This file is indexed.

/usr/include/polymake/GenericVector.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
/* Copyright (c) 1997-2018
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#ifndef POLYMAKE_GENERIC_VECTOR_H
#define POLYMAKE_GENERIC_VECTOR_H

#include "polymake/GenericIO.h"
#include "polymake/TransformedContainer.h"
#include "polymake/internal/converters.h"
#include "polymake/IndexedSubset.h"
#include "polymake/SelectedSubset.h"
#include "polymake/ContainerChain.h"
#include "polymake/internal/sparse.h"

#include <algorithm>
#include <stdexcept>

namespace pm {

template <typename E> class Vector;
template <typename E> class SparseVector;

/** @file GenericVector.h
    @class GenericVector
    @brief @ref generic "Generic type" for @ref vector_sec "vectors"
 */

template <typename TVector, typename E=typename TVector::element_type>
class GenericVector
   : public Generic<TVector>
   , public operators::base {
   template <typename, typename> friend class GenericVector;

protected:
   GenericVector() {}
   GenericVector(const GenericVector&) {}
public:
   /// element type
   typedef E element_type;
   /// determine if the persistent type is sparse
   static const bool is_sparse=check_container_feature<TVector, sparse>::value;
   /// @ref generic "persistent type"
   typedef typename std::conditional<is_sparse, SparseVector<E>, Vector<E> >::type persistent_type;
   /// top type
   typedef typename Generic<TVector>::top_type top_type;
   /// @ref generic "generic type"
   typedef GenericVector generic_type;
   typedef typename std::conditional<check_container_feature<TVector, pure_sparse>::value, pure_sparse,
                                     typename std::conditional<is_sparse, sparse, dense>::type>::type
      sparse_discr;

protected:
   template <typename TVector2>
   void assign_impl(const TVector2& v, dense)
   {
      copy_range(ensure(v, (dense*)0).begin(), entire(this->top()));
   }

   template <typename TVector2>
   void assign_impl(const TVector2& v, pure_sparse)
   {
      assign_sparse(this->top(), ensure(v, (pure_sparse*)0).begin());
   }

   template <typename TVector2, typename E2>
   constexpr bool trivial_assignment(const GenericVector<TVector2, E2>&) const { return false; }

   constexpr bool trivial_assignment(const GenericVector& v) const { return this==&v; }

   template <typename TVector2>
   void swap(GenericVector<TVector2, E>& v, dense)
   {
      swap_ranges(entire(this->top()), v.top().begin());
   }

   template <typename TVector2>
   void swap(GenericVector<TVector2, E>& v, pure_sparse)
   {
      swap_sparse(this->top(), ensure(v.top(), (pure_sparse*)0));
   }

   template <typename TVector2>
   void assign(const TVector2& v)
   {
      assign_impl(v, sparse_discr());
   }

   template <typename TVector2, typename Operation>
   void assign_op_impl(const TVector2& v, const Operation& op_arg, dense, dense)
   {
      perform_assign(entire(this->top()), v.begin(), op_arg);
   }

   template <typename TVector2, typename Operation>
   void assign_op_impl(const TVector2& v, const Operation& op_arg, dense, sparse)
   {
      typedef typename Entire<TVector2>::const_iterator iterator2;
      typedef binary_op_builder<Operation, typename TVector::const_iterator, iterator2> opb;
      const typename opb::operation& op=opb::create(op_arg);
      int i_prev=0;
      typename TVector::iterator dst=this->top().begin();
      for (iterator2 src2=entire(v); !src2.at_end(); ++src2) {
         int i=src2.index();
         std::advance(dst, i-i_prev);
         op.assign(*dst, *src2);
         i_prev=i;
      }
   }

   template <typename TVector2, typename Operation, typename discr2>
   typename std::enable_if<!operations::is_partially_defined_for<Operation, TVector, TVector2>::value, void>::type
   assign_op_impl(const TVector2& v, const Operation& op, sparse, discr2)
   {
      perform_assign(entire(this->top()), v.begin(), op);
   }

   template <typename TVector2, typename Operation, typename discr2>
   typename std::enable_if<operations::is_partially_defined_for<Operation, TVector, TVector2>::value, void>::type
   assign_op_impl(const TVector2& v, const Operation& op, sparse, discr2)
   {
      perform_assign_sparse(this->top(), ensure(v, (pure_sparse*)0).begin(), op);
   }

   template <typename E2>
   void fill_impl(const E2& x, dense)
   {
      fill_range(entire(this->top()), x);
   }

   template <typename E2>
   void fill_impl(const E2& x, pure_sparse)
   {
      if (!is_zero(x))
         fill_sparse(this->top(), ensure(constant(x), (indexed*)0).begin());
      else
         this->top().clear();
   }

   // undefined for dense
   void remove0s(dense);

   void remove0s(pure_sparse)
   {
      top_type& me=this->top();
      for (auto e=me.begin(); !e.at_end(); ) {
         if (!is_zero(*e))
            ++e;
         else
            me.erase(e++);
      }
   }

public:
   int dim() const { return get_dim(this->top()); }

   bool prefer_sparse_representation() const
   {
      return is_sparse && this->top().size()*2 < dim();
   }

   template <typename TVector2>
   void swap(GenericVector<TVector2, E>& v)
   {
      if (trivial_assignment(v)) return;

      if (POLYMAKE_DEBUG || !Unwary<TVector>::value || !Unwary<TVector2>::value) {
         if (dim() != v.dim())
            throw std::runtime_error("GenericVector::swap - dimension mismatch");
      }
      typedef typename std::conditional<check_container_feature<TVector, sparse>::value ||
                                        check_container_feature<TVector2, sparse>::value,
                                        pure_sparse, dense>::type
         sparse_discr2;
      swap(v, sparse_discr2());
   }

   template <typename Operation>
   void assign_op(const Operation& op)
   {
      perform_assign(entire(this->top()), op);
   }

   template <typename TVector2, typename Operation>
   void assign_op(const TVector2& v, const Operation& op)
   {
      typedef typename std::conditional<check_container_feature<TVector2, sparse>::value, sparse, dense>::type sparse_discr2;
      assign_op_impl(v, op, sparse_discr(), sparse_discr2());
   }

   template <typename E2>
   void fill(const E2& x)
   {
      this->top().fill_impl(x, sparse_discr());
   }

   top_type& operator= (const GenericVector& v)
   {
      if (!trivial_assignment(v)) {
         if (!object_traits<TVector>::is_resizeable && (POLYMAKE_DEBUG || !Unwary<TVector>::value)) {
            if (dim() != v.dim())
               throw std::runtime_error("GenericVector::operator= - dimension mismatch");
         }
         this->top().assign(v.top());
      }
      return this->top();
   }

   template <typename TVector2, typename E2,
             typename=typename std::enable_if<can_assign_to<E2, E>::value>::type>
   top_type& operator= (const GenericVector<TVector2, E2>& v)
   {
      if (!object_traits<TVector>::is_resizeable && (POLYMAKE_DEBUG || !Unwary<TVector>::value)) {
         if (dim() != v.dim())
            throw std::runtime_error("GenericVector::operator= - dimension mismatch");
      }
      this->top().assign(v.top());
      return this->top();
   }

   template <typename E2,
             typename=typename std::enable_if<can_assign_to<E2, E>::value>::type>
   top_type& operator= (std::initializer_list<E2> l)
   {
      if (!object_traits<TVector>::is_resizeable && (POLYMAKE_DEBUG || !Unwary<TVector>::value)) {
         if (dim() != l.size())
            throw std::runtime_error("GenericVector::operator= - dimension mismatch");
      }
      this->top().assign(l);
      return this->top();
   }

   top_type& negate()
   {
      this->top().assign_op(BuildUnary<operations::neg>());
      return this->top();
   }

   /// adding a vector
   /// TODO: check whether addition is defined for both element types
   template <typename TVector2>
   top_type& operator+= (const GenericVector<TVector2>& v)
   {
      if (POLYMAKE_DEBUG || !Unwary<TVector>::value || !Unwary<TVector>::value) {
         if (dim() != v.dim())
            throw std::runtime_error("GenericVector::operator+= - dimension mismatch");
      }
      this->top().assign_op(v.top(), BuildBinary<operations::add>());
      return this->top();
   }

   /// subtracting a vector
   /// TODO: check whether subtraction is defined for both element types
   template <typename TVector2>
   top_type& operator-= (const GenericVector<TVector2>& v)
   {
      if (POLYMAKE_DEBUG || !Unwary<TVector>::value || !Unwary<TVector>::value) {
         if (dim() != v.dim())
            throw std::runtime_error("GenericVector::operator-= - dimension mismatch");
      }
      this->top().assign_op(v.top(), BuildBinary<operations::sub>());
      return this->top();
   }

   /// multiply with an element
   template <typename Right>
   top_type& operator*= (const Right& r)
   {
      if (!is_zero(r))
         this->top().assign_op(constant(r), BuildBinary<operations::mul>());
      else
         fill(r);
      return this->top();
   }

   /// divide by an element
   template <typename Right>
   top_type& operator/= (const Right& r)
   {
      this->top().assign_op(constant(r), BuildBinary<operations::div>());
      return this->top();
   }

   /// divide exact by an element
   template <typename Right>
   top_type& div_exact(const Right& r)
   {
      this->top().assign_op(constant(r), BuildBinary<operations::divexact>());
      return this->top();
   }

   /// divides by the first element
   top_type& dehomogenize()
   {
      const E first=this->top().front();
      this->top()/=first;
      return this->top();
   }

   /// subtracts first element
   top_type& dehomogenize_trop()
   {
      const E first=this->top().front();
      this->top()-=first;
      return this->top();
   }

   /// remove all zero elements which might have been overseen in some previous operation
   void remove0s()
   {
      remove0s(sparse_discr());
   }

   //@{ 
   /** 
    * Select a vector slice consisting of elements with given indices. 
    * The last variant selects a contiguous range of indices beginning 
    * with start. 
    * size==-1 means up to the end of the vector.
    * The const variants of these methods create immutable slice objects.
    * The indices must lie in the valid range.
    */
   template <typename IndexSet>
   typename std::enable_if<isomorphic_to_container_of<IndexSet, int>::value,
                           IndexedSlice<unwary_t<TVector>&, const typename Concrete<IndexSet>::type&> >::type
   slice(const IndexSet& indices)
   {
      if (POLYMAKE_DEBUG || !Unwary<TVector>::value) {
         if (!set_within_range(indices, dim()))
            throw std::runtime_error("GenericVector::slice - indices out of range");
      }
      return IndexedSlice<unwary_t<TVector>&, const typename Concrete<IndexSet>::type&>(this->top(), concrete(indices));
   }

   template <typename IndexSet>
   typename std::enable_if<isomorphic_to_container_of<IndexSet, int>::value,
                           const IndexedSlice<const unwary_t<TVector>&, const typename Concrete<IndexSet>::type&> >::type
   slice(const IndexSet& indices) const
   {
      if (POLYMAKE_DEBUG || !Unwary<TVector>::value) {
         if (!set_within_range(indices, dim()))
            throw std::runtime_error("GenericVector::slice - indices out of range");
      }
      return IndexedSlice<const unwary_t<TVector>&, const typename Concrete<IndexSet>::type&>(this->top(), concrete(indices));
   }


   IndexedSlice<unwary_t<TVector>&, sequence>
   slice(int sstart, int ssize=-1)
   {
      if (sstart<0) sstart+=dim();
      if (ssize==-1) ssize=dim()-sstart;
      if (POLYMAKE_DEBUG || !Unwary<TVector>::value) {
         if (ssize<0 || sstart<0 || sstart+ssize>dim())
            throw std::runtime_error("GenericVector::slice - indices out of range");
      }
      return IndexedSlice<unwary_t<TVector>&, sequence>(this->top(), sequence(sstart,ssize));
   }


   const IndexedSlice<const unwary_t<TVector>&, sequence>
   slice(int sstart, int ssize=-1) const
   {
      if (sstart<0) sstart+=dim();
      if (ssize==-1) ssize=dim()-sstart;
      if (POLYMAKE_DEBUG || !Unwary<TVector>::value) {
         if (ssize<0 || sstart<0 || sstart+ssize>dim())
            throw std::runtime_error("GenericVector::slice - indices out of range");
      }
      return IndexedSlice<const unwary_t<TVector>&, sequence>(this->top(), sequence(sstart,ssize));
   }
   //@}

   template <typename Result>
   struct rebind_generic {
      typedef GenericVector<Result, E> type;
   };

   // stub for RowChain/ColChain
   void stretch_dim(int d) const
   {
      if (d) throw std::runtime_error("dimension mismatch");
   }

   // comparisons

   template <typename TVector2,
             typename=typename std::enable_if<are_comparable<E, typename TVector2::element_type>::value>::type>
   friend
   bool operator== (const GenericVector& l, const GenericVector<TVector2>& r)
   {
      return operations::cmp_unordered()(l.top(), r.top()) == cmp_eq;
   }

   template <typename TVector2,
             typename=typename std::enable_if<are_comparable<E, typename TVector2::element_type>::value>::type>
   friend
   bool operator!= (const GenericVector& l, const GenericVector<TVector2>& r)
   {
      return !(l==r);
   }

#if POLYMAKE_DEBUG
   void dump() const __attribute__((used)) { cerr << this->top() << endl; }
#endif
};

struct is_vector;

template <typename TVector, typename E>
struct spec_object_traits< GenericVector<TVector, E> >
   : spec_or_model_traits<TVector, is_container> {
   typedef is_vector generic_tag;
   static const bool allow_sparse=true;

   static bool is_zero(const TVector& v)
   {
      return entire(attach_selector(v, BuildUnary<operations::non_zero>())).at_end();
   }
};


/** @class FixedVector
    @brief Built-in array decorated as a vector
*/

template <typename E, size_t TSize>
class FixedVector
   : public fixed_array<E, TSize>
   , public GenericVector<FixedVector<E, TSize>, E> {
public:
   /// create empty vector
   FixedVector(int=0)
   {
      if (std::is_pod<E>::value) clear();
   }

   /// create vector of given length with constant element 
   FixedVector(int, const E& init)
   {
      fill_range(entire(*this), init);
   }

   FixedVector(const E (&init)[TSize])
   {
      copy_range(init+0, entire(*this));
   }

   template <typename E2>
   explicit FixedVector(const E2 (&init)[TSize])
   {
      copy_range(attach_converter<E>(array2container(init)).begin(), entire(*this));
   }

   /// create vector from iterator
   template <typename Iterator>
   FixedVector(int, Iterator src)
   {
      copy_range(src, entire(*this));
   }

   /// create vector from GenericVector
   template <typename TVector>
   FixedVector(const GenericVector<TVector, E>& v)
   {
      if (POLYMAKE_DEBUG) {
         if (v.dim() != this->size())
            throw std::runtime_error("FixedVector constructor - dimension mismatch");
      }
      this->assign_impl(v.top(), dense());
   }

   template <typename Vector, typename E2,
             typename enabled=typename std::enable_if<can_initialize<E2, E>::value>::type>
   explicit FixedVector(const GenericVector<Vector, E2>& v)
   {
      if (POLYMAKE_DEBUG) {
         if (v.dim() != this->size())
            throw std::runtime_error("FixedVector constructor - dimension mismatch");
      }
      this->assign_impl(v.top(), dense());
   }

   FixedVector& operator= (const FixedVector& other) { return FixedVector::generic_type::operator=(other); }
   using FixedVector::generic_type::operator=;

   /// fill with zeroes
   void clear()
   {
      fill_range(entire(*this), zero_value<E>());
   }
protected:
   friend class GenericVector<FixedVector>;
};

template <typename E, size_t TSize>
struct spec_object_traits< FixedVector<E, TSize> >
   : spec_object_traits<is_container> {
   static const int is_resizeable=0;
};

template <typename E, size_t TSize> inline
FixedVector<E, TSize>& array2vector(E (&a)[TSize])
{
   return reinterpret_cast<FixedVector<E, TSize>&>(a);
}

template <typename E, size_t TSize> inline
const FixedVector<E, TSize>& array2vector(const E (&a)[TSize])
{
   return reinterpret_cast<const FixedVector<E, TSize>&>(a);
}

/* --------------------------------------------
 *  LazyVector1
 * lazy evaluation of an unary vector operator
 * -------------------------------------------- */

template <typename VectorRef, typename Operation>
class LazyVector1
   : public TransformedContainer<VectorRef, Operation>
   , public GenericVector< LazyVector1<VectorRef,Operation>,
                           typename object_traits<typename TransformedContainer<VectorRef,Operation>::value_type>::persistent_type > {
   typedef TransformedContainer<VectorRef, Operation> _super;
public:
   LazyVector1(typename _super::arg_type src_arg, const Operation& op_arg=Operation())
      : _super(src_arg, op_arg) {}

   int dim() const { return get_dim(this->get_container()); }
};

template <typename VectorRef, typename Operation>
struct spec_object_traits< LazyVector1<VectorRef,Operation> >
   : spec_object_traits<is_container> {
   static const bool is_lazy=true, is_temporary=true, is_always_const=true;
};

template <typename VectorRef, typename Operation, typename Feature>
struct check_container_feature<LazyVector1<VectorRef,Operation>, Feature>
   : check_container_feature<TransformedContainer<VectorRef,Operation>, Feature> {};

/* --------------------------------------------
 *  LazyVector2
 * lazy evaluation of a binary vector operator
 * -------------------------------------------- */

template <typename VectorRef1, typename VectorRef2, typename Operation>
class LazyVector2
   : public TransformedContainerPair<VectorRef1, VectorRef2, Operation>
   , public GenericVector< LazyVector2<VectorRef1,VectorRef2,Operation>,
                           typename object_traits<typename TransformedContainerPair<VectorRef1,VectorRef2,Operation>::value_type>::persistent_type > {
   typedef TransformedContainerPair<VectorRef1, VectorRef2, Operation> base_t;
protected:
   int dim_impl(std::true_type) const { return get_dim(this->get_container2()); }
   int dim_impl(std::false_type) const { return get_dim(this->get_container1()); }
public:
   LazyVector2(typename base_t::first_arg_type src1_arg, typename base_t::second_arg_type src2_arg, const Operation& op_arg=Operation())
      : base_t(src1_arg, src2_arg, op_arg) {}

   int dim() const
   {
      return dim_impl(bool_constant< check_container_ref_feature<VectorRef1,unlimited>::value >());
   }
};

template <typename VectorRef1, typename VectorRef2, typename Operation>
struct spec_object_traits< LazyVector2<VectorRef1, VectorRef2, Operation> >
   : spec_object_traits<is_container> {
   static const bool is_lazy=true, is_temporary=true, is_always_const=true;
};

template <typename VectorRef1, typename VectorRef2, typename Operation, typename Feature>
struct check_container_feature<LazyVector2<VectorRef1, VectorRef2, Operation>, Feature>
   : check_container_feature<TransformedContainerPair<VectorRef1, VectorRef2, Operation>, Feature> {};

/// explicit conversion of vector elements to another type
template <typename TargetType, typename Vector> inline
const Vector&
convert_to(const GenericVector<Vector, TargetType>& v)
{
   return v.top();
}

template <typename TargetType, typename TVector, typename E,
          typename enabled=typename std::enable_if<can_initialize<E, TargetType>::value && !std::is_same<E, TargetType>::value>::type> inline
const LazyVector1<const TVector&, conv<E, TargetType> >
convert_to(const GenericVector<TVector, E>& v)
{
   return v.top();
}

template <typename TargetType, typename TVector, typename E> inline
const typename TVector::top_type& convert_lazily(const GenericVector<TVector, E>& v,
                                                 typename std::enable_if<std::is_convertible<E, TargetType>::value, void**>::type=nullptr)
{
   return v.top();
}

template <typename TargetType, typename TVector, typename E> inline
const LazyVector1<const TVector&, conv<E, TargetType> >
convert_lazily(const GenericVector<TVector, E>& v,
               typename std::enable_if<can_initialize<E, TargetType>::value && !std::is_convertible<E, TargetType>::value, void**>::type=nullptr)
{
   return v.top();
}

template <typename Vector, typename Operation> inline
const LazyVector1<const Vector&, Operation>
apply_operation(const GenericVector<Vector>& v, const Operation& op)
{
   return LazyVector1<const Vector&, Operation>(v.top(), op);
}

/* --------------------------------------------
 *  VectorTensorProduct
 * lazy evaluation of a vector tensor product
 * -------------------------------------------- */
template <typename VectorRef1, typename VectorRef2, typename Operation=BuildBinary<operations::mul> >
class VectorTensorProduct
   : public ContainerProduct<VectorRef1, VectorRef2, Operation>,
     public GenericVector< VectorTensorProduct<VectorRef1,VectorRef2,Operation>,
                           typename object_traits<typename ContainerProduct<VectorRef1, VectorRef2, Operation>::value_type>::persistent_type  > {
   typedef ContainerProduct<VectorRef1, VectorRef2, Operation> _super;
public:
   VectorTensorProduct(typename _super::first_arg_type src1_arg, typename _super::second_arg_type src2_arg,
                       const Operation& op_arg=Operation())
      : _super(src1_arg, src2_arg, op_arg) {}

   using _super::dim;
};

template <typename VectorRef1, typename VectorRef2, typename Operation>
struct spec_object_traits< VectorTensorProduct<VectorRef1,VectorRef2,Operation> >
   : spec_object_traits<is_container> {
   static const bool is_lazy=true;
};

template <typename VectorRef1, typename VectorRef2, typename Operation, typename Feature>
struct check_container_feature<VectorTensorProduct<VectorRef1,VectorRef2,Operation>, Feature>
   : check_container_feature<ContainerProduct<VectorRef1, VectorRef2, Operation>, Feature> {};

/* -------------
 *  VectorChain
 * ------------- */

template <typename VectorRef1, typename VectorRef2>
class VectorChain
   : public ContainerChain<VectorRef1, VectorRef2>
   , public GenericVector< VectorChain<VectorRef1,VectorRef2>,
                           typename deref<VectorRef1>::type::element_type > {
   typedef ContainerChain<VectorRef1, VectorRef2> base_t;
public:
   static_assert(std::is_same<typename VectorChain::element_type, typename deref<VectorRef2>::type::element_type>::value,
                 "concatenated vectors of different element types");

   VectorChain(typename base_t::first_arg_type src1_arg, typename base_t::second_arg_type src2_arg)
      : base_t(src1_arg,src2_arg) {}

   VectorChain& operator= (const VectorChain& other) { return VectorChain::generic_type::operator=(other); }
   using VectorChain::generic_type::operator=;
   using base_t::dim;
};

template <typename VectorRef1, typename VectorRef2>
struct spec_object_traits< VectorChain<VectorRef1, VectorRef2> >
   : spec_object_traits< ContainerChain<VectorRef1, VectorRef2> > {};

template <typename VectorRef1, typename VectorRef2, typename Feature>
struct check_container_feature< VectorChain<VectorRef1, VectorRef2>, Feature>
   : check_container_feature< ContainerChain<VectorRef1, VectorRef2>, Feature> {};

/* ---------------------
 *  SingleElementVector
 * --------------------- */

template <typename E>
class SingleElementVector
   : public single_value_container<E>,
     public GenericVector<SingleElementVector<E>, typename deref<E>::type> {
   typedef single_value_container<E> base_t;
public:
   SingleElementVector(typename base_t::arg_type arg)
      : base_t(arg) {}

   using SingleElementVector::generic_type::operator=;
};

template <typename E>
struct spec_object_traits< SingleElementVector<E> > : spec_object_traits< single_value_container<E> > {};

template <typename E>
class SingleElementSparseVector
   : public single_value_container<E, true>,
     public GenericVector<SingleElementSparseVector<E>, typename deref<E>::type> {
   typedef single_value_container<E, true> _super;
public:
   SingleElementSparseVector() {}
   SingleElementSparseVector(typename _super::arg_type arg)
      : _super(arg) {}
   using _super::dim;
};

template <typename E>
struct spec_object_traits< SingleElementSparseVector<E> > : spec_object_traits< single_value_container<E, true> > {
   static const bool is_always_const=true;
};

template <typename E>
struct check_container_feature<SingleElementSparseVector<E>, pure_sparse> : std::true_type {};

template <typename ElementRef, typename IndexRef>
struct SingleElementSparseVector_factory {
   typedef ElementRef first_argument_type;
   typedef int second_argument_type;
   typedef SingleElementSparseVector<ElementRef> result_type;

   result_type operator() (typename function_argument<ElementRef>::type x, int) const
   {
      return result_type(x);
   }
   // can never happen, but must be defined
   template <typename Iterator2>
   result_type operator() (operations::partial_left, typename function_argument<ElementRef>::type x, const Iterator2&) const
   {
      return result_type(x);
   }

   template <typename Iterator1>
   result_type operator() (operations::partial_right, const Iterator1&, int) const
   {
      return result_type();
   }
};

template <typename E> inline
SingleElementVector<E&>
scalar2vector(E& x)
{
   return x;
}

template <typename E> inline
const SingleElementVector<const E&>
scalar2vector(const E& x)
{
   return x;
}

template <typename E> inline
const SingleElementSparseVector<const E&>
scalar2sparse_vector(const E& x)
{
   if (!is_zero(x))
      return x;
   return SingleElementSparseVector<const E&>();
}

/* -------------------
 *  SameElementVector
 * ------------------- */

template <typename ElemRef>
class SameElementVector
   : public repeated_value_container<ElemRef>,
     public GenericVector<SameElementVector<ElemRef>,
                          typename object_traits<typename deref<ElemRef>::type>::persistent_type> {
   typedef repeated_value_container<ElemRef> _super;
public:
   SameElementVector(typename _super::arg_type value_arg, int dim_arg)
      : _super(value_arg, dim_arg) {}

   using _super::dim;
   using _super::stretch_dim;
};

template <typename ElemRef>
struct spec_object_traits< SameElementVector<ElemRef> >
   : spec_object_traits<is_container> {
   static const bool is_temporary=true, is_always_const=true;
};

/// Create a vector with all entries equal to the given element x.
template <typename E> inline
const SameElementVector<const E&>
same_element_vector(const E& x, int dim=0)
{
   return SameElementVector<const E&>(x, dim);
}

/// Create a vector with all entries equal to 1.
template <typename E> inline
const SameElementVector<const E&>
ones_vector(int dim=0)
{
   return SameElementVector<const E&>(one_value<E>(), dim);
}

/// Create a vector with all entries equal to 0.
template <typename E> inline
const SameElementVector<const E&>
zero_vector(int dim=0)
{
   return SameElementVector<const E&>(zero_value<E>(), dim);
}

template <typename ElemRef, bool _inverse=false>
struct apparent_data_accessor {
   typedef void argument_type;
   typedef typename attrib<ElemRef>::plus_const_ref result_type;

   apparent_data_accessor() {}
   apparent_data_accessor(const alias<ElemRef>& arg) : _data(arg) {}

   template <typename Iterator>
   result_type operator() (const Iterator&) const
   {
      return *_data;
   }

   // these methods are for construct_dense
   typedef void first_argument_type;
   typedef void second_argument_type;

   template <typename Iterator1, typename Iterator2>
   result_type operator() (const Iterator1&, const Iterator2&) const
   {
      if (_inverse) return zero_value<typename deref<ElemRef>::type>();
      return *_data;
   }
   template <typename Iterator1, typename Iterator2>
   result_type operator() (operations::partial_left, const Iterator1&, const Iterator2&) const
   {
      if (_inverse) return zero_value<typename deref<ElemRef>::type>();
      return *_data;
   }
   template <typename Iterator1, typename Iterator2>
   result_type operator() (operations::partial_right, const Iterator1&, const Iterator2&) const
   {
      if (_inverse) return *_data;
      return zero_value<typename deref<ElemRef>::type>();
   }
protected:
   alias<ElemRef> _data;
};

template <typename SetRef, typename ElemRef>
class SameElementSparseVector
   : public modified_container_impl< SameElementSparseVector<SetRef,ElemRef>,
                                     mlist< ContainerTag< typename attrib<typename Set_with_dim_helper<SetRef>::container>::plus_const >,
                                            OperationTag< pair<apparent_data_accessor<ElemRef, complement_helper<SetRef>::value>,
                                                               operations::identity<int> > > > >,
     public GenericVector< SameElementSparseVector<SetRef,ElemRef>,
                           typename object_traits<typename deref<ElemRef>::type>::persistent_type > {
   typedef modified_container_impl<SameElementSparseVector> base_t;
protected:
   typedef Set_with_dim_helper<SetRef> helper;
   typename helper::alias_type set;
   alias<ElemRef> apparent_elem;

public:
   typedef typename least_derived_class<bidirectional_iterator_tag, typename container_traits<SetRef>::category>::type container_category;
   typedef typename helper::alias_type::arg_type first_arg_type;
   typedef typename alias<ElemRef>::arg_type second_arg_type;

   SameElementSparseVector(first_arg_type set_arg, second_arg_type data_arg)
      : set(helper::create(set_arg,-1)), apparent_elem(data_arg) {}

   SameElementSparseVector(first_arg_type set_arg, second_arg_type data_arg, int dim_arg)
      : set(helper::create(set_arg,dim_arg)), apparent_elem(data_arg) {}

   const typename base_t::container& get_container() const
   {
      return helper::deref(set);
   }
   typename base_t::operation get_operation() const
   {
      return typename base_t::operation(apparent_elem, operations::identity<int>());
   }
   typename base_t::const_iterator find(int i) const
   {
      return typename base_t::const_iterator(get_container().find(i), get_operation());
   }

   typename base_t::const_reference operator[] (int i) const
   {
      if (i<0 || i>=base_t::dim())
         throw std::runtime_error("same_element_sparse_vector - index out of range");
      if (get_container().contains(i))
         return *apparent_elem;
      return zero_value<typename deref<ElemRef>::type>();
   }

   using base_t::dim;
};

template <typename SetRef, typename ElemRef>
struct spec_object_traits< SameElementSparseVector<SetRef,ElemRef> >
   : spec_object_traits<is_container> {
   static const bool is_temporary=true, is_always_const=true;
};

template <typename SetRef, typename ElemRef>
struct check_container_feature<SameElementSparseVector<SetRef,ElemRef>, pure_sparse> : std::true_type {};

template <typename E, typename TSet> inline
const SameElementSparseVector<const unwary_t<TSet>&, E>
same_element_sparse_vector(const GenericSet<TSet, int>& s, int dim)
{
   if (POLYMAKE_DEBUG || !Unwary<TSet>::value) {
      if (!set_within_range(s.top(),dim))
         throw std::runtime_error("same_element_sparse_vector - dimension mismatch");
   }
   return SameElementSparseVector<const unwary_t<TSet>&, E>(s.top(), one_value<E>(), dim);
}

template <typename E, typename TSet> inline
const SameElementSparseVector<const unwary_t<TSet>&, const E&>
same_element_sparse_vector(const GenericSet<TSet, int>& s, const E& x, int dim)
{
   if (POLYMAKE_DEBUG || !Unwary<TSet>::value) {
      if (!set_within_range(s.top(), dim))
         throw std::runtime_error("same_element_sparse_vector - dimension mismatch");
   }
   return SameElementSparseVector<const unwary_t<TSet>&, const E&>(s.top(), x, dim);
}

template <typename E, typename TSet> inline
const SameElementSparseVector<const Complement<TSet>&, E>
same_element_sparse_vector(const Complement<TSet, int>& s, int dim)
{
   return SameElementSparseVector<const Complement<TSet>&, E>(s, one_value<E>(), dim);
}

template <typename E, typename TSet> inline
const SameElementSparseVector<const Complement<TSet>&, const E&>
same_element_sparse_vector(const Complement<TSet, int>& s, const E& x, int dim)
{
   return SameElementSparseVector<const Complement<TSet>&, const E&>(s, x, dim);
}

template <typename E, typename TSet> inline
typename std::enable_if<Set_with_dim_helper<unwary_t<TSet>>::value,
                        const SameElementSparseVector<const unwary_t<TSet>&, E>>::type
same_element_sparse_vector(const GenericSet<TSet, int>& s)
{
   return SameElementSparseVector<const unwary_t<TSet>&, E>(s.top(), one_value<E>());
}

/// Create a SparseVector with all entries equal to the given element x
/// at the coordinates defined in the GenericSet s.
template <typename E, typename TSet> inline
typename std::enable_if<Set_with_dim_helper<unwary_t<TSet>>::value,
                        const SameElementSparseVector<const unwary_t<TSet>&, const E&>>::type
same_element_sparse_vector(const GenericSet<TSet, int>& s, const E& x)
{
   return SameElementSparseVector<const unwary_t<TSet>&, const E&>(s.top(), x);
}

template <typename E, typename TSet> inline
typename std::enable_if<Set_with_dim_helper<TSet>::value, const SameElementSparseVector<const Complement<TSet>&, E>>::type
same_element_sparse_vector(const Complement<TSet, int>& s)
{
   return SameElementSparseVector<const Complement<TSet>&, E>(s, one_value<E>());
}

template <typename E, typename TSet> inline
typename std::enable_if<Set_with_dim_helper<TSet>::value, const SameElementSparseVector<const Complement<TSet>&, const E&>>::type
same_element_sparse_vector(const Complement<TSet, int>& s, const E& x)
{
   return SameElementSparseVector<const Complement<TSet>&, const E&>(s, x);
}

/* kind = 1: constructs SameElementSparseVector<sequence> of full size or empty
 * kind = 2: always constructs SameElementSparseVector< SingleElementSet<int> > aka unit vector
 * kind = 3: constructs SameElementSparseVector<sequence> with one element or empty
 */
template <int kind, typename ElemRef=void>
class SameElementSparseVector_factory {
protected:
   int dim;
public:
   typedef int first_argument_type;
   typedef ElemRef second_argument_type;
   typedef SameElementSparseVector<typename std::conditional<kind==2, SingleElementSet<int>, sequence>::type, ElemRef>
      result_type;

   SameElementSparseVector_factory(int dim_arg=0) : dim(dim_arg) {}

   result_type operator() (first_argument_type pos,
                           typename function_argument<ElemRef>::type elem) const
   {
      return result_type(index_set(pos, int_constant<kind>()), elem, dim);
   }

   template <typename Iterator2>
   result_type operator() (operations::partial_left, int pos, const Iterator2&) const
   {
      return result_type(sequence(pos,0), zero_value<typename deref<ElemRef>::type>(), dim);
   }

   // can never happen, but must be defined
   template <typename Iterator1>
   result_type operator() (operations::partial_right, const Iterator1&, typename function_argument<ElemRef>::type elem) const
   {
      return result_type(sequence(0,0), elem, dim);
   }

protected:
   sequence index_set(int, int_constant<1>) const
   {
      return sequence(0,dim);
   }
   int index_set(int pos, int_constant<2>) const
   {
      return pos;
   }
   sequence index_set(int pos, int_constant<3>) const
   {
      return sequence(pos,1);
   }
};

template <int kind>
class SameElementSparseVector_factory<kind, void> : public operations::incomplete {
protected:
   int _dim;
public:
   SameElementSparseVector_factory(int dim_arg=0) : _dim(dim_arg) {}
   int dim() const { return _dim; }
};

template <int kind, typename Iterator1, typename Iterator2, typename Reference1, typename Reference2>
struct binary_op_builder< SameElementSparseVector_factory<kind,void>, Iterator1, Iterator2, Reference1, Reference2 > {
   typedef SameElementSparseVector_factory<kind,Reference2> operation;
   static operation create(const SameElementSparseVector_factory<kind,void>& op) { return operation(op.dim()); }
};

/* ------------
 *  UnitVector
 * ------------ */

template <typename E> inline
const SameElementSparseVector<SingleElementSet<int>, const E&>
unit_vector(int dim, int i, const E& x)
{
   if (POLYMAKE_DEBUG) {
      if (i<0 || i>=dim)
         throw std::runtime_error("unit_vector - index out of range");
   }
   return SameElementSparseVector<SingleElementSet<int>, const E&>(i,x,dim);
}

template <typename E> inline
const SameElementSparseVector<SingleElementSet<int>, E>
unit_vector(int dim, int i)
{
   if (POLYMAKE_DEBUG) {
      if (i<0 || i>=dim)
         throw std::runtime_error("unit_vector - index out of range");
   }
   return SameElementSparseVector<SingleElementSet<int>, E>(i,one_value<E>(),dim);
}

/* ----------------
 *  ExpandedVector
 * ---------------- */

template <typename VectorRef>
class ExpandedVector
   : public TransformedContainer<masquerade_add_features<VectorRef, sparse_compatible>,
                                 pair<nothing, operations::fix2<int, operations::composed12< BuildUnaryIt<operations::index2element>, void, BuildBinary<operations::add> > > > >,
     public GenericVector< ExpandedVector<VectorRef>, typename deref<VectorRef>::type::element_type > {
   typedef TransformedContainer<masquerade_add_features<VectorRef, sparse_compatible>,
                                pair<nothing, operations::fix2<int, operations::composed12< BuildUnaryIt<operations::index2element>, void, BuildBinary<operations::add> > > > >
      _super;
   int _dim;
public:
   ExpandedVector(typename _super::arg_type src_arg, int offset, int dim_arg)
      : _super(src_arg, offset), _dim(dim_arg) {}

   int dim() const { return _dim; }
};

template <typename VectorRef>
struct spec_object_traits< ExpandedVector<VectorRef> > :
   spec_object_traits<is_container> {
   static const bool is_temporary=true, is_always_const=true;
};

template <typename VectorRef>
struct check_container_feature<ExpandedVector<VectorRef>, sparse> : std::true_type {};

template <typename VectorRef>
struct check_container_feature<ExpandedVector<VectorRef>, pure_sparse>
   : check_container_ref_feature<VectorRef, pure_sparse> {};

template <typename VectorRef=void>
class ExpandedVector_factory {
protected:
   int offset, dim;
public:
   typedef VectorRef argument_type;
   typedef ExpandedVector<VectorRef> vector_type;
   typedef const vector_type result_type;

   ExpandedVector_factory(int offset_arg=0, int dim_arg=0)
      : offset(offset_arg), dim(dim_arg) {}

   template <typename Ref2>
   ExpandedVector_factory(const ExpandedVector_factory<Ref2>& f)
      : offset(f.offset), dim(f.dim) {}

   result_type operator() (typename function_argument<VectorRef>::type vec) const
   {
      return vector_type(vec,offset,dim);
   }

   template <typename> friend class ExpandedVector_factory;
};

template <>
class ExpandedVector_factory<void> : public operations::incomplete {
protected:
   int offset, dim;
public:
   ExpandedVector_factory(int offset_arg=0, int dim_arg=0)
      : offset(offset_arg), dim(dim_arg) {}
   template <typename> friend class ExpandedVector_factory;
};

template <typename Iterator, typename Reference>
struct unary_op_builder< ExpandedVector_factory<void>, Iterator, Reference > {
   typedef ExpandedVector_factory<Reference> operation;

   template <typename Ref2>
   static operation create(const ExpandedVector_factory<Ref2>& f) { return f; }
};

/* ---------------------------------------
 *  functor objects for vector operations
 * --------------------------------------- */

namespace operations {

template <typename OpRef>
struct neg_impl<OpRef, is_vector> {
   typedef OpRef argument_type;
   typedef LazyVector1<typename attrib<unwary_t<OpRef>>::plus_const, BuildUnary<neg> > result_type;

   result_type operator() (typename function_argument<OpRef>::const_type x) const
   {
      return result_type(unwary(x));
   }

   void assign(typename lvalue_arg<OpRef>::type x) const
   {
      x.negate();
   }
};

template <typename LeftRef, typename RightRef>
struct add_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {
   typedef LeftRef  first_argument_type;
   typedef RightRef second_argument_type;
   typedef LazyVector2<typename attrib<unwary_t<LeftRef>>::plus_const,
                       typename attrib<unwary_t<RightRef>>::plus_const,
                       BuildBinary<add> >
      result_type;

   result_type operator() (typename function_argument<LeftRef>::const_type l,
                           typename function_argument<RightRef>::const_type r) const
   {
      if (POLYMAKE_DEBUG || !Unwary<LeftRef>::value || !Unwary<RightRef>::value) {
         if (l.dim() != r.dim())
            throw std::runtime_error("operator+(GenericVector,GenericVector) - dimension mismatch");
      }
      return result_type(unwary(l), unwary(r));
   }

   template <typename Iterator2>
   typename function_argument<LeftRef>::const_type
   operator() (partial_left, typename function_argument<LeftRef>::const_type l, const Iterator2&) const
   {
      return l;
   }

   template <typename Iterator1>
   typename function_argument<RightRef>::const_type
   operator() (partial_right, const Iterator1&, typename function_argument<RightRef>::const_type r) const
   {
      return r;
   }

   void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
   {
      l+=r;
   }
};

template <typename LeftRef, typename RightRef>
struct sub_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {
   typedef LeftRef  first_argument_type;
   typedef RightRef second_argument_type;
   typedef LazyVector2<typename attrib<unwary_t<LeftRef>>::plus_const,
                       typename attrib<unwary_t<RightRef>>::plus_const,
                       BuildBinary<sub> >
      result_type;

   result_type operator() (typename function_argument<LeftRef>::const_type l,
                           typename function_argument<RightRef>::const_type r) const
   {
      if (POLYMAKE_DEBUG || !Unwary<LeftRef>::value || !Unwary<RightRef>::value) {
         if (l.dim() != r.dim())
            throw std::runtime_error("operator-(GenericVector,GenericVector) - dimension mismatch");
      }
      return result_type(unwary(l), unwary(r));
   }

   template <typename Iterator2>
   typename function_argument<LeftRef>::const_type
   operator() (partial_left, typename function_argument<LeftRef>::const_type l, const Iterator2&) const
   {
      return l;
   }
   template <typename Iterator1>
   typename neg<RightRef>::result_type
   operator() (partial_right, const Iterator1&, typename function_argument<RightRef>::const_type r) const
   {
      neg<RightRef> n;
      return n(r);
   }

   void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
   {
      l-=r;
   }
};

template <typename LeftRef, typename RightRef>
struct mul_impl<LeftRef, RightRef, cons<is_vector, is_scalar> > {
   typedef LeftRef  first_argument_type;
   typedef RightRef second_argument_type;
   typedef LazyVector2<typename attrib<unwary_t<LeftRef>>::plus_const,
                       constant_value_container<typename Diligent<unwary_t<RightRef>>::type>,
                       BuildBinary<mul> >
      result_type;

   result_type operator() (typename function_argument<LeftRef>::const_type l,
                           typename function_argument<RightRef>::const_type r) const {
      return result_type(unwary(l), diligent(unwary(r)));
   }

   void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
   {
      l*=r;
   }
};

template <typename LeftRef, typename RightRef>
struct mul_impl<LeftRef, RightRef, cons<is_scalar, is_vector> > {
   typedef LeftRef  first_argument_type;
   typedef RightRef second_argument_type;
   typedef LazyVector2<constant_value_container<typename Diligent<unwary_t<LeftRef>>::type>,
                       typename attrib<unwary_t<RightRef>>::plus_const,
                       BuildBinary<mul> >
      result_type;

   result_type operator() (typename function_argument<LeftRef>::const_type l,
                           typename function_argument<RightRef>::const_type r) const
   {
      return result_type(diligent(unwary(l)), unwary(r));
   }
};

template <typename LeftRef, typename RightRef>
struct mul_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {
   typedef LeftRef  first_argument_type;
   typedef RightRef second_argument_type;
   typedef typename add<typename deref<LeftRef>::type::value_type,
                        typename deref<RightRef>::type::value_type>::result_type
      result_type;

   result_type operator() (typename function_argument<LeftRef>::const_type l,
                           typename function_argument<RightRef>::const_type r) const
   {
      if (POLYMAKE_DEBUG || !Unwary<LeftRef>::value || !Unwary<RightRef>::value) {
         if (l.dim() != r.dim())
            throw std::runtime_error("operator*(GenericVector,GenericVector) - dimension mismatch");
      }
      return accumulate(attach_operation(unwary(l), unwary(r), BuildBinary<mul>()), BuildBinary<add>());
   }
};

template <typename LeftRef, typename RightRef>
struct tensor_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {
   typedef LeftRef  first_argument_type;
   typedef RightRef second_argument_type;
   typedef VectorTensorProduct<typename attrib<unwary_t<LeftRef>>::plus_const,
                               typename attrib<unwary_t<RightRef>>::plus_const,
                               BuildBinary<mul> >
      result_type;

   result_type operator() (typename function_argument<LeftRef>::const_type l,
                           typename function_argument<RightRef>::const_type r) const
   {
      return result_type(unwary(l), unwary(r));
   }
};

template <typename LeftRef, typename RightRef>
struct div_impl<LeftRef, RightRef, cons<is_vector, is_scalar> > {
   typedef LeftRef  first_argument_type;
   typedef RightRef second_argument_type;
   typedef LazyVector2<typename attrib<unwary_t<LeftRef>>::plus_const,
                       constant_value_container<typename Diligent<unwary_t<RightRef>>::type>,
                       BuildBinary<div> >
      result_type;

   result_type operator() (typename function_argument<LeftRef>::const_type l,
                           typename function_argument<RightRef>::const_type r) const
   {
      return result_type(unwary(l), diligent(unwary(r)));
   }

   void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
   {
      l/=r;
   }
};

template <typename LeftRef, typename RightRef>
struct divexact_impl<LeftRef, RightRef, cons<is_vector, is_scalar> > {
   typedef LeftRef  first_argument_type;
   typedef RightRef second_argument_type;
   typedef LazyVector2<typename attrib<unwary_t<LeftRef>>::plus_const,
                       constant_value_container<typename Diligent<unwary_t<RightRef>>::type>,
                       BuildBinary<divexact> >
      result_type;

   result_type operator() (typename function_argument<LeftRef>::const_type l,
                           typename function_argument<RightRef>::const_type r) const
   {
      return result_type(unwary(l), diligent(unwary(r)));
   }

   void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
   {
      l.div_exact(r);
   }
};

template <typename OpRef>
struct square_impl<OpRef, is_vector> {
   typedef OpRef argument_type;
   typedef typename mul_impl<unwary_t<OpRef>, unwary_t<OpRef>, cons<is_vector, is_vector> >::result_type
      result_type;

   result_type operator() (typename function_argument<OpRef>::const_type x) const
   {
      return accumulate(attach_operation(unwary(x), BuildUnary<square>()), BuildBinary<add>());
   }
};

template <typename LeftRef, typename RightRef>
struct concat_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {
   typedef LeftRef  first_argument_type;
   typedef RightRef second_argument_type;
   typedef VectorChain<typename coherent_const<unwary_t<LeftRef>, unwary_t<RightRef>>::first_type,
                       typename coherent_const<unwary_t<LeftRef>, unwary_t<RightRef>>::second_type>
      result_type;

   result_type operator() (typename function_argument<LeftRef>::type l,
                           typename function_argument<RightRef>::type r) const
   {
      return result_type(unwary(l), unwary(r));
   }

   void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
   {
      l|=r;
   }
};

template <typename LeftRef, typename RightRef>
struct concat_impl<LeftRef, RightRef, cons<is_vector, is_scalar> > {
   typedef LeftRef  first_argument_type;
   typedef RightRef second_argument_type;

   // provisions for the type-heterogeneous case, where the scalar value needs to be converted first
   typedef typename deref<LeftRef>::type::element_type element_type;
   typedef typename deref<unwary_t<RightRef>>::type right_src_type;
   static const bool homogeneous=std::is_same<right_src_type, element_type>::value;
   typedef SingleElementVector<typename std::conditional<homogeneous, unwary_t<RightRef>, element_type>::type> Right;

   typedef VectorChain<typename coherent_const<unwary_t<LeftRef>, Right>::first_type,
                       typename coherent_const<unwary_t<LeftRef>, Right>::second_type>
      result_type;

   result_type operator() (typename function_argument<LeftRef>::type l,
                           typename function_argument<RightRef>::type r) const
   {
      return result_type(unwary(l), convert_to<element_type>(unwary(r)));
   }

   void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
   {
      l|=r;
   }
};

template <typename LeftRef, typename RightRef>
struct concat_impl<LeftRef, RightRef, cons<is_scalar, is_vector> > {
   typedef LeftRef  first_argument_type;
   typedef RightRef second_argument_type;

   // provisions for the type-heterogeneous case, where the scalar value needs to be converted first
   typedef typename deref<RightRef>::type::element_type element_type;
   typedef typename deref<unwary_t<LeftRef>>::type left_src_type;
   static const bool homogeneous=std::is_same<left_src_type, element_type>::value;
   typedef SingleElementVector<typename std::conditional<homogeneous, unwary_t<LeftRef>, element_type>::type> Left;

   typedef VectorChain<typename coherent_const<Left, unwary_t<RightRef>>::first_type,
                       typename coherent_const<Left, unwary_t<RightRef>>::second_type>
      result_type;

   result_type operator() (typename function_argument<LeftRef>::type l,
                           typename function_argument<RightRef>::type r) const
   {
      return result_type(convert_to<element_type>(unwary(l)), unwary(r));
   }
};

template <typename LeftRef, typename RightRef>
struct bitwise_or_impl<LeftRef, RightRef, cons<is_vector, is_vector> >
   : concat_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {};

template <typename LeftRef, typename RightRef>
struct bitwise_or_impl<LeftRef, RightRef, cons<is_vector, is_scalar> >
   : concat_impl<LeftRef, RightRef, cons<is_vector, is_scalar> > {};

template <typename LeftRef, typename RightRef>
struct bitwise_or_impl<LeftRef, RightRef, cons<is_scalar, is_vector> >
   : concat_impl<LeftRef, RightRef, cons<is_scalar, is_vector> > {};

} // end namespace operations
namespace operators {

template <typename Vector1, typename Vector2> inline
typename operations::add_impl<const Vector1&, const Vector2&>::result_type
operator+ (const GenericVector<Vector1>& l, const GenericVector<Vector2>& r)
{
   operations::add_impl<const Vector1&, const Vector2&> op;
   return op(concrete(l), concrete(r));
}

template <typename Vector1, typename Vector2> inline
typename operations::sub_impl<const Vector1&, const Vector2&>::result_type
operator- (const GenericVector<Vector1>& l, const GenericVector<Vector2>& r)
{
   operations::sub_impl<const Vector1&, const Vector2&> op;
   return op(concrete(l), concrete(r));
}

} // end namespace operators

template <typename Vector, typename Right> inline
typename operations::divexact_impl<const Vector&, const Right&>::result_type
div_exact(const GenericVector<Vector>& l, const Right& r)
{
   operations::divexact_impl<const Vector&, const Right&> op;
   return op(concrete(l), r);
}

template <typename TVector>
struct hash_func<TVector, is_vector> {
protected:
   hash_func<typename TVector::value_type> hash_elem;
public:
   size_t operator() (const TVector& v) const
   {
      size_t h=1;
      for (auto e=ensure(v, (sparse_compatible*)0).begin(); !e.at_end(); ++e)
         h += (hash_elem(*e) * (e.index()+1));
      return h;
   }
};

template <typename TVector>
typename std::enable_if<!TVector::is_sparse, Indices<SelectedSubset<const GenericVector<TVector>&, BuildUnary<operations::non_zero>>>>::type
indices(const GenericVector<TVector>& v) 
{ 
   return indices(attach_selector(v, BuildUnary<operations::non_zero>())); 
}

template <typename TVector1, typename TVector2, typename E> inline
cmp_value lex_compare(const GenericVector<TVector1, E>& l, const GenericVector<TVector2, E>& r)
{
   return operations::cmp()(l.top(), r.top());
}

} // end namespace pm

namespace polymake {
   using pm::GenericVector;
   using pm::FixedVector;
   using pm::scalar2vector;
   using pm::array2vector;
   using pm::same_element_vector;
   using pm::same_element_sparse_vector;
   using pm::convert_to;
   using pm::ones_vector;
   using pm::zero_vector;
   using pm::unit_vector;
}

namespace std {

template <typename Vector1, typename Vector2, typename E> inline
void swap(pm::GenericVector<Vector1,E>& v1, pm::GenericVector<Vector2,E>& v2)
{
   v1.top().swap(v2.top());
}

// due to silly overloading rules
template <typename VectorRef1, typename VectorRef2> inline
void swap(pm::VectorChain<VectorRef1,VectorRef2>& v1, pm::VectorChain<VectorRef1,VectorRef2>& v2)
{
   v1.swap(v2);
}

template <typename E, int _size> inline
void swap(pm::FixedVector<E,_size>& v1, pm::FixedVector<E,_size>& v2)
{
   v1.swap(v2);
}

}

#endif // POLYMAKE_GENERIC_VECTOR_H

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: