <typename Iterator, typename Predicate, typename Feature>
struct check_iterator_feature<unary_predicate_selector<Iterator, Predicate>, Feature>
: check_iterator_feature<Iterator, Feature> {};
struct unary_predicate_selector_constructor {
template <typename Iterator, typename Predicate, typename ExpectedFeatures>
struct defs {
typedef typename mix_features<ExpectedFeatures, end_sensitive>::type
needed_features;
typedef unary_predicate_selector<Iterator, Predicate> iterator;
};
};
/// Convenience function creating an iterator with element selection.
template <typename Iterator, typename Predicate> inline
auto make_unary_predicate_selector(Iterator&& it, const Predicate& pred)
{
return unary_predicate_selector<pointer2iterator_t<Iterator>, Predicate>(pointer2iterator(std::forward<Iterator>(it)), pred);
}
/** Iterator modifier truncating the trailing part of the sequence.
* Iterating is stopped at the first element evaluated to FALSE by the given functor.
* @tparam Iterator iterator over the source sequence.
* @tparam Predicate unary boolean functor.
*/
template <typename Iterator, typename Predicate>
class input_truncator : public Iterator {
protected:
typedef Iterator base_t;
typedef unary_helper<Iterator,Predicate> helper;
typename helper::operation pred;
template <typename, typename> friend class input_truncator;
public:
typedef forward_iterator_tag iterator_category;
typedef input_truncator<typename iterator_traits<Iterator>::iterator, Predicate> iterator;
typedef input_truncator<typename iterator_traits<Iterator>::const_iterator, Predicate> const_iterator;
input_truncator() {}
template <typename Predicate2>
input_truncator(const input_truncator<typename iterator_traits<Iterator>::iterator, Predicate2>& it)
: base_t(static_cast<const typename std::remove_reference_t<decltype(it)>::base_t&>(it))
, pred(helper::create(it.pred)) {}
template <typename SourceIterator, typename suitable=typename suitable_arg_for_iterator<SourceIterator, Iterator>::type>
input_truncator(const SourceIterator& cur_arg, const Predicate& pred_arg=Predicate())
: base_t(prepare_iterator_arg<Iterator>(cur_arg))
, pred(helper::create(pred_arg)) {}
input_truncator& operator++ ()
{
base_t::operator++();
return *this;
}
const input_truncator operator++ (int)
{
input_truncator copy=*this; operator++(); return copy;
}
bool at_end() const
{
return base_t::at_end() || !pred(*helper::get(*this));
}
template <typename Other>
typename std::enable_if<is_among<Other, iterator, const_iterator>::value, bool>::type
operator== (const Other& it) const
{
return at_end() ? it.at_end() : static_cast<const Iterator&>(*this)==it;
}
template <typename Other>
typename std::enable_if<is_among<Other, iterator, const_iterator>::value, bool>::type
operator!= (const Other& it) const
{
return !operator==(it);
}
private:
// make them undefined for the case of bidirectional or random_access Iterator
void operator--();
void operator--(int);
void operator+=(int);
void operator-=(int);
void operator+(int);
void operator-(int);
void operator[](int);
};
template <typename Iterator, typename Predicate, typename Feature>
struct check_iterator_feature<input_truncator<Iterator, Predicate>, Feature> :
check_iterator_feature<Iterator, Feature> {};
struct input_truncator_constructor {
template <typename Iterator, typename Predicate, typename ExpectedFeatures>
struct defs : public unary_predicate_selector_constructor::defs<Iterator, Predicate, ExpectedFeatures> {
typedef input_truncator<Iterator, Predicate> iterator;
};
};
/** Iterator modifier contracting subsequences of equivalent elements to single representatives.
* @tparam Iterator iterator over the source sequence.
* @tparam Predicate binary boolean functor evaluating two equivalent elements to TRUE.
*/
template <typename Iterator, typename Predicate>
class range_contractor : public Iterator {
template <typename,typename> friend class range_contractor;
typedef Iterator base_t;
protected:
typedef binary_op_builder<Predicate, Iterator, Iterator> op_helper;
typename op_helper::operation pred;
public:
typedef forward_iterator_tag iterator_category;
typedef range_contractor<typename iterator_traits<Iterator>::iterator, Predicate> iterator;
typedef range_contractor<typename iterator_traits<Iterator>::const_iterator, Predicate> const_iterator;
range_contractor() {}
template <typename Predicate2>
range_contractor(const range_contractor<typename iterator_traits<Iterator>::iterator, Predicate2>& it)
: base_t(static_cast<const typename std::remove_reference_t<decltype(it)>::base_t&>(it))
, pred(op_helper::create(it.pred)) {}
template <typename SourceIterator, typename suitable=typename suitable_arg_for_iterator<SourceIterator, Iterator>::type>
range_contractor(const SourceIterator& start, const Predicate& pred_arg=Predicate())
: base_t(prepare_iterator_arg<Iterator>(start))
, pred(op_helper::create(pred_arg)) {}
range_contractor& operator++ ()
{
const auto& shown = *(*this);
do base_t::operator++();
while (!this->at_end() && pred(shown, *(*this)));
return *this;
}
const range_contractor operator++ (int)
{
range_contractor copy=*this; operator++(); return copy;
}
void rewind()
{
static_assert(check_iterator_feature<base_t, rewindable>::value, "iterator is not rewindable");
base_t::rewind();
}
private:
// make them undefined for the case of bidirectional or random_access Iterator
void operator--();
void operator+=(int);
void operator-=(int);
void operator+(int);
void operator-(int);
void operator[](int);
};
template <typename Iterator, typename Predicate, typename Feature>
struct check_iterator_feature<range_contractor<Iterator, Predicate>, Feature>
: check_iterator_feature<Iterator, Feature> {};
struct range_contractor_constructor {
template <typename Iterator, typename Predicate, typename ExpectedFeatures>
struct defs {
typedef typename mix_features<ExpectedFeatures, end_sensitive>::type
needed_features;
typedef range_contractor<Iterator, Predicate> iterator;
};
};
template <typename Iterator, typename Predicate> inline
auto make_range_contractor(Iterator&& it, const Predicate& pred)
{
return range_contractor<pointer2iterator_t<Iterator>, Predicate>(pointer2iterator(std::forward<Iterator>(it)), pred);
}
template <typename Iterator> inline
auto make_equal_range_contractor(Iterator&& it)
{
return range_contractor<pointer2iterator_t<Iterator>, BuildBinary<operations::eq> >(pointer2iterator(std::forward<Iterator>(it)));
}
template <typename Iterator, typename FoldingOperation>
class range_folder : public Iterator {
template <typename, typename> friend class range_folder;
typedef Iterator base_t;
protected:
typedef unary_helper<Iterator, FoldingOperation> helper;
typename helper::operation op;
bool _at_end;
void valid_position()
{
op.reset(*helper::get(static_cast<const base_t&>(*this)));
while (!(++static_cast<base_t&>(*this)).at_end() &&
op(*helper::get(static_cast<const base_t&>(*this)))) ;
}
public:
typedef forward_iterator_tag iterator_category;
typedef typename helper::operation::value_type value_type;
typedef typename helper::operation::reference reference;
typedef range_folder<typename iterator_traits<Iterator>::iterator, FoldingOperation> iterator;
typedef range_folder<typename iterator_traits<Iterator>::const_iterator, FoldingOperation> const_iterator;
range_folder() {}
range_folder(const iterator& it)
: base_t(static_cast<const typename std::remove_reference_t<decltype(it)>::base_t&>(it))
, op(helper::create(it.op))
, _at_end(it._at_end) {}
template <typename SourceIterator, typename suitable=typename suitable_arg_for_iterator<SourceIterator, Iterator>::type>
range_folder(const SourceIterator& start, const FoldingOperation& op_arg=FoldingOperation())
: base_t(prepare_iterator_arg<Iterator>(start))
, op(helper::create(op_arg))
, _at_end(base_t::at_end())
{
if (!_at_end) valid_position();
}
reference operator* () const { return op.get(); }
int index() const { return op.get_index(); }
range_folder& operator++ ()
{
if (base_t::at_end())
_at_end=true;
else
valid_position();
return *this;
}
const range_folder operator++ (int) { range_folder copy(*this); operator++(); return copy; }
bool at_end() const { return _at_end; }
void rewind()
{
static_assert(check_iterator_feature<base_t, rewindable>::value, "iterator is not rewindable");
base_t::rewind();
if (!(_at_end=base_t::at_end())) valid_position();
}
private:
// make them undefined for the case of bidirectional or random_access Iterator
void operator--();
void operator--(int);
void operator+=(int);
void operator-=(int);
void operator+(int);
void operator-(int);
void operator[](int);
};
template <typename Iterator, typename FoldingOperation, typename Feature>
struct check_iterator_feature<range_folder<Iterator, FoldingOperation>, Feature> :
check_iterator_feature<Iterator, Feature> {};
struct range_folder_constructor {
template <typename Iterator, typename FoldingOperation, typename ExpectedFeatures>
struct defs {
typedef typename mix_features<ExpectedFeatures, end_sensitive>::type
needed_features;
typedef range_folder<Iterator, FoldingOperation> iterator;
};
};
template <typename Iterator, typename FoldingOperation> inline
auto make_range_folder(Iterator&& it, const FoldingOperation& op)
{
return range_folder<pointer2iterator_t<Iterator>, FoldingOperation>(pointer2iterator(std::forward<Iterator>(it)), op);
}
template <typename ContainerRef, typename Predicate>
class SelectedSubset
: public modified_container_base<ContainerRef, Predicate>
, public modified_container_impl< SelectedSubset<ContainerRef, Predicate>,
mlist< ContainerTag< ContainerRef >,
OperationTag< Predicate >,
IteratorConstructorTag< unary_predicate_selector_constructor > > >
, public generic_of_subset< SelectedSubset<ContainerRef, Predicate>,
typename deref<ContainerRef>::type> {
typedef modified_container_base<ContainerRef, Predicate> base_t;
typedef modified_container_impl<SelectedSubset> impl_t;
public:
typedef typename least_derived_class<bidirectional_iterator_tag, typename impl_t::container_category>::type container_category;
SelectedSubset(typename base_t::arg_type src_arg, const Predicate& pred_arg=Predicate()) :
base_t(src_arg, pred_arg) {}
using base_t::get_operation;
};
template <typename ContainerRef, typename Predicate>
class TruncatedContainer
: public modified_container_base<ContainerRef, Predicate>
, public modified_container_impl< TruncatedContainer<ContainerRef, Predicate>,
mlist< ContainerTag< ContainerRef >,
OperationTag< Predicate >,
IteratorConstructorTag< input_truncator_constructor > > >
, public generic_of_subset< TruncatedContainer<ContainerRef, Predicate>,
typename deref<ContainerRef>::type> {
typedef modified_container_base<ContainerRef, Predicate> base_t;
typedef modified_container_impl<TruncatedContainer> impl_t;
public:
typedef forward_iterator_tag container_category;
TruncatedContainer(typename base_t::arg_type src_arg, const Predicate& pred_arg=Predicate()) :
base_t(src_arg, pred_arg) {}
using base_t::get_operation;
typename impl_t::reference front()
{
return this->get_container().front();
}
typename impl_t::const_reference front() const
{
return this->get_container().front();
}
};
template <typename ContainerRef, typename Predicate>
class ContractedRanges
: public modified_container_base<ContainerRef, Predicate>
, public modified_container_impl< ContractedRanges<ContainerRef, Predicate>,
mlist< ContainerTag< ContainerRef >,
OperationTag< Predicate >,
IteratorConstructorTag< range_contractor_constructor > > > {
typedef modified_container_base<ContainerRef, Predicate> base_t;
public:
typedef forward_iterator_tag container_category;
ContractedRanges(typename base_t::arg_type src_arg, const Predicate& pred_arg=Predicate()) :
base_t(src_arg, pred_arg) {}
using base_t::get_operation;
};
template <typename ContainerRef, typename FoldingOperation>
class FoldedRanges
: public modified_container_base<ContainerRef, FoldingOperation>
, public modified_container_impl< FoldedRanges<ContainerRef, FoldingOperation>,
mlist< ContainerTag< ContainerRef >,
OperationTag< FoldingOperation >,
IteratorConstructorTag< range_folder_constructor > > > {
typedef modified_container_base<ContainerRef, FoldingOperation> base_t;
public:
typedef forward_iterator_tag container_category;
FoldedRanges(typename base_t::arg_type src_arg, const FoldingOperation& op_arg=FoldingOperation()) :
base_t(src_arg, op_arg) {}
using base_t::get_operation;
};
template <typename ContainerRef, typename Predicate>
struct spec_object_traits< SelectedSubset<ContainerRef, Predicate> > :
spec_object_traits<is_container> {
static const bool is_temporary=true,
is_always_const=effectively_const<ContainerRef>::value;
};
template <typename ContainerRef, typename Predicate>
struct spec_object_traits< TruncatedContainer<ContainerRef, Predicate> > :
spec_object_traits<is_container> {
static const bool is_temporary=true,
is_always_const=effectively_const<ContainerRef>::value;
};
template <typename ContainerRef, typename Predicate>
struct spec_object_traits< ContractedRanges<ContainerRef, Predicate> > :
spec_object_traits<is_container> {
static const bool is_temporary=true,
is_always_const=true;
};
template <typename ContainerRef, typename FoldingOperation>
struct spec_object_traits< FoldedRanges<ContainerRef, FoldingOperation> > :
spec_object_traits<is_container> {
static const bool is_temporary=true,
is_always_const=true;
};
class index_truncator {
protected:
int last;
public:
index_truncator(int l=-1) : last(l) {}
typedef void argument_type;
typedef bool result_type;
template <typename Iterator>
bool operator() (const Iterator& it) const
{
return it.index() <= last;
}
};
class equal_index_folder {
public:
typedef void argument_type;
typedef int value_type;
typedef const int& reference;
template <typename Iterator>
void reset(const Iterator& it)
{
cnt=1; index=it.index();
}
template <typename Iterator>
bool operator() (const Iterator& it)
{
if (it.index()==index) {
++cnt;
return true;
} else {
return false;
}
}
const int& get() const { return cnt; }
int get_index() const { return index; }
private:
int index;
int cnt;
};
template <typename Container, typename Predicate> inline
SelectedSubset<Container&, Predicate>
attach_selector(Container& c, const Predicate& pred)
{
return SelectedSubset<Container&, Predicate>(c, pred);
}
template <typename Container, typename Predicate> inline
SelectedSubset<const Container&, Predicate>
attach_selector(const Container& c, const Predicate& pred)
{
return SelectedSubset<const Container&, Predicate>(c, pred);
}
template <typename Container, typename Predicate> inline
TruncatedContainer<Container&, Predicate>
attach_truncator(Container& c, const Predicate& pred)
{
return TruncatedContainer<Container&, Predicate>(c, pred);
}
template <typename Container, typename Predicate> inline
TruncatedContainer<const Container&, Predicate>
attach_truncator(const Container& c, const Predicate& pred)
{
return TruncatedContainer<const Container&, Predicate>(c, pred);
}
template <typename Container, typename Predicate> inline
ContractedRanges<const Container&, Predicate>
contract_ranges(const Container& c, const Predicate& pred)
{
return ContractedRanges<const Container&, Predicate>(c, pred);
}
template <typename Container> inline
ContractedRanges<const Container&, BuildBinary<operations::eq> >
contract_equal_ranges(const Container& c)
{
return ContractedRanges<const Container&, BuildBinary<operations::eq> >(c);
}
template <typename Container, typename Operation> inline
FoldedRanges<const Container&, Operation>
fold_ranges(const Container& c, const Operation& op)
{
return FoldedRanges<const Container&, Operation>(c, op);
}
/** Selecting output iterator
This is a combination of an output iterator (called below `basis iterator') and a predicate.
When a data item is assigned to the output iterator, it is first evaluated by the predicate object.
Only items mapped to TRUE are passed through to the assignment method of the basis iterator.
*/
template <typename Iterator, typename Predicate>
class output_predicate_selector : public Iterator {
protected:
Predicate pred;
typedef Iterator base_t;
public:
typedef output_iterator_tag iterator_category;
typedef typename iterator_traits<Iterator>::value_type value_type;
output_predicate_selector() {}
output_predicate_selector(const Iterator& cur_arg, const Predicate& pred_arg=Predicate())
: base_t(cur_arg)
, pred(pred_arg) {}
output_predicate_selector& operator= (typename function_argument<value_type>::type arg)
{
if (pred(arg))
static_cast<base_t&>(*this)=arg;
return *this;
}
template <typename Arg>
output_predicate_selector& operator= (const Arg& arg)
{
if (pred(arg))
static_cast<base_t&>(*this)=arg;
return *this;
}
output_predicate_selector& operator* () { return *this; }
output_predicate_selector& operator++ () { return *this; }
output_predicate_selector& operator++ (int) { return *this; }
};
template <typename Iterator, typename Predicate> inline
auto make_output_predicate_selector(Iterator&& it, Predicate pred)
{
return output_predicate_selector<Iterator, Predicate>(it, pred);
}
struct output_predicate_selector_constructor {
template <typename Iterator, typename Predicate, typename ExpectedFeatures>
struct defs {
typedef ExpectedFeatures needed_features;
typedef output_predicate_selector<Iterator,Predicate> iterator;
};
};
template <typename IteratorPair, typename Predicate>
class binary_predicate_selector : public IteratorPair {
typedef IteratorPair base_t;
protected:
typedef binary_helper<IteratorPair,Predicate> helper;
typename helper::operation pred;
void valid_position()
{
while (!this->at_end() && !pred(*helper::get1(*this), *helper::get2(this->second)))
base_t::operator++();
}
template <typename, typename> friend class binary_predicate_selector;
public:
typedef typename least_derived_class<typename IteratorPair::iterator_category, bidirectional_iterator_tag>::type iterator_category;
typedef binary_predicate_selector<typename iterator_traits<IteratorPair>::iterator, Predicate> iterator;
typedef binary_predicate_selector<typename iterator_traits<IteratorPair>::const_iterator, Predicate> const_iterator;
binary_predicate_selector() {}
template <typename Predicate2>
binary_predicate_selector(const binary_predicate_selector<typename iterator_traits<IteratorPair>::iterator, Predicate2>& it)
: base_t(static_cast<const typename std::remove_reference_t<decltype(it)>::base_t&>(it))
, pred(helper::create(it.pred)) {}
template <typename SourceIteratorPair,
typename suitable=typename std::enable_if<std::is_default_constructible<Predicate>::value,
typename suitable_arg_for_iterator<SourceIteratorPair, IteratorPair>::type>::type>
binary_predicate_selector(const SourceIteratorPair& cur_arg,
bool at_valid_position=false)
: base_t(prepare_iterator_arg<IteratorPair>(cur_arg))
, pred(helper::create(Predicate()))
{
if (!at_valid_position) valid_position();
}
template <typename SourceIteratorPair,
typename suitable=typename suitable_arg_for_iterator<SourceIteratorPair, IteratorPair>::type>
binary_predicate_selector(const SourceIteratorPair& cur_arg,
const Predicate& pred_arg,
bool at_valid_position=false)
: base_t(prepare_iterator_arg<IteratorPair>(cur_arg))
, pred(helper::create(pred_arg))
{
if (!at_valid_position) valid_position();
}
template <typename SourceIterator1, typename SourceIterator2,
typename suitable1=typename std::enable_if<std::is_default_constructible<Predicate>::value,
typename suitable_arg_for_iterator<SourceIterator1, typename IteratorPair::first_type>::type>::type,
typename suitable2=typename suitable_arg_for_iterator<SourceIterator2, typename IteratorPair::second_type>::type>
binary_predicate_selector(const SourceIterator1& first_arg,
const SourceIterator2& second_arg,
bool at_valid_position=false)
: base_t(prepare_iterator_arg<typename IteratorPair::first_type>(first_arg), prepare_iterator_arg<typename IteratorPair::second_type>(second_arg))
, pred(helper::create(Predicate()))
{
if (!at_valid_position) valid_position();
}
template <typename SourceIterator1, typename SourceIterator2,
typename suitable1=typename suitable_arg_for_iterator<SourceIterator1, typename IteratorPair::first_type>::type,
typename suitable2=typename suitable_arg_for_iterator<SourceIterator2, typename IteratorPair::second_type>::type>
binary_predicate_selector(const SourceIterator1& first_arg,
const SourceIterator2& second_arg,
const Predicate& pred_arg,
bool at_valid_position=false)
: base_t(prepare_iterator_arg<typename IteratorPair::first_type>(first_arg), prepare_iterator_arg<typename IteratorPair::second_type>(second_arg))
, pred(helper::create(pred_arg))
{
if (!at_valid_position) valid_position();
}
binary_predicate_selector& operator++ ()
{
base_t::operator++();
valid_position();
return *this;
}
const binary_predicate_selector operator++ (int)
{
binary_predicate_selector copy=*this; operator++(); return copy;
}
binary_predicate_selector& operator-- ()
{
static_assert(iterator_traits<base_t>::is_bidirectional, "iterator is not bidirectional");
do
base_t::operator--();
while (!pred(*helper::get1(*this), *helper::get2(this->second)));
return *this;
}
const binary_predicate_selector operator-- (int)
{
binary_predicate_selector copy=*this; operator--(); return copy;
}
void rewind()
{
static_assert(check_iterator_feature<base_t, rewindable>::value, "iterator is not rewindable");
base_t::rewind();
valid_position();
}
private:
void operator+=(int);
void operator-=(int);
void operator+(int);
void operator-(int);
void operator[](int);
};
template <typename IteratorPair, typename Predicate, typename Feature>
struct check_iterator_feature<binary_predicate_selector<IteratorPair, Predicate>, Feature>
: check_iterator_feature<IteratorPair, Feature> {};
template <typename Iterator1, typename Iterator2, typename Predicate> inline
auto make_binary_predicate_selector(Iterator1& first, Iterator2& second, const Predicate& pred)
{
return binary_predicate_selector<iterator_pair<pointer2iterator_t<Iterator1>, pointer2iterator_t<Iterator2>>, Predicate>
(pointer2iterator(std::forward<Iterator1>(first)), pointer2iterator(std::forward<Iterator2>(second)), pred);
}
struct binary_predicate_selector_constructor {
template <typename IteratorPair, typename Predicate, typename ExpectedFeatures>
struct defs {
typedef binary_helper<IteratorPair,Predicate> helper;
typedef typename mix_features<ExpectedFeatures, end_sensitive>::type
needed_pair_features;
typedef void needed_features1;
typedef void needed_features2;
typedef binary_predicate_selector<IteratorPair, Predicate> iterator;
};
};
template <typename ContainerRef1, typename ContainerRef2, typename Predicate>
class SelectedContainerPairSubset
: public modified_container_pair_base<ContainerRef1, ContainerRef2, Predicate>,
public modified_container_pair_impl< SelectedContainerPairSubset<ContainerRef1, ContainerRef2, Predicate>,
mlist< Container1Tag< ContainerRef1 >,
Container2Tag< ContainerRef2 >,
IteratorConstructorTag< binary_predicate_selector_constructor >,
OperationTag< Predicate > > >,
public generic_of_subset< SelectedContainerPairSubset<ContainerRef1, ContainerRef2, Predicate>,
typename deref<ContainerRef1>::type > {
typedef modified_container_pair_base<ContainerRef1, ContainerRef2, Predicate> base_t;
typedef modified_container_pair_impl<SelectedContainerPairSubset> impl_t;
public:
typedef typename least_derived_class<bidirectional_iterator_tag, typename impl_t::container_category>::type container_category;
SelectedContainerPairSubset(typename base_t::first_arg_type src1_arg, typename base_t::second_arg_type src2_arg,
const Predicate& pred_arg=Predicate())
: base_t(src1_arg, src2_arg, pred_arg) {}
using base_t::get_operation;
};
template <typename ContainerRef1, typename ContainerRef2, typename Predicate>
struct spec_object_traits< SelectedContainerPairSubset<ContainerRef1, ContainerRef2, Predicate> >
: spec_object_traits<is_container> {
static const bool is_temporary=true,
is_always_const=effectively_const<ContainerRef1>::value;
};
template <typename Container1, typename Container2, typename Predicate> inline
SelectedContainerPairSubset<Container1&, Container2&, Predicate>
attach_selector(Container1& c1, Container2& c2, const Predicate& pred)
{
return SelectedContainerPairSubset<Container1&, Container2&, Predicate> (c1,c2,pred);
}
template <typename Container1, typename Container2, typename Predicate> inline
SelectedContainerPairSubset<const Container1&, Container2&, Predicate>
attach_selector(const Container1& c1, Container2& c2, Predicate pred)
{
return SelectedContainerPairSubset<const Container1&, Container2&, Predicate> (c1,c2,pred);
}
template <typename Container1, typename Container2, typename Predicate> inline
SelectedContainerPairSubset<Container1&, const Container2&, Predicate>
attach_selector(Container1& c1, const Container2& c2, Predicate pred)
{
return SelectedContainerPairSubset<Container1&, const Container2&, Predicate> (c1,c2,pred);
}
template <typename Container1, typename Container2, typename Predicate> inline
SelectedContainerPairSubset<const Container1&, const Container2&, Predicate>
attach_selector(const Container1& c1, const Container2& c2, Predicate pred)
{
return SelectedContainerPairSubset<const Container1&, const Container2&, Predicate> (c1,c2,pred);
}
template <typename Container1, typename Container2> inline
SelectedContainerPairSubset<Container1&, const Container2&, operations::apply2< BuildUnaryIt<operations::dereference> > >
attach_mask(Container1& data, const Container2& boolean)
{
return SelectedContainerPairSubset<Container1&, const Container2&, operations::apply2< BuildUnaryIt<operations::dereference> > >
(data,boolean);
}
template <typename Container1, typename Container2> inline
SelectedContainerPairSubset<const Container1&, const Container2&, operations::apply2< BuildUnaryIt<operations::dereference> > >
attach_mask(const Container1& data, const Container2& boolean)
{
return SelectedContainerPairSubset<const Container1&, const Container2&, operations::apply2< BuildUnaryIt<operations::dereference> > >
(data,boolean);
}
} // end namespace pm
namespace polymake {
using pm::SelectedSubset;
using pm::TruncatedContainer;
using pm::ContractedRanges;
using pm::FoldedRanges;
using pm::SelectedContainerPairSubset;
using pm::make_unary_predicate_selector;
using pm::make_range_contractor;
using pm::make_equal_range_contractor;
using pm::make_range_folder;
using pm::make_binary_predicate_selector;
using pm::make_output_predicate_selector;
using pm::attach_selector;
using pm::attach_mask;
using pm::contract_ranges;
using pm::contract_equal_ranges;
using pm::fold_ranges;
} // end namespace polymake
#endif // POLYMAKE_SELECTED_SUBSET_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|