/usr/include/polymake/PolynomialImpl.h is in libpolymake-dev-common 3.2r2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 | /* Copyright (c) 1997-2018
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#ifndef POLYMAKE_POLYNOMIALIMPL_H
#define POLYMAKE_POLYNOMIALIMPL_H
#include "polymake/Integer.h"
#include "polymake/Vector.h"
#include "polymake/Matrix.h"
#include "polymake/SparseVector.h"
#include "polymake/SparseMatrix.h"
#include "polymake/TransformedContainer.h"
#include "polymake/numerical_functions.h"
#include "polymake/hash_map"
#include "polymake/list"
#include "polymake/vector"
#include "polymake/PolynomialVarNames.h"
#include <cassert>
#include <forward_list>
namespace pm {
namespace polynomial_impl {
// how to convert something to a coefficient of a Polynomial ---------------------
// primary template catches bogus input not being a polynomial at all
template <typename T, typename TBogus, typename enabled=void>
struct deeper_coefficient_impl
: std::false_type {};
// if T can directly be converted into Polynomial's coefficient, it will be handled by the corresponding constructor
template <typename T, typename Coefficient>
struct deeper_coefficient_impl<T, Coefficient,
typename std::enable_if<std::is_convertible<T, Coefficient>::value>::type>
: std::false_type {};
// T can be converted to Polynomial's Coefficient's coefficient
template <typename T, typename Coefficient>
struct deeper_coefficient_impl<T, Coefficient,
typename std::enable_if<std::is_convertible<T, typename Coefficient::coefficient_type>::value>::type>
: std::true_type {
using coefficient_type = Coefficient;
static coefficient_type construct(const T& x, const int n_vars)
{
return coefficient_type(x, n_vars);
}
};
// T can be converted to some deeper coefficient in the nesting hierarchy
template <typename T, typename Coefficient>
struct deeper_coefficient_impl<T, Coefficient,
typename std::enable_if<!std::is_convertible<T, typename Coefficient::coefficient_type>::value &&
deeper_coefficient_impl<T, typename Coefficient::coefficient_type>::value>::type>
: std::true_type {
using deeper = deeper_coefficient_impl<T, typename Coefficient::coefficient_type>;
using coefficient_type = Coefficient;
static coefficient_type construct(const T& x, const int n_vars)
{
return coefficient_type(deeper::construct(x, n_vars), n_vars);
}
};
// Sorting of monomials ----------------------------------------------
template <typename Exponent=int, bool strict=true>
class cmp_monomial_ordered_base {
public:
// for multi-variate polynomials
cmp_value operator()(const SparseVector<Exponent>& m1, const SparseVector<Exponent>& m2) const
{
return compare_values(m1, m2, unit_matrix<Exponent>(m1.dim()));
}
// for univariate polynomials
cmp_value operator()(const Exponent& exp1, const Exponent& exp2) const
{
return operations::cmp()(exp1, exp2);
}
// for multi-variate polynomials
template <typename TMatrix>
cmp_value compare_values(const SparseVector<Exponent>& m1, const SparseVector<Exponent>& m2, const GenericMatrix<TMatrix>& order) const
{
cmp_value v(operations::cmp()(order * m1, order * m2));
if (v != cmp_eq || !strict)
return v;
else
return operations::cmp()(m1, m2);
}
// for multi-variate polynomials
template <typename TVector>
cmp_value compare_values(const SparseVector<Exponent>& m1, const SparseVector<Exponent>& m2, const GenericVector<TVector>& order) const
{
cmp_value v(operations::cmp()(order * m1, order * m2));
if (v != cmp_eq || !strict)
return v;
else
return operations::cmp()(m1, m2);
}
// for univariate polynomials
cmp_value compare_values(const Exponent& exp1, const Exponent& exp2, const Exponent& reverse) const
{
return operations::cmp()(reverse * exp1, reverse * exp2);
}
};
template <typename Order, bool strict=true, typename order_type_tag=typename object_traits<Order>::generic_tag>
class cmp_monomial_ordered
: public cmp_monomial_ordered_base<Order, strict>
{
public:
using exponent_type = Order;
explicit cmp_monomial_ordered(const exponent_type& order_arg)
: order(order_arg) {}
cmp_value operator()(const exponent_type& exp1, const exponent_type& exp2) const
{
return this->compare_values(exp1, exp2, order);
}
private:
const exponent_type order;
};
template <typename Order, bool strict>
class cmp_monomial_ordered<Order, strict, is_matrix>
: public cmp_monomial_ordered_base<typename Order::element_type, strict>
{
public:
explicit cmp_monomial_ordered(const Order& order_arg)
: order(order_arg) {}
cmp_value operator()(const SparseVector<typename Order::element_type>& m1, const SparseVector<typename Order::element_type>& m2) const
{
return this->compare_values(m1, m2, order);
}
private:
const Order& order;
};
template <typename Order, bool strict>
class cmp_monomial_ordered<Order, strict, is_vector>
: public cmp_monomial_ordered_base<typename Order::element_type, strict>
{
public:
explicit cmp_monomial_ordered(const Order& order_arg)
: order(order_arg) {}
cmp_value operator()(const SparseVector<typename Order::element_type>& m1, const SparseVector<typename Order::element_type>& m2) const
{
return this->compare_values(m1, m2, order);
}
private:
const Order& order;
};
// Univariate and multivariate monomials
// these don't actually contain any data, they just encode the basic functionality.
template <typename Exponent>
struct UnivariateMonomial;
template <typename Exponent>
struct MultivariateMonomial;
template <typename Coefficient>
struct nesting_level : int_constant<0> {};
template <typename Exponent>
struct UnivariateMonomial {
using exponent_type = Exponent;
using monomial_type = Exponent;
using monomial_list_type = Vector<Exponent>;
using homogenized_type = MultivariateMonomial<Exponent>;
static Exponent deg(const monomial_type& m) { return m; }
static monomial_type default_value(const int n_vars) { return zero_value<Exponent>(); }
static bool equals_to_default(const monomial_type& m) { return is_zero(m); }
static monomial_type empty_value(const int n_vars)
{
return std::numeric_limits<Exponent>::has_infinity ? - std::numeric_limits<Exponent>::infinity() : std::numeric_limits<Exponent>::min();
}
static void croak_if_incompatible(const monomial_type& m, const int n_vars)
{
if (n_vars != 1) throw std::runtime_error("Monomial has different number of variables");
}
template <typename coefficient_type>
static monomial_list_type monomials(const int n_vars, const int n_terms,
const hash_map<monomial_type, coefficient_type>& h)
{
return monomial_list_type(n_terms, attach_operation(h, BuildUnary<operations::take_first>()).begin());
}
template <typename Coefficient, typename Output>
static void pretty_print(Output& out, const monomial_type& m,
const Coefficient& default_coefficient, const PolynomialVarNames& names)
{
if (equals_to_default(m)) {
out << default_coefficient; // constant monomial
return;
}
out << names(0,1);
if (!is_one(m)) out << '^' << m;
}
static typename homogenized_type::monomial_type homogenize(const monomial_type& m, int new_variable_index, const Exponent& to_degree)
{
typename homogenized_type::monomial_type result(2);
result[ new_variable_index? 1 : 0] = to_degree - m;
result[ new_variable_index? 0 : 1] = m;
return result;
}
};
template <typename Exponent>
struct MultivariateMonomial {
using exponent_type = Exponent;
using monomial_type = SparseVector<Exponent>;
using monomial_list_type = Matrix<Exponent>;
using homogenized_type = MultivariateMonomial<Exponent>;
static Exponent deg(const monomial_type& m) { return accumulate(m, operations::add<Exponent, Exponent>()); }
static monomial_type default_value(const int n_vars) { return monomial_type(n_vars); }
static bool equals_to_default(const monomial_type& m) { return m.empty(); }
static monomial_type empty_value(const int n_vars)
{
return same_element_vector<Exponent>((std::numeric_limits<Exponent>::has_infinity ? - std::numeric_limits<Exponent>::infinity() : std::numeric_limits<Exponent>::min()),
n_vars);
}
static void croak_if_incompatible(const monomial_type& m, const int n_vars)
{
if (n_vars != m.dim()) throw std::runtime_error("Monomial has different number of variables");
}
template <typename Coefficient>
static monomial_list_type monomials(const int n_vars, const int n_terms,
const hash_map<monomial_type, Coefficient>& h)
{
return monomial_list_type(n_terms, n_vars,
attach_operation(h, BuildUnary<operations::take_first>()).begin());
}
template <typename Output, typename Coefficient>
static void pretty_print(Output& out, const monomial_type& m,
const Coefficient& default_coefficient, const PolynomialVarNames& names)
{
if (m.empty()) {
out << default_coefficient; // constant monomial
return;
}
bool first = true;
for (auto it=m.begin(); !it.at_end(); ++it) {
if (first)
first = false;
else
out << '*';
out << names(it.index(), m.dim());
if (!is_one(*it)) out << '^' << *it;
}
}
static typename homogenized_type::monomial_type
homogenize(const monomial_type& m, int new_variable_index, const Exponent& to_degree)
{
monomial_type result(m.dim()+1);
result[new_variable_index] = to_degree - deg(m);
result.slice(~scalar2set(new_variable_index)) = m;
return result;
}
};
template <typename T> inline
typename std::enable_if<is_field<T>::value, bool>::type
is_minus_one(const T& x)
{
return is_one(-x);
}
template <typename T> inline
typename std::enable_if<!is_field<T>::value, bool>::type
is_minus_one(const T& x)
{
return false;
}
// The generic implementation of a polynomial.
template <typename Monomial, typename Coefficient>
class GenericImpl {
template <typename> friend struct pm::spec_object_traits;
public:
using coefficient_type = Coefficient;
using exponent_type = typename Monomial::exponent_type;
using monomial_type = typename Monomial::monomial_type;
using sorted_terms_type = typename std::forward_list<monomial_type>;
using term_hash = hash_map<monomial_type, coefficient_type>;
using monomial_list_type = typename Monomial::monomial_list_type;
static constexpr int coefficient_nesting_level=nesting_level<coefficient_type>::value;
template <typename T>
struct is_deeper_coefficient
: deeper_coefficient_impl<T, coefficient_type> {};
template <typename T>
struct fits_as_coefficient
: bool_constant<can_upgrade<T, coefficient_type>::value || is_deeper_coefficient<T>::value> {};
explicit GenericImpl(const int n_vars = 0)
: n_variables(n_vars)
, the_sorted_terms_set(false) {}
template <typename T, typename enabled=typename std::enable_if<fits_as_coefficient<T>::value>::type>
GenericImpl(const T& c, const int n_vars)
: n_variables(n_vars)
, the_sorted_terms_set(false)
{
if (__builtin_expect(!is_zero(c), 1)) {
the_terms.emplace(Monomial::default_value(n_variables), static_cast<coefficient_type>(c));
}
}
template <typename Container1, typename Container2>
GenericImpl(const Container1& coefficients, const Container2& monomials, const int n_vars)
: n_variables(n_vars)
, the_sorted_terms_set(false)
{
if (POLYMAKE_DEBUG) {
if (static_cast<size_t>(monomials.size()) != static_cast<size_t>(coefficients.size()))
throw std::runtime_error("Polynomial constructor: Numbers of monomials and coefficients don't match");
}
auto c = coefficients.begin();
for (auto m = entire(monomials); !m.at_end(); ++m, ++c)
add_term(*m, *c, std::false_type());
}
GenericImpl(const int n_vars, const term_hash& src)
: n_variables(n_vars)
, the_terms(src)
, the_sorted_terms_set(false) {}
// Can't have this as constructor, might be ambiguous if coefficient_type = int
static GenericImpl fromMonomial(const monomial_type&m, const coefficient_type& c, const int n_vars)
{
GenericImpl result(n_vars);
result.the_terms.insert(m, c);
return result;
}
static GenericImpl fromMonomial(const typename term_hash::const_iterator it, const int n_vars)
{
GenericImpl result(n_vars);
result.the_terms.insert(it->first, it->second);
return result;
}
void clear()
{
the_terms.clear();
forget_sorted_terms();
}
template <typename Other>
void croak_if_incompatible(const Other& other) const
{
if (n_vars() != other.n_vars()) throw std::runtime_error("Polynomials of different rings");
}
int n_vars() const { return n_variables; }
int n_terms() const { return the_terms.size(); }
const term_hash& get_terms() const { return the_terms; }
term_hash& get_mutable_terms() { return the_terms; }
bool trivial() const { return the_terms.empty(); }
bool unit() const
{
return the_terms.size()==1
&& Monomial::equals_to_default(the_terms.begin()->first)
&& is_one(the_terms.begin()->second);
}
Vector<coefficient_type> coefficients_as_vector() const
{
return Vector<coefficient_type>(n_terms(),
attach_operation(the_terms, BuildUnary<operations::take_second>()).begin());
}
monomial_list_type monomials() const
{
return Monomial::monomials(n_variables, n_terms(), the_terms);
}
bool operator== (const GenericImpl& p2) const
{
croak_if_incompatible(p2);
return the_terms == p2.the_terms;
}
template <typename T>
typename std::enable_if<fits_as_coefficient<T>::value, bool>::type
operator== (const T& c) const
{
return trivial() && is_zero(c)
|| (the_terms.size()==1
&& Monomial::equals_to_default(the_terms.begin()->first)
&& the_terms.begin()->second==c);
}
// returns the coefficient of the monomial m or 0 iff m does not exists
const coefficient_type& get_coefficient(const monomial_type& m) const
{
Monomial::croak_if_incompatible(m, n_variables);
typename term_hash::const_iterator find = the_terms.find(m);
if (find != the_terms.end())
return find->second;
return zero_value<coefficient_type>();
}
bool exists(const monomial_type& m) const
{
Monomial::croak_if_incompatible(m);
return the_terms.exists(m);
}
typename Monomial::exponent_type deg() const
{
return Monomial::deg(lm());
}
typename Monomial::exponent_type lower_deg() const
{
typename Monomial::exponent_type low= Monomial::deg( - Monomial::empty_value(n_variables));
for (auto it=entire(get_terms()); !it.at_end(); ++it)
assign_min(low, Monomial::deg(it->first));
return low;
}
// leading term
GenericImpl lt() const
{
if (trivial())
return fromMonomial(this->lm(), zero_value<coefficient_type>(), n_variables);
else
return fromMonomial(find_lex_lm(), n_variables);
}
template <typename TMatrix> inline
GenericImpl lt(const GenericMatrix<TMatrix, exponent_type>& order) const
{
if (trivial())
return fromMonomial(this->lm(order), zero_value<coefficient_type>(), n_variables);
else
return fromMonomial(find_lm(cmp_monomial_ordered<TMatrix>(order.top())), n_variables);
}
GenericImpl lt(const exponent_type& order) const
{
if (trivial())
return fromMonomial(this->lm(order), zero_value<coefficient_type>(), n_variables);
else
return fromMonomial(find_lm(cmp_monomial_ordered<exponent_type>(order)), n_variables);
}
//! Return the leading monomial.
monomial_type lm() const
{
if (trivial())
return Monomial::empty_value(n_variables);
else
return find_lex_lm()->first;
}
template <typename TMatrix>
monomial_type lm(const GenericMatrix<TMatrix, exponent_type>& order) const
{
if (trivial())
return monomial_type::empty_value(n_variables);
else
return find_lm(cmp_monomial_ordered<TMatrix>(order.top()))->first;
}
monomial_type lm(const exponent_type& order) const
{
if (trivial())
return monomial_type::empty_value(n_variables);
else
return find_lm(cmp_monomial_ordered<exponent_type>(order))->first;
}
//! Return the leading coefficient.
const coefficient_type& lc() const
{
if (trivial())
return zero_value<coefficient_type>();
else
return find_lex_lm()->second;
}
template <typename TMatrix>
const coefficient_type& lc(const GenericMatrix<TMatrix, exponent_type>& order) const
{
if (trivial())
return zero_value<coefficient_type>();
else
return find_lm(cmp_monomial_ordered<TMatrix>(order.top()))->second;
}
const coefficient_type& lc(const exponent_type& order) const
{
if (trivial())
return zero_value<coefficient_type>();
else
return find_lm(cmp_monomial_ordered<exponent_type>(order))->second;
}
template <typename TVector>
static const auto cmp_ordered_function(const GenericVector<TVector, exponent_type>& weights)
{
return cmp_monomial_ordered<TVector,false>(weights.top());
}
static const auto cmp_ordered_function(const exponent_type& weights)
{
return cmp_monomial_ordered<exponent_type>(weights);
}
template <typename TWeights>
GenericImpl initial_form(const TWeights& weights) const
{
const auto cmp_ordered = cmp_ordered_function(weights);
typename term_hash::const_iterator it=the_terms.begin(), max_term=it, end=the_terms.end();
std::list<typename term_hash::const_iterator> if_list;
if (it != end) {
if_list.push_back(max_term);
while (++it != end) {
cmp_value c = cmp_ordered(it->first, max_term->first);
if (c == cmp_gt) {
max_term = it;
if_list.clear();
if_list.push_back(it);
} else if (c == cmp_eq) {
if_list.push_back(it);
}
}
}
GenericImpl in_form(n_variables);
// this is an iterator over iterators
for (auto&& termit : if_list)
in_form.add_term(termit->first, termit->second, std::true_type());
return in_form;
}
template <typename T>
typename std::enable_if<fits_as_coefficient<T>::value, GenericImpl>::type
operator* (const T& c) const
{
if (__builtin_expect(is_zero(c), 0))
return GenericImpl(n_variables);
GenericImpl prod(n_variables, the_terms);
return prod *= c;
}
template <typename T>
typename std::enable_if<fits_as_coefficient<T>::value, GenericImpl>::type
mult_from_right(const T& c) const
{
if (__builtin_expect(is_zero(c), 0))
return GenericImpl(n_variables);
GenericImpl prod(n_variables, the_terms);
for (auto& term : prod.the_terms)
term.second = c * term.second;
return prod;
}
template <typename T>
typename std::enable_if<fits_as_coefficient<T>::value, GenericImpl>::type&
operator*= (const T& c)
{
if (__builtin_expect(is_zero(c), 0)) {
clear();
} else {
for (auto& term : the_terms)
term.second *= c;
}
return *this;
}
template <typename T>
typename std::enable_if<fits_as_coefficient<T>::value, GenericImpl>::type
operator/ (const T& c) const
{
if (__builtin_expect(is_zero(c), 0)) throw GMP::ZeroDivide();
GenericImpl prod(n_variables, the_terms);
return prod /= c;
}
template <typename T>
typename std::enable_if<fits_as_coefficient<T>::value, GenericImpl>::type&
operator/= (const T& c)
{
if (__builtin_expect(is_zero(c), 0)) throw GMP::ZeroDivide();
for (auto& term : the_terms)
term.second /= c;
return *this;
}
//! Divide by the coefficient of the leading monomial
GenericImpl& normalize()
{
if (!trivial()) {
const coefficient_type lead=lc();
*this /= lead;
}
return *this;
}
GenericImpl<typename Monomial::homogenized_type, Coefficient> homogenize(int new_variable_index = 0) const
{
const typename Monomial::exponent_type degree = deg();
hash_map<typename Monomial::homogenized_type::monomial_type, Coefficient> result_hash;
for (const auto& term : the_terms) {
result_hash.insert( Monomial::homogenize( term.first, new_variable_index, degree), term.second);
}
return GenericImpl<typename Monomial::homogenized_type, Coefficient>(n_variables + 1, result_hash);
}
GenericImpl operator* (const GenericImpl& p2) const
{
croak_if_incompatible(p2);
GenericImpl prod(n_variables);
for (const auto& term1 : the_terms)
for (const auto& term2 : p2.the_terms)
prod.add_term(term1.first + term2.first, term1.second * term2.second, std::true_type());
return prod;
}
GenericImpl& operator*= (const GenericImpl& p)
{
*this = (*this) * p;
return *this;
}
template <typename E>
GenericImpl exponentiate_monomial(const E& exp) const
{
if (the_terms.size() != 1)
throw std::runtime_error("Except for positive integers, Exponentiation is only implemented for normalized monomials");
const auto& t = *(the_terms.begin());
if (t.second != one_value<coefficient_type>())
throw std::runtime_error("Except for positive integers, Exponentiation is only implemented for normalized monomials");
GenericImpl result(n_variables);
result.the_terms.emplace(monomial_type(t.first * exp), t.second);
return result;
}
template <typename E>
typename std::enable_if<!std::numeric_limits<E>::is_integer, GenericImpl>::type pow(const E& exp) const
{
return exponentiate_monomial(exp);
}
template <typename E>
typename std::enable_if<std::numeric_limits<E>::is_integer, GenericImpl>::type pow(const E& exp) const
{
if (exp < 0)
return exponentiate_monomial(exp);
if (exp == 1)
return GenericImpl(*this);
GenericImpl result(one_value<coefficient_type>(), n_variables);
if (exp != 0) {
int e=exp;
GenericImpl pow2(*this);
for (;;) {
if (e & 1) {
result *= pow2;
}
if (e /= 2) {
pow2 *= pow2;
} else {
break;
}
}
}
return result;
}
GenericImpl operator- () const
{
GenericImpl result(n_variables, the_terms);
return result.negate();
}
GenericImpl& negate()
{
for (auto& term : the_terms)
pm::negate(term.second);
return *this;
}
template <typename T>
typename std::enable_if<fits_as_coefficient<T>::value, GenericImpl>::type
operator+ (const T& c) const
{
GenericImpl sum(n_variables, the_terms);
return sum += c;
}
GenericImpl& operator+= (const coefficient_type& c)
{
if (__builtin_expect(!is_zero(c), 1))
add_term(Monomial::default_value(n_variables), c, std::true_type());
return *this;
}
template <typename T>
typename std::enable_if<is_deeper_coefficient<T>::value, GenericImpl>::type&
operator+= (const T& c)
{
return operator+=(is_deeper_coefficient<T>::construct(c, n_variables));
}
template <typename T>
typename std::enable_if<fits_as_coefficient<T>::value, GenericImpl>::type
operator- (const T& c) const
{
GenericImpl diff(n_variables, the_terms);
return diff -= c;
}
GenericImpl& operator-= (const coefficient_type& c)
{
if (__builtin_expect(!is_zero(c), 1))
sub_term(Monomial::default_value(n_variables), c, std::true_type());
return *this;
}
template <typename T>
typename std::enable_if<is_deeper_coefficient<T>::value, GenericImpl>::type&
operator-= (const T& c)
{
return operator-=(is_deeper_coefficient<T>::construct(c, n_variables));
}
GenericImpl operator+ (const GenericImpl& p) const
{
GenericImpl sum(n_variables, the_terms);
return sum+=p;
}
GenericImpl& operator+= (const GenericImpl& p)
{
croak_if_incompatible(p);
for (const auto& term : p.the_terms)
add_term(term.first, term.second, std::true_type());
return *this;
}
GenericImpl operator- (const GenericImpl& p) const
{
GenericImpl diff(n_variables, the_terms);
return diff-=p;
}
GenericImpl& operator-= (const GenericImpl& p)
{
croak_if_incompatible(p);
for (const auto& t : p.the_terms)
sub_term(t.first, t.second, std::true_type());
return *this;
}
static PolynomialVarNames& var_names()
{
// at the beginning, the default naming scheme is established
static PolynomialVarNames names(nesting_level<coefficient_type>::value);
return names;
}
static void reset_var_names()
{
var_names()=PolynomialVarNames(nesting_level<coefficient_type>::value);
}
// Printing the polynomial
template <typename Output, typename Order>
void pretty_print(Output& out, const Order& order) const
{
// this list will carry the sorted terms except in lex
sorted_terms_type temp;
const sorted_terms_type& sorted_terms = std::is_same<Order, cmp_monomial_ordered_base<exponent_type>>::value ? get_sorted_terms() : get_sorted_terms(temp, order);
bool first = true;
for (const auto& tp : sorted_terms) {
auto term = the_terms.find(tp);
if (first)
first = false;
else if (needs_plus(term->second))
out << " + ";
else
out << ' ';
pretty_print_term(out, term->first, term->second);
}
if (first) out << zero_value<coefficient_type>();
}
// Printing a term
template <typename Output> static
void pretty_print_term(Output& out, const monomial_type& m, const coefficient_type& c)
{
if (!is_one(c)) {
if (is_minus_one(c)) {
out << "- ";
} else {
pretty_print_coefficient(out, c, bool_constant<coefficient_nesting_level==0>());
if (Monomial::equals_to_default(m)) return;
out << '*';
}
}
Monomial::pretty_print(out, m, one_value<coefficient_type>(), var_names());
}
template <typename Output> static
void pretty_print_coefficient(Output& out, const coefficient_type& c, bool_constant<true>)
{
out << c;
}
template <typename Output> static
void pretty_print_coefficient(Output& out, const coefficient_type& c, bool_constant<false>)
{
out << '(' << c << ')';
}
//! compare term-wise with respect of the given ordering
template <typename Comparator>
cmp_value compare_ordered(const GenericImpl& p, const Comparator& cmp_order) const
{
croak_if_incompatible(p);
if (trivial()) return p.trivial() ? cmp_eq : cmp_lt;
if (p.trivial()) return cmp_gt;
// this list will carry the sorted terms except in lex
sorted_terms_type t1, t2;
const sorted_terms_type& fst = std::is_same<Comparator, cmp_monomial_ordered_base<exponent_type> >::value ? get_sorted_terms() : get_sorted_terms(t1, cmp_order);
const sorted_terms_type& snd = std::is_same<Comparator, cmp_monomial_ordered_base<exponent_type> >::value ? p.get_sorted_terms() : p.get_sorted_terms(t2, cmp_order);
auto it1 = fst.begin(),
it2 = snd.begin();
while (it1 != fst.end() && it2 != snd.end()) {
auto it_term1=the_terms.find(*it1),
it_term2=p.the_terms.find(*it2);
if (POLYMAKE_DEBUG) {
if (it_term1 == the_terms.end()) {
cerr << "Polynomial:\n" << the_terms << "\nSorted terms:\n" << fst << "\n";
throw std::runtime_error("wrong 1st sorted term sequence");
}
if (it_term2 == p.the_terms.end()) {
cerr << "Polynomial:\n" << p.the_terms << "\nSorted terms:\n" << snd << "\n";
throw std::runtime_error("wrong 2nd sorted term sequence");
}
}
cmp_value cmp_terms = compare_terms(*it_term1, *it_term2, cmp_monomial_ordered_base<exponent_type>());
if (cmp_terms != cmp_eq) return cmp_terms;
++it1;
++it2;
}
if (it1 == fst.end()) {
return it2 == snd.end() ? cmp_eq : cmp_lt;
}
return cmp_gt;
}
template <typename Comparator, typename TermType> static
cmp_value compare_terms(const TermType& t1, const TermType& t2, const Comparator& cmp_order)
{
const cmp_value cmp_monom = cmp_order(t1.first, t2.first);
return cmp_monom != cmp_eq ? cmp_monom :
operations::cmp()(t1.second, t2.second);
}
static bool needs_plus(const coefficient_type& c)
{
// in particular gives false for Polynomial and TropicalNumber
return needs_plus(c, is_field<coefficient_type>() );
}
//! compare lexicographically
cmp_value compare(const GenericImpl& p) const
{
return compare_ordered(p, cmp_monomial_ordered_base<exponent_type>());
}
friend
bool operator< (const GenericImpl& p1, const GenericImpl& p2)
{
return p1.compare(p2) == cmp_lt;
}
friend
bool operator> (const GenericImpl& p1, const GenericImpl& p2)
{
return p1.compare(p2) == cmp_gt;
}
friend
bool operator<= (const GenericImpl& p1, const GenericImpl& p2)
{
return p1.compare(p2) != cmp_gt;
}
friend
bool operator>= (const GenericImpl& p1, const GenericImpl& p2)
{
return p1.compare(p2) != cmp_lt;
}
size_t get_hash() const noexcept
{
return hash_func<int>()(n_variables) * hash_func<term_hash>()(the_terms);
}
template <typename Order> static
auto get_sorting_lambda(const Order& cmp_order)
{
return [cmp_order] (monomial_type a, monomial_type b) { return cmp_order(a,b) == cmp_gt; };
}
// returns a list containing the exponents ordered by lex
const sorted_terms_type& get_sorted_terms() const
{
if (the_sorted_terms_set) return the_sorted_terms;
for (const auto& term : the_terms) {
the_sorted_terms.push_front(term.first);
}
the_sorted_terms.sort(get_sorting_lambda(cmp_monomial_ordered_base<exponent_type>()));
the_sorted_terms_set = true;
return the_sorted_terms;
}
// returns a list containing the exponents ordered by cmp_order
template<typename Order>
const sorted_terms_type& get_sorted_terms(sorted_terms_type& sort, const Order& cmp_order) const
{
for (const auto& term : the_terms) {
sort.push_front(term.first);
}
sort.sort(get_sorting_lambda(cmp_order));
return sort;
}
bool terms_sorted() const
{
return the_sorted_terms_set;
}
// find the leading term with respect of the lexicographic order
// Constant time, if terms have be sorted, else linear
typename term_hash::const_iterator find_lex_lm() const
{
if (!trivial()) {
return terms_sorted() ? the_terms.find(*(get_sorted_terms().begin())) : find_lm(cmp_monomial_ordered_base<exponent_type>());
} else {
return the_terms.end();
}
}
template <typename Comparator>
typename term_hash::const_iterator find_lm(const Comparator& cmp_order) const
{
auto it=the_terms.begin(), lt_it=it, end=the_terms.end();
if (it != end) {
while (++it != end)
if (cmp_order(it->first, lt_it->first) == cmp_gt)
lt_it=it;
}
return lt_it;
}
template <typename T, bool trusted>
void add_term(const monomial_type& m, T&& c, bool_constant<trusted>)
{
if (!trusted && __builtin_expect(is_zero(c), 0)) return;
forget_sorted_terms();
auto it = the_terms.find_or_insert(m);
if (it.second)
it.first->second=std::forward<T>(c);
else if (is_zero(it.first->second += c))
the_terms.erase(it.first);
}
template <typename T, bool trusted>
void sub_term(const monomial_type& m, T&& c, bool_constant<trusted>)
{
if (!trusted && __builtin_expect(is_zero(c), 0)) return;
forget_sorted_terms();
auto it = the_terms.find_or_insert(m);
if (it.second)
it.first->second=-std::forward<T>(c);
else if (is_zero(it.first->second -= c))
the_terms.erase(it.first);
}
static bool needs_plus(const coefficient_type& c, std::true_type) { return c >= zero_value<coefficient_type>(); }
static bool needs_plus(const coefficient_type&, std::false_type) { return true; }
void forget_sorted_terms()
{
if (the_sorted_terms_set) {
the_sorted_terms.clear();
the_sorted_terms_set=false;
}
}
protected:
int n_variables;
term_hash the_terms;
// terms ordered by lex termorder
mutable sorted_terms_type the_sorted_terms;
// true if sorted_terms has a valid value
mutable bool the_sorted_terms_set;
};
} //end namespace polynomial_impl
template <typename Coefficient, typename Exponent>
struct spec_object_traits< Serialized< polynomial_impl::GenericImpl<polynomial_impl::UnivariateMonomial<Exponent>, Coefficient> > >
: spec_object_traits<is_composite> {
using Monomial = polynomial_impl::UnivariateMonomial<Exponent>;
using masquerade_for = polynomial_impl::GenericImpl<Monomial,Coefficient>;
using elements = typename polynomial_impl::GenericImpl<Monomial,Coefficient>::term_hash;
template <typename Me, typename Visitor>
static void visit_elements(Me& me, Visitor& v)
{
// here we read a serialized polynomial and should clear the sorted terms first
me.forget_sorted_terms();
v << me.the_terms;
me.n_variables = 1;
}
template <typename Me, typename Visitor>
static void visit_elements(const Me& me, Visitor& v)
{
v << me.the_terms;
}
};
template <typename Coefficient, typename Exponent>
struct spec_object_traits< Serialized< polynomial_impl::GenericImpl<polynomial_impl::MultivariateMonomial<Exponent>, Coefficient> > >
: spec_object_traits<is_composite> {
using Monomial = polynomial_impl::MultivariateMonomial<Exponent>;
using masquerade_for = polynomial_impl::GenericImpl<Monomial,Coefficient>;
using elements = cons<typename polynomial_impl::GenericImpl<Monomial,Coefficient>::term_hash, int>;
template <typename Me, typename Visitor>
static void visit_elements(Me& me, Visitor& v)
{
// here we read a serialized polynomial and should clear the sorted terms first
me.forget_sorted_terms();
v << me.the_terms << me.n_variables;
}
template <typename Me, typename Visitor>
static void visit_elements(const Me& me, Visitor& v)
{
v << me.the_terms << me.n_variables;
}
};
} //end namespace pm
#endif // POLYMAKE_POLYNOMIALIMPL_H
|