This file is indexed.

/usr/share/perl5/Math/Vec.pm is in libmath-vec-perl 1.01-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
package Math::Vec;
our $VERSION   = '1.01';

=pod

=head1 NAME

Math::Vec - Object-Oriented Vector Math Methods in Perl

=head1 SYNOPSIS

  use Math::Vec;
  $v = Math::Vec->new(0,1,2);

  or

  use Math::Vec qw(NewVec);
  $v = NewVec(0,1,2);
  @res = $v->Cross([1,2.5,0]);
  $p = NewVec(@res);
  $q = $p->Dot([0,1,0]);

  or

  use Math::Vec qw(:terse);
  $v = V(0,1,2);
  $q = ($v x [1,2.5,0]) * [0,1,0];

=head1 NOTICE

This module is still somewhat incomplete.  If a function does nothing,
there is likely a really good reason.  Please have a look at the code
if you are trying to use this in a production environment.

=head1 AUTHOR

Eric L. Wilhelm <ewilhelm at cpan dot org>

http://scratchcomputing.com

=head1 DESCRIPTION

This module was adapted from Math::Vector, written by Wayne M. Syvinski.

It uses most of the same algorithms, and currently preserves the same
names as the original functions, though some aliases have been added to
make the interface more natural (at least to the way I think.)

The "object" for the object oriented calling style is a blessed array
reference which contains a vector of the form [x,y,z].  Methods will
typically return a list.

=head1 COPYRIGHT NOTICE

Copyright (C) 2003-2006 Eric Wilhelm

portions Copyright 2003 Wayne M. Syvinski

=head1 NO WARRANTY

Absolutely, positively NO WARRANTY, neither express or implied, is
offered with this software.  You use this software at your own risk.
In case of loss, neither Wayne M. Syvinski, Eric Wilhelm, nor anyone
else, owes you anything whatseover.  You have been warned.

Note that this includes NO GUARANTEE of MATHEMATICAL CORRECTNESS.  If
you are going to use this code in a production environment, it is YOUR
RESPONSIBILITY to verify that the methods return the correct values. 

=head1 LICENSE

You may use this software under one of the following licenses:

  (1) GNU General Public License 
    (found at http://www.gnu.org/copyleft/gpl.html) 
  (2) Artistic License 
    (found at http://www.perl.com/pub/language/misc/Artistic.html)

=head1 SEE ALSO

  Math::Vector

=cut

########################################################################

use strict;
use warnings;
use Carp;

{
package Math::Vec::Support;
# Dropping the usage of Math::Complex acos() because we don't want any
# complex numbers to happen due to errors in the whee bits.
sub acos {
	my ($z) = @_;

	my $abs = abs($z);
	if($abs > 1) {
		# just a little sanity checking
		(($abs - 1) > 2**-16) and die "bad input to acos($z)";
		# make it safe
		$z = ($z > 0) ? 1 : -1;
	}

	return CORE::atan2(CORE::sqrt(1-$z*$z), $z);
}
}

BEGIN {
use Exporter;
*{import} = \&Exporter::import;
}
our @EXPORT = ();
our @EXPORT_OK = qw(
	NewVec
	);
our @terse_exp = qw(
	V
	U
	X
	Y
	Z
	);
our %EXPORT_TAGS = (
	terse => [@terse_exp],
	);
Exporter::export_ok_tags(keys(%EXPORT_TAGS));


########################################################################

=head1 Constructor

=head2 new

Returns a blessed array reference to cartesian point ($x, $y, $z),
where $z is optional.  Note the feed-me-list, get-back-reference syntax
here.  This is the opposite of the rest of the methods for a good
reason (it allows nesting of function calls.)

The z value is optional, (and so are x and y.)  Undefined values are
silently translated into zeros upon construction.

  $vec = Math::Vec->new($x, $y, $z);

=cut
sub new {
	my $caller = shift;
	my $class = ref($caller) || $caller;
	my $self = [map({defined($_) ? $_ : 0} @_[0,1,2])];
	bless($self, $class);
	return($self);
} # end subroutine new definition
########################################################################

=head2 NewVec

This is simply a shortcut to Math::Vec->new($x, $y, $z) for those of
you who don't want to type so much so often.  This also makes it easier
to nest / chain your function calls.  Note that methods will typically
output lists (e.g. the answer to your question.)  While you can simply
[bracket] the answer to make an array reference, you need that to be
blessed in order to use the $object->method(@args) syntax.  This
function does that blessing.

This function is exported as an option.  To use it, simply use
Math::Vec qw(NewVec); at the start of your code.

  use Math::Vec qw(NewVec);
  $vec = NewVec($x, $y, $z);
  $diff = NewVec($vec->Minus([$ovec->ScalarMult(0.5)]));

=cut
sub NewVec {
	return(Math::Vec->new(@_));
} # end subroutine NewVec definition
########################################################################

=head1 Terse Functions

These are all one-letter shortcuts which are imported to your namespace
with the :terse flag.

  use Math::Vec qw(:terse);

=head2 V

This is the same as Math::Vec->new($x,$y,$z).

  $vec = V($x, $y, $z);

=cut
sub V {
	return(Math::Vec->new(@_));
} # end subroutine V definition
########################################################################

=head2 U

Shortcut to V($x,$y,$z)->UnitVector()

  $unit = U($x, $y, $z);

This will also work if called with a vector object:

  $unit = U($vector);

=cut
sub U {
	my $v;
	if(ref($_[0])) {
		$v = _vec_check($_[0]);
	}
	else {
		$v = V(@_);
	}
	return(V($v->UnitVector()));
} # end subroutine U definition
########################################################################

=head2 X

Returns an x-axis unit vector.

  $xvec = X();

=cut
sub X {
	V(1,0,0);
} # end subroutine X definition
########################################################################

=head2 Y

Returns a y-axis unit vector.

  $yvec = Y();

=cut
sub Y {
	V(0,1,0);
} # end subroutine Y definition
########################################################################

=head2 Z

Returns a z-axis unit vector.

  $zvec = Z();

=cut
sub Z {
	V(0,0,1);
} # end subroutine Z definition
########################################################################

=head1 Overloading

Best used with the :terse functions, the Overloading scheme introduces
an interface which is unique from the Methods interface.  Where the
methods take references and return lists, the overloaded operators will
return references.  This allows vector arithmetic to be chained together
more easily.  Of course, you can easily dereference these with @{$vec}.

The following sections contain equivelant expressions from the longhand
and terse interfaces, respectively.

=head2 Negation:

  @a = NewVec->(0,1,1)->ScalarMult(-1);
  @a = @{-V(0,1,1)};

=head2 Stringification:

This also performs concatenation and other string operations.

  print join(", ", 0,1,1), "\n";

  print V(0,1,1), "\n";

  $v = V(0,1,1);
  print "$v\n";
  print "$v" . "\n";
  print $v, "\n";

=head2 Addition:

  @a = NewVec(0,1,1)->Plus([2,2]);

  @a = @{V(0,1,1) + V(2,2)};

  # only one argument needs to be blessed:
  @a = @{V(0,1,1) + [2,2]};

  # and which one is blessed doesn't matter:
  @a = @{[0,1,1] + V(2,2)};

=head2 Subtraction:

  @a = NewVec(0,1,1)->Minus([2,2]);

  @a = @{[0,1,1] - V(2,2)};

=head2 Scalar Multiplication:

  @a = NewVec(0,1,1)->ScalarMult(2);

  @a = @{V(0,1,1) * 2};

  @a = @{2 * V(0,1,1)};

=head2 Scalar Division:

  @a = NewVec(0,1,1)->ScalarMult(1/2);

  # order matters!
  @a = @{V(0,1,1) / 2};

=head2 Cross Product:

  @a = NewVec(0,1,1)->Cross([0,1]);

  @a = @{V(0,1,1) x [0,1]};

  @a = @{[0,1,1] x V(0,1)};

=head2 Dot Product:

Also known as the "Scalar Product".

  $a = NewVec(0,1,1)->Dot([0,1]);

  $a = V(0,1,1) * [0,1];

Note:  Not using the '.' operator here makes everything more efficient.
I know, the * is not a dot, but at least it's a mathematical operator
(perl does some implied string concatenation somewhere which drove me to
avoid the dot.)

=head2 Comparison:

The == and != operators will compare vectors for equal direction and
magnitude.  No attempt is made to apply tolerance to this equality.

=head2 Length:

  $a = NewVec(0,1,1)->Length();

  $a = abs(V(0,1,1));

=head2 Vector Projection:

This one is a little different.  Where the method is written
$a->Proj($b) to give the projection of $b onto $a, this reads like you
would say it (b projected onto a):  $b>>$a.

  @a = NewVec(0,1,1)->Proj([0,0,1]);

  @a = @{V(0,0,1)>>[0,1,1]};

=head1 Chaining Operations

The above examples simply show how to go from the method interface to
the overloaded interface, but where the overloading really shines is in
chaining multiple operations together.  Because the return values from
the overloaded operators are all references, you dereference them only
when you are done.

=head2 Unit Vector left of a line

This comes from the CAD::Calc::line_to_rectangle() function.

  use Math::Vec qw(:terse);
  @line = ([0,1],[1,0]);
  my ($a, $b) = map({V(@$_)} @line);
  $unit = U($b - $a);
  $left = $unit x -Z();

=head2 Length of a cross product

  $length = abs($va x $vb);

=head2 Vectors as coordinate axes

This is useful in drawing eliptical arcs using dxf data.

  $val = 3.14159;                             # the 'start parameter'
  @c = (14.15973317961194, 6.29684276451746); # codes 10, 20, 30
  @e = (6.146127847120538, 0);                # codes 11, 21, 31
  @ep = @{V(@c) + \@e};                       # that's the axis endpoint
  $ux = U(@e);                                # unit on our x' axis
  $uy = U($ux x -Z());                       # y' is left of x'
  $center = V(@c);
  # autodesk gives you this:
  @pt = ($a * cos($val), $b * sin($val));
  # but they don't tell you about the major/minor axis issue:
  @pt = @{$center + $ux * $pt[0] + $uy * $pt[1]};;

=head1 Precedence

The operator precedence is going to be whatever perl wants it to be.  I
have not yet investigated this to see if it matches standard vector
arithmetic notation.  If in doubt, use parentheses.

One item of note here is that the 'x' and '*' operators have the same
precedence, so the leftmost wins.  In the following example, you can get
away without parentheses if you have the cross-product first.

  # dot product of a cross product:
  $v1 x $v2 * $v3
  ($v1 x $v2) * $v3

  # scalar crossed with a vector (illegal!)
  $v3 * $v1 x $v2

=cut

use overload
	'neg' => sub {
		return(V($_[0]->ScalarMult(-1)));
	},
	'""' => sub {
		return(join(",", @{$_[0]}));
	},
	'+' => sub {
		my ($v, $arg) = @_;
		$arg = _vec_check($arg);
		return(V($v->Plus($arg)));
	},
	'-' => sub {
		my ($v, $arg, $flip) = @_;
		$arg = _vec_check($arg);
		$flip and (($v, $arg) = ($arg, $v));
		return(V($v->Minus($arg)));
	},
	'*' => sub {
		my($v, $arg) = @_;
		ref($arg) and
			return($v->Dot($arg));
		return(V($v->ScalarMult($arg)));
	},
	'/' => sub {
		my($v, $arg, $flip) =  @_;
		$flip and croak("cannot divide by vector");
		$arg or croak("cannot divide vector by zero");
		return(V($v->ScalarMult(1 / $arg)));
	},
	'x' => sub {
		my ($v, $arg, $flip) = @_;
		$arg = _vec_check($arg);
		$flip and (($v, $arg) = ($arg, $v));
		return(V($v->Cross($arg)));
	},
	'==' => sub {
		my ($v, $arg) = @_;
		$arg = _vec_check($arg);
		for(my $i = 0; $i < 3; $i++) {
			($v->[$i] == $arg->[$i]) or return(0);
		}
		return(1);
	},
	'!=' => sub {
		my ($v, $arg) = @_;
		return(! ($v == $arg));
	},
	'abs' => sub {
		return($_[0]->Length());
	},
	'>>' => sub {
		my ($v, $arg, $flip) = @_;
		$arg = _vec_check($arg);
		$flip and (($v, $arg) = ($arg, $v));
		return(V($arg->Proj($v)));
	},
	;

# Check and return a vector (or array reference turns into a vector.)
# also serves to initialize Z-coordinate.
sub _vec_check {
	my $arg = shift;
	if(ref($arg)) {
		if(ref($arg) eq "ARRAY") {
			$arg = V(@$arg);
		}
		else {
			eval{$arg->isa('Math::Vec')};
			$@ and 
				croak("cannot use $arg as a vector");
		}
	}
	else {
		croak("cannot use $arg as a vector");
	}
	return($arg);
} # end subroutine _vec_check definition
########################################################################

=head1 Methods

The typical theme is that methods require array references and return
lists.  This means that you can choose whether to create an anonymous
array ref for use in feeding back into another function call, or you
can simply use the list as-is.  Methods which return a scalar or list
of scalars (in the mathematical sense, not the Perl SV sense) are
exempt from this theme, but methods which return what could become one
vector will return it as a list.

If you want to chain calls together, either use the NewVec constructor,
or enclose the call in square brackets to make an anonymous array out
of the result.

  my $vec = NewVec(@pt);
  my $doubled = NewVec($vec->ScalarMult(0.5));
  my $other = NewVec($vec->Plus([0,2,1], [4,2,3]));
  my @result = $other->Minus($doubled);
  $unit = NewVec(NewVec(@result)->UnitVector());

The vector objects are simply blessed array references.  This makes for
a fairly limited amount of manipulation, but vector math is not
complicated stuff.  Hopefully, you can save at least two lines of code
per calculation using this module.

=head2 Dot

Returns the dot product of $vec 'dot' $othervec.

  $vec->Dot($othervec);

=cut
sub Dot {
	my $self = shift;
	my ($operand) = @_;
	$operand = _vec_check($operand);
	my @r = map( {$self->[$_] * $operand->[$_]} 0,1,2);
	return( $r[0] + $r[1] + $r[2]);
} # end subroutine Dot definition
########################################################################

=head2 DotProduct

Alias to Dot()

  $number = $vec->DotProduct($othervec);

=cut
sub DotProduct {
	my $self = shift;
	return($self->Dot(@_));
} # end subroutine DotProduct definition
########################################################################

=head2 Cross

Returns $vec x $other_vec

  @list = $vec->Cross($other_vec);
  # or, to use the result as a vec:
  $cvec = NewVec($vec->Cross($other_vec));

=cut
sub Cross {
	my $a = shift;
	my $b = shift;
	$b = _vec_check($b);
	my $x = (($a->[1] * $b->[2]) - ($a->[2] * $b->[1]));
	my $y = (($a->[2] * $b->[0]) - ($a->[0] * $b->[2]));
	my $z = (($a->[0] * $b->[1]) - ($a->[1] * $b->[0]));
	return($x, $y, $z);
} # end subroutine Cross definition
########################################################################

=head2 CrossProduct

Alias to Cross() (should really strip out all of this clunkiness and go
to operator overloading, but that gets into other hairiness.)

  $vec->CrossProduct();

=cut
sub CrossProduct {
	my $self = shift;
	return($self->Cross(@_));
} # end subroutine CrossProduct definition
########################################################################

=head2 Length

Returns the length of $vec

  $length = $vec->Length();

=cut
sub Length {
	my Math::Vec $self = shift;
	my $sum;
	map( {$sum+=$_**2} @$self );
	return(sqrt($sum));
} # end subroutine Length definition
########################################################################

=head2 Magnitude

  $vec->Magnitude();

=cut
sub Magnitude {
	my Math::Vec $self = shift;
	return($self->Length());
} # end subroutine Magnitude definition
########################################################################

=head2 UnitVector

  $vec->UnitVector();

=cut
sub UnitVector {
	my Math::Vec $self = shift;
	my $mag = $self->Length();
	$mag || croak("zero-length vector (@$self) has no unit vector");
	return(map({$_ / $mag} @$self) );
} # end subroutine UnitVector definition
########################################################################

=head2 ScalarMult

Factors each element of $vec by $factor.

  @new = $vec->ScalarMult($factor);

=cut
sub ScalarMult {
	my Math::Vec $self = shift;
	my($factor) = @_;
	return(map( {$_ * $factor} @{$self}));
} # end subroutine ScalarMult definition
########################################################################

=head2 Minus

Subtracts an arbitrary number of vectors.

  @result = $vec->Minus($other_vec, $another_vec?);

This would be equivelant to:

  @result = $vec->Minus([$other_vec->Plus(@list_of_vectors)]);

=cut
sub Minus {
	my Math::Vec $self = shift;
	my @list = @_;
	my @result = @$self;
	foreach my $vec (@list) {
		@result = map( {$result[$_] - $vec->[$_]} 0..$#$vec);
		}
	return(@result);
} # end subroutine Minus definition
########################################################################

=head2 VecSub

Alias to Minus()

  $vec->VecSub();

=cut
sub VecSub {
	my Math::Vec $self = shift;
	return($self->Minus(@_));
} # end subroutine VecSub definition
########################################################################

=head2 InnerAngle

Returns the acute angle (in radians) in the plane defined by the two
vectors.

  $vec->InnerAngle($other_vec);

=cut
sub InnerAngle {
	my $A = shift;
	my $B = shift;
	my $dot_prod = $A->Dot($B);
	my $m_A = $A->Length();
	my $m_B = $B->Length();
	# NOTE occasionally returned an answer with a very small imaginary
	# part (for d/(A*B) values very slightly under -1 or very slightly
	# over 1.)  Large imaginary results are not possible with vector 
	# inputs, so we can just drop the imaginary bit.
	return(Math::Vec::Support::acos($dot_prod / ($m_A * $m_B)) );
} # end subroutine InnerAngle definition
########################################################################

=head2 DirAngles

  $vec->DirAngles();

=cut
sub DirAngles {
	my Math::Vec $self = shift;
	my @unit = $self->UnitVector();
	return( map( {acos($_)} @unit) );
} # end subroutine DirAngles definition
########################################################################

=head2 Plus

Adds an arbitrary number of vectors.

  @result = $vec->Plus($other_vec, $another_vec);

=cut
sub Plus {
	my Math::Vec $self = shift;
	my @list = @_;
	my @result = @$self;
	foreach my $vec (@list) {
		@result = map( {$result[$_] + $vec->[$_]} 0..$#$vec);
	}
	return(@result);
} # end subroutine Plus definition
########################################################################

=head2 PlanarAngles

If called in list context, returns the angle of the vector in each of
the primary planes.  If called in scalar context, returns only the
angle in the xy plane.  Angles are returned in radians
counter-clockwise from the primary axis (the one listed first in the
pairs below.)

  ($xy_ang, $xz_ang, $yz_ang) = $vec->PlanarAngles();

=cut
sub PlanarAngles {
	my $self = shift;
	my $xy = atan2($self->[1], $self->[0]);
	wantarray || return($xy);
	my $xz = atan2($self->[2], $self->[0]);
	my $yz = atan2($self->[2], $self->[1]);
	return($xy, $xz, $yz);
} # end subroutine PlanarAngles definition
########################################################################

=head2 Ang

A simpler alias to PlanarAngles() which eliminates the concerns about
context and simply returns the angle in the xy plane.

  $xy_ang = $vec->Ang();

=cut
sub Ang {
	my $self = shift;
	my ($xy) = $self->PlanarAngles();
	return($xy);
} # end subroutine Ang definition
########################################################################

=head2 VecAdd

  $vec->VecAdd();

=cut
sub VecAdd {
	my Math::Vec $self = shift;
	return($self->Plus(@_));
} # end subroutine VecAdd definition
########################################################################

=head2 UnitVectorPoints

Returns a unit vector which points from $A to $B.

  $A->UnitVectorPoints($B);

=cut
sub UnitVectorPoints {
	my $A = shift;
	my $B = shift;
	$B = NewVec(@$B); # because we cannot guarantee that it was blessed
	return(NewVec($B->Minus($A))->UnitVector());
} # end subroutine UnitVectorPoints definition
########################################################################

=head2 InnerAnglePoints

Returns the InnerAngle() between the three points.  $Vert is the vertex
of the points.

  $Vert->InnerAnglePoints($endA, $endB);

=cut
sub InnerAnglePoints {
	my $v = shift;
	my ($A, $B) = @_;
	my $lead = NewVec($v->UnitVectorPoints($A));
	my $tail = NewVec($v->UnitVectorPoints($B));
	return($lead->InnerAngle($tail));
} # end subroutine InnerAnglePoints definition
########################################################################

=head2 PlaneUnitNormal

Returns a unit vector normal to the plane described by the three
points.  The sense of this vector is according to the right-hand rule
and the order of the given points.  The $Vert vector is taken as the
vertex of the three points.  e.g. if $Vert is the origin of a
coordinate system where the x-axis is $A and the y-axis is $B, then the
return value would be a unit vector along the positive z-axis.

  $Vert->PlaneUnitNormal($A, $B);

=cut
sub PlaneUnitNormal {
	my $v = shift;
	my ($A, $B) = @_;
	$A = NewVec(@$A);
	$B = NewVec(@$B);
	my $lead = NewVec($A->Minus($v));
	my $tail = NewVec($B->Minus($v));
	return(NewVec($lead->Cross($tail))->UnitVector);
} # end subroutine PlaneUnitNormal definition
########################################################################

=head2 TriAreaPoints

Returns the angle of the triangle formed by the three points.

  $A->TriAreaPoints($B, $C);

=cut
sub TriAreaPoints {
	my $A = shift;
	my ($B, $C) = @_;
	$B = NewVec(@$B);
	$C = NewVec(@$C);
	my $lead = NewVec($A->Minus($B));
	my $tail = NewVec($A->Minus($C));
	return(NewVec($lead->Cross($tail))->Length() / 2);
} # end subroutine TriAreaPoints definition
########################################################################

=head2 Comp

Returns the scalar projection of $B onto $A (also called the component
of $B along $A.)

  $A->Comp($B);

=cut
sub Comp {
	my $self = shift;
	my $B = _vec_check(shift);
	my $length = $self->Length();
	$length || croak("cannot Comp() vector without length");
	return($self->Dot($B) / $length);
} # end subroutine Comp definition
########################################################################

=head2 Proj

Returns the vector projection of $B onto $A.

  $A->Proj($B);

=cut
sub Proj {
	my $self = shift;
	my $B = shift;
	return(NewVec($self->UnitVector())->ScalarMult($self->Comp($B)));
} # end subroutine Proj definition
########################################################################

=head2 PerpFoot

Returns a point on line $A,$B which is as close to $pt as possible (and
therefore perpendicular to the line.)

  $pt->PerpFoot($A, $B);

=cut
sub PerpFoot {
	my $pt = shift;
	my ($A, $B) = @_;
	$pt = NewVec($pt->Minus($A));
	$B = NewVec(NewVec(@$B)->Minus($A));
	my $proj = NewVec($B->Proj($pt));
	return($proj->Plus($A));
} # end subroutine PerpFoot definition
########################################################################

=head1 Incomplete Methods

The following have yet to be translated into this interface.  They are
shown here simply because I intended to fully preserve the function
names from the original Math::Vector module written by Wayne M.
Syvinski.

=head2 TripleProduct

  $vec->TripleProduct();

=cut
sub TripleProduct {
	die("not written");
} # end subroutine TripleProduct definition
########################################################################

=head2 IJK

  $vec->IJK();

=cut
sub IJK {
	die("not written");

} # end subroutine IJK definition
########################################################################

=head2 OrdTrip

  $vec->OrdTrip();

=cut
sub OrdTrip {
	die("not written");

} # end subroutine OrdTrip definition
########################################################################

=head2 STV

  $vec->STV();

=cut
sub STV {
	die("not written");

} # end subroutine STV definition
########################################################################

=head2 Equil

  $vec->Equil();

=cut
sub Equil {
	die("not written");

} # end subroutine Equil definition
########################################################################

1;
# vim:ts=4:sw=4:noet