This file is indexed.

/usr/include/polymake/FaceMap.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/* Copyright (c) 1997-2018
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

/** @file FaceMap.h
    @brief This file contains the namespace face_map
 */

#ifndef POLYMAKE_FACE_MAP_H
#define POLYMAKE_FACE_MAP_H

#include "polymake/internal/AVL.h"
#include "polymake/GenericSet.h"
#include "polymake/vector"

namespace pm {

/** @namespace face_map
    @brief implements the face map data structure due to Kaibel and Pfetsch
 */

namespace face_map {

template <typename Traits> class tree_traits;

/** The template parameter @a Traits should be a traits class defining all necessary information
    about the data to be stored in the FaceMap data structure.
**/
template <typename Traits>
struct node {
   typedef AVL::tree< tree_traits<Traits> > tree_type;
   
   AVL::Ptr<node> links[3];
   
   /// element type
   typename Traits::key_type key;
   typename Traits::mapped_type data;

   // tree for the next face element
   tree_type *descend;

   node(typename function_argument<typename Traits::key_type>::type key_arg)
      : key(key_arg), data(Traits::initialize_data()), descend(0) { }

   template <typename TreeAllocator>
   node(const node& o, TreeAllocator& tree_allocator)
      : key(o.key), data(o.data), descend(0)
   {
      if (o.descend)
         descend=new(tree_allocator.allocate(1)) tree_type(*o.descend);
   }
};

template <typename Traits>
struct it_traits {
   typedef node<Traits> Node;

   static AVL::Ptr<Node>& link(Node* n, AVL::link_index X) { return n->links[X-AVL::L]; }

   const it_traits& get_it_traits() const { return *this; }
};

template <typename Traits>
class tree_traits : public it_traits<Traits> {
public:
   typedef it_traits<Traits> traits_for_iterator;
   typedef typename traits_for_iterator::Node Node;
   typedef typename Traits::key_type key_type;
   typedef typename Traits::key_comparator_type key_comparator_type;
   static const bool allow_multiple=false;
   typedef std::allocator<Node> node_allocator_type;
protected:
   mutable AVL::Ptr<Node> root_links[3];
   key_comparator_type key_comparator;
   node_allocator_type node_allocator;

   Node* head_node() const { return reinterpret_cast<Node*>(&root_links[0]); }

   static const key_type& key(const Node& n) { return n.key; }

   static typename Traits::mapped_type& data(Node& n) { return n.data; }

   Node* create_node(typename function_argument<key_type>::type key_arg)
   {
      return new(node_allocator.allocate(1)) Node(key_arg);
   }

   Node* clone_node(Node* n)
   {
      typename node_allocator_type::template rebind<typename Node::tree_type>::other tree_allocator(node_allocator);
      return new(node_allocator.allocate(1)) Node(*n, tree_allocator);
   }

   void destroy_node(Node* n)
   {
      if (n->descend) {
         typename node_allocator_type::template rebind<typename Node::tree_type>::other tree_allocator(node_allocator);
         tree_allocator.destroy(n->descend);
         tree_allocator.deallocate(n->descend,1);
      }
      node_allocator.destroy(n);
      node_allocator.deallocate(n,1);
   }

   static bool own_node(Node*) { return true; }

public:
   typedef const key_comparator_type& arg_type;

   tree_traits() { }
   tree_traits(arg_type cmp_arg) : key_comparator(cmp_arg) { }

   static int max_size() { return std::numeric_limits<int>::max(); }
   const key_comparator_type& get_comparator() const { return key_comparator; }
};

template <typename Traits>
struct accessor {
   typedef typename AVL::tree< tree_traits<Traits> >::const_iterator argument_type;
   typedef const typename Traits::key_type& result_type;

   result_type operator() (const argument_type& it) const
   {
      return it->key;
   }
};

template <typename Traits>
class element
   : public modified_container_impl< element<Traits>,
                                     mlist< ContainerTag< typename std::vector< typename AVL::tree< tree_traits<Traits> >::const_iterator > >,
                                            OperationTag< accessor<Traits> > > >,
     public GenericSet< element<Traits>, typename Traits::key_type, typename Traits::key_comparator_type> {
protected:
   typedef AVL::tree< tree_traits<Traits> > tree_type;
   typedef typename tree_type::const_iterator elem_iterator;
   std::vector<elem_iterator> ptr;
public:
   const std::vector<elem_iterator>& get_container() const { return ptr; }

   element() { }
   element(int size_arg) : ptr(size_arg) { }
};

template <typename Traits>
class Iterator : protected element<Traits> {
   typedef AVL::tree< tree_traits<Traits> > tree_type;
public:
   typedef typename Traits::mapped_type mapped_type;
   typedef forward_iterator_tag iterator_category;
   typedef element<Traits> value_type;
   typedef const value_type& reference;
   typedef const value_type* pointer;
   typedef ptrdiff_t difference_type;
   typedef Iterator iterator;
   typedef Iterator const_iterator;

   Iterator() { }

   explicit Iterator(typename value_type::elem_iterator cur, int face_size=0)
      : value_type(face_size>0 ? face_size : 1), max_depth(face_size-1)
   {
      this->ptr[0]=cur;
      if (cur.at_end()) return;
      if (max_depth>=0)
         find_to_depth(0);
      else
         find_descend(cur);
   }

   reference operator* () const { return *this; }
   pointer operator-> () const { return this; }
   const mapped_type& data() const { return this->ptr.back()->data; }

   Iterator& operator++ ()
   {
      if (max_depth>=0) {
         int depth=max_depth;
         while ((++this->ptr[depth]).at_end()) {
            if (--depth<0) return *this;
         }
         find_to_depth(depth);
      } else {
         while (! this->ptr.back()->descend) {
            while ((++this->ptr.back()).at_end()) {
               if (this->ptr.size()==1) return *this;
               this->ptr.pop_back();
            }
            if (!Traits::unvisited(this->ptr.back()->data)) return *this;
         }
         find_descend(this->ptr.back());
      }
      return *this;
   }
   const Iterator operator++ (int) { Iterator copy=*this; operator++(); return copy; }

   bool operator== (const Iterator& it) const { return this->ptr==it.ptr; }
   bool operator!= (const Iterator& it) const { return !operator==(it); }
   bool at_end() const { return this->ptr.front().at_end(); }
protected:
   // precondition: ! cur.at_end()
   void find_descend(typename value_type::elem_iterator cur)
   {
      while (Traits::unvisited(cur->data)) {
         cur=cur->descend->begin();
         this->ptr.push_back(cur);
      }
   }

   // precondition: ! ptr[depth].at_end()
   void find_to_depth(int depth)
   {
      typename value_type::elem_iterator cur=this->ptr[depth];
      while (depth < max_depth || Traits::unvisited(cur->data)) {
         while (true) {
            if (this->ptr[depth].at_end()) {
               if (--depth<0) return;
            } else if (depth < max_depth && this->ptr[depth]->descend) {
               break;
            }
            ++this->ptr[depth];
         }
         cur=this->ptr[depth]->descend->begin();
         this->ptr[++depth]=cur;
      }
   }

   int max_depth;
};

template <typename Vertex=int>
struct index_traits {
   /// search key in the AVL trees
   typedef Vertex key_type;
   typedef operations::cmp key_comparator_type;
   /// data associated with the face, here: the node index in the HasseDiagram
   typedef int mapped_type;
   /// initial value: non-existing node
   static int initialize_data() { return -1; }
   /// face is unvisiited if no node assigned
   static bool unvisited(int k) { return k==-1; }
};

} // end namespace face_map

template <typename Traits>
struct check_iterator_feature<face_map::Iterator<Traits>, end_sensitive> : std::true_type { };

/** @class FaceMap

    A special case of an associative container, whose keys are objects of type
    GenericSet.  It is implemented as a recursively nested AVL tree: The
    topmost tree uses the first set element as a local search key, and his
    nodes contain second-level trees, using in turn the second set element as
    a local search key, and so on.

   The main purpose of the FaceMap class is to collect faces from a polytope
   face lattice or a simplicial complex, hence the name.  Concept due to
   Pfetsch and Kaibel.
**/

template <typename Traits=face_map::index_traits<int> >
class FaceMap {
   typedef AVL::tree< face_map::tree_traits<Traits> > tree_type;
   typedef typename tree_type::node_allocator_type::template rebind<tree_type>::other subtree_allocator_type;
   subtree_allocator_type subtree_allocator;
public:
   typedef typename Traits::key_type key_type;
   typedef typename Traits::mapped_type mapped_type;
   typedef typename Traits::key_comparator_type key_comparator_type;

   FaceMap() : data_of_empty_face(Traits::initialize_data()) { }

   typedef face_map::Iterator<Traits> iterator;
   typedef iterator const_iterator;
   typedef typename iterator::value_type value_type;
   typedef typename iterator::reference reference;
   typedef reference const_reference;

   iterator begin() const { return iterator(head.begin()); }
   iterator end() const { return iterator(head.end()); }

   iterator begin_of_dim(int d) const { return iterator(head.begin(), d+1); }
   iterator end_of_dim(int d) const { return iterator(head.end(), d+1); }

   template <typename Set2>
   mapped_type& operator[] (const GenericSet<Set2, key_type, key_comparator_type>& face)
   {
      if (!face.top().empty()) {
         tree_type *current_tree=&head;
         typename Entire<Set2>::const_iterator f_i=entire(face.top());

         while (true) {
            // invariants: current_tree!=0, !f_i.at_end()
            typename tree_type::iterator current_node=current_tree->insert(*f_i);
            ++f_i;
            if (f_i.at_end()) return current_node->data;
            if (!current_node->descend)
               current_node->descend=new(subtree_allocator.allocate(1)) tree_type();
            current_tree=current_node->descend;
         }
      }
      return data_of_empty_face;
   }

   bool empty() const { return head.empty(); }

   /// Caution: counting via full enumeration!
   int size() const { return count_it(begin()); }
   int faces_of_dim(int d) const { return count_it(begin_of_dim(d)); }

   void clear() { head.clear(); }
private:
   tree_type head;
   mapped_type data_of_empty_face;
};

template <typename Traits>
struct spec_object_traits< FaceMap<Traits> > : spec_object_traits<is_container> { };

} // end namespace pm

namespace polymake {
   using pm::FaceMap;
}

#endif // POLYMAKE_FACE_MAP_H

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: