/usr/share/perl5/Math/Vec.pm is in libmath-vec-perl 1.01-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 | package Math::Vec;
our $VERSION = '1.01';
=pod
=head1 NAME
Math::Vec - Object-Oriented Vector Math Methods in Perl
=head1 SYNOPSIS
use Math::Vec;
$v = Math::Vec->new(0,1,2);
or
use Math::Vec qw(NewVec);
$v = NewVec(0,1,2);
@res = $v->Cross([1,2.5,0]);
$p = NewVec(@res);
$q = $p->Dot([0,1,0]);
or
use Math::Vec qw(:terse);
$v = V(0,1,2);
$q = ($v x [1,2.5,0]) * [0,1,0];
=head1 NOTICE
This module is still somewhat incomplete. If a function does nothing,
there is likely a really good reason. Please have a look at the code
if you are trying to use this in a production environment.
=head1 AUTHOR
Eric L. Wilhelm <ewilhelm at cpan dot org>
http://scratchcomputing.com
=head1 DESCRIPTION
This module was adapted from Math::Vector, written by Wayne M. Syvinski.
It uses most of the same algorithms, and currently preserves the same
names as the original functions, though some aliases have been added to
make the interface more natural (at least to the way I think.)
The "object" for the object oriented calling style is a blessed array
reference which contains a vector of the form [x,y,z]. Methods will
typically return a list.
=head1 COPYRIGHT NOTICE
Copyright (C) 2003-2006 Eric Wilhelm
portions Copyright 2003 Wayne M. Syvinski
=head1 NO WARRANTY
Absolutely, positively NO WARRANTY, neither express or implied, is
offered with this software. You use this software at your own risk.
In case of loss, neither Wayne M. Syvinski, Eric Wilhelm, nor anyone
else, owes you anything whatseover. You have been warned.
Note that this includes NO GUARANTEE of MATHEMATICAL CORRECTNESS. If
you are going to use this code in a production environment, it is YOUR
RESPONSIBILITY to verify that the methods return the correct values.
=head1 LICENSE
You may use this software under one of the following licenses:
(1) GNU General Public License
(found at http://www.gnu.org/copyleft/gpl.html)
(2) Artistic License
(found at http://www.perl.com/pub/language/misc/Artistic.html)
=head1 SEE ALSO
Math::Vector
=cut
########################################################################
use strict;
use warnings;
use Carp;
{
package Math::Vec::Support;
# Dropping the usage of Math::Complex acos() because we don't want any
# complex numbers to happen due to errors in the whee bits.
sub acos {
my ($z) = @_;
my $abs = abs($z);
if($abs > 1) {
# just a little sanity checking
(($abs - 1) > 2**-16) and die "bad input to acos($z)";
# make it safe
$z = ($z > 0) ? 1 : -1;
}
return CORE::atan2(CORE::sqrt(1-$z*$z), $z);
}
}
BEGIN {
use Exporter;
*{import} = \&Exporter::import;
}
our @EXPORT = ();
our @EXPORT_OK = qw(
NewVec
);
our @terse_exp = qw(
V
U
X
Y
Z
);
our %EXPORT_TAGS = (
terse => [@terse_exp],
);
Exporter::export_ok_tags(keys(%EXPORT_TAGS));
########################################################################
=head1 Constructor
=head2 new
Returns a blessed array reference to cartesian point ($x, $y, $z),
where $z is optional. Note the feed-me-list, get-back-reference syntax
here. This is the opposite of the rest of the methods for a good
reason (it allows nesting of function calls.)
The z value is optional, (and so are x and y.) Undefined values are
silently translated into zeros upon construction.
$vec = Math::Vec->new($x, $y, $z);
=cut
sub new {
my $caller = shift;
my $class = ref($caller) || $caller;
my $self = [map({defined($_) ? $_ : 0} @_[0,1,2])];
bless($self, $class);
return($self);
} # end subroutine new definition
########################################################################
=head2 NewVec
This is simply a shortcut to Math::Vec->new($x, $y, $z) for those of
you who don't want to type so much so often. This also makes it easier
to nest / chain your function calls. Note that methods will typically
output lists (e.g. the answer to your question.) While you can simply
[bracket] the answer to make an array reference, you need that to be
blessed in order to use the $object->method(@args) syntax. This
function does that blessing.
This function is exported as an option. To use it, simply use
Math::Vec qw(NewVec); at the start of your code.
use Math::Vec qw(NewVec);
$vec = NewVec($x, $y, $z);
$diff = NewVec($vec->Minus([$ovec->ScalarMult(0.5)]));
=cut
sub NewVec {
return(Math::Vec->new(@_));
} # end subroutine NewVec definition
########################################################################
=head1 Terse Functions
These are all one-letter shortcuts which are imported to your namespace
with the :terse flag.
use Math::Vec qw(:terse);
=head2 V
This is the same as Math::Vec->new($x,$y,$z).
$vec = V($x, $y, $z);
=cut
sub V {
return(Math::Vec->new(@_));
} # end subroutine V definition
########################################################################
=head2 U
Shortcut to V($x,$y,$z)->UnitVector()
$unit = U($x, $y, $z);
This will also work if called with a vector object:
$unit = U($vector);
=cut
sub U {
my $v;
if(ref($_[0])) {
$v = _vec_check($_[0]);
}
else {
$v = V(@_);
}
return(V($v->UnitVector()));
} # end subroutine U definition
########################################################################
=head2 X
Returns an x-axis unit vector.
$xvec = X();
=cut
sub X {
V(1,0,0);
} # end subroutine X definition
########################################################################
=head2 Y
Returns a y-axis unit vector.
$yvec = Y();
=cut
sub Y {
V(0,1,0);
} # end subroutine Y definition
########################################################################
=head2 Z
Returns a z-axis unit vector.
$zvec = Z();
=cut
sub Z {
V(0,0,1);
} # end subroutine Z definition
########################################################################
=head1 Overloading
Best used with the :terse functions, the Overloading scheme introduces
an interface which is unique from the Methods interface. Where the
methods take references and return lists, the overloaded operators will
return references. This allows vector arithmetic to be chained together
more easily. Of course, you can easily dereference these with @{$vec}.
The following sections contain equivelant expressions from the longhand
and terse interfaces, respectively.
=head2 Negation:
@a = NewVec->(0,1,1)->ScalarMult(-1);
@a = @{-V(0,1,1)};
=head2 Stringification:
This also performs concatenation and other string operations.
print join(", ", 0,1,1), "\n";
print V(0,1,1), "\n";
$v = V(0,1,1);
print "$v\n";
print "$v" . "\n";
print $v, "\n";
=head2 Addition:
@a = NewVec(0,1,1)->Plus([2,2]);
@a = @{V(0,1,1) + V(2,2)};
# only one argument needs to be blessed:
@a = @{V(0,1,1) + [2,2]};
# and which one is blessed doesn't matter:
@a = @{[0,1,1] + V(2,2)};
=head2 Subtraction:
@a = NewVec(0,1,1)->Minus([2,2]);
@a = @{[0,1,1] - V(2,2)};
=head2 Scalar Multiplication:
@a = NewVec(0,1,1)->ScalarMult(2);
@a = @{V(0,1,1) * 2};
@a = @{2 * V(0,1,1)};
=head2 Scalar Division:
@a = NewVec(0,1,1)->ScalarMult(1/2);
# order matters!
@a = @{V(0,1,1) / 2};
=head2 Cross Product:
@a = NewVec(0,1,1)->Cross([0,1]);
@a = @{V(0,1,1) x [0,1]};
@a = @{[0,1,1] x V(0,1)};
=head2 Dot Product:
Also known as the "Scalar Product".
$a = NewVec(0,1,1)->Dot([0,1]);
$a = V(0,1,1) * [0,1];
Note: Not using the '.' operator here makes everything more efficient.
I know, the * is not a dot, but at least it's a mathematical operator
(perl does some implied string concatenation somewhere which drove me to
avoid the dot.)
=head2 Comparison:
The == and != operators will compare vectors for equal direction and
magnitude. No attempt is made to apply tolerance to this equality.
=head2 Length:
$a = NewVec(0,1,1)->Length();
$a = abs(V(0,1,1));
=head2 Vector Projection:
This one is a little different. Where the method is written
$a->Proj($b) to give the projection of $b onto $a, this reads like you
would say it (b projected onto a): $b>>$a.
@a = NewVec(0,1,1)->Proj([0,0,1]);
@a = @{V(0,0,1)>>[0,1,1]};
=head1 Chaining Operations
The above examples simply show how to go from the method interface to
the overloaded interface, but where the overloading really shines is in
chaining multiple operations together. Because the return values from
the overloaded operators are all references, you dereference them only
when you are done.
=head2 Unit Vector left of a line
This comes from the CAD::Calc::line_to_rectangle() function.
use Math::Vec qw(:terse);
@line = ([0,1],[1,0]);
my ($a, $b) = map({V(@$_)} @line);
$unit = U($b - $a);
$left = $unit x -Z();
=head2 Length of a cross product
$length = abs($va x $vb);
=head2 Vectors as coordinate axes
This is useful in drawing eliptical arcs using dxf data.
$val = 3.14159; # the 'start parameter'
@c = (14.15973317961194, 6.29684276451746); # codes 10, 20, 30
@e = (6.146127847120538, 0); # codes 11, 21, 31
@ep = @{V(@c) + \@e}; # that's the axis endpoint
$ux = U(@e); # unit on our x' axis
$uy = U($ux x -Z()); # y' is left of x'
$center = V(@c);
# autodesk gives you this:
@pt = ($a * cos($val), $b * sin($val));
# but they don't tell you about the major/minor axis issue:
@pt = @{$center + $ux * $pt[0] + $uy * $pt[1]};;
=head1 Precedence
The operator precedence is going to be whatever perl wants it to be. I
have not yet investigated this to see if it matches standard vector
arithmetic notation. If in doubt, use parentheses.
One item of note here is that the 'x' and '*' operators have the same
precedence, so the leftmost wins. In the following example, you can get
away without parentheses if you have the cross-product first.
# dot product of a cross product:
$v1 x $v2 * $v3
($v1 x $v2) * $v3
# scalar crossed with a vector (illegal!)
$v3 * $v1 x $v2
=cut
use overload
'neg' => sub {
return(V($_[0]->ScalarMult(-1)));
},
'""' => sub {
return(join(",", @{$_[0]}));
},
'+' => sub {
my ($v, $arg) = @_;
$arg = _vec_check($arg);
return(V($v->Plus($arg)));
},
'-' => sub {
my ($v, $arg, $flip) = @_;
$arg = _vec_check($arg);
$flip and (($v, $arg) = ($arg, $v));
return(V($v->Minus($arg)));
},
'*' => sub {
my($v, $arg) = @_;
ref($arg) and
return($v->Dot($arg));
return(V($v->ScalarMult($arg)));
},
'/' => sub {
my($v, $arg, $flip) = @_;
$flip and croak("cannot divide by vector");
$arg or croak("cannot divide vector by zero");
return(V($v->ScalarMult(1 / $arg)));
},
'x' => sub {
my ($v, $arg, $flip) = @_;
$arg = _vec_check($arg);
$flip and (($v, $arg) = ($arg, $v));
return(V($v->Cross($arg)));
},
'==' => sub {
my ($v, $arg) = @_;
$arg = _vec_check($arg);
for(my $i = 0; $i < 3; $i++) {
($v->[$i] == $arg->[$i]) or return(0);
}
return(1);
},
'!=' => sub {
my ($v, $arg) = @_;
return(! ($v == $arg));
},
'abs' => sub {
return($_[0]->Length());
},
'>>' => sub {
my ($v, $arg, $flip) = @_;
$arg = _vec_check($arg);
$flip and (($v, $arg) = ($arg, $v));
return(V($arg->Proj($v)));
},
;
# Check and return a vector (or array reference turns into a vector.)
# also serves to initialize Z-coordinate.
sub _vec_check {
my $arg = shift;
if(ref($arg)) {
if(ref($arg) eq "ARRAY") {
$arg = V(@$arg);
}
else {
eval{$arg->isa('Math::Vec')};
$@ and
croak("cannot use $arg as a vector");
}
}
else {
croak("cannot use $arg as a vector");
}
return($arg);
} # end subroutine _vec_check definition
########################################################################
=head1 Methods
The typical theme is that methods require array references and return
lists. This means that you can choose whether to create an anonymous
array ref for use in feeding back into another function call, or you
can simply use the list as-is. Methods which return a scalar or list
of scalars (in the mathematical sense, not the Perl SV sense) are
exempt from this theme, but methods which return what could become one
vector will return it as a list.
If you want to chain calls together, either use the NewVec constructor,
or enclose the call in square brackets to make an anonymous array out
of the result.
my $vec = NewVec(@pt);
my $doubled = NewVec($vec->ScalarMult(0.5));
my $other = NewVec($vec->Plus([0,2,1], [4,2,3]));
my @result = $other->Minus($doubled);
$unit = NewVec(NewVec(@result)->UnitVector());
The vector objects are simply blessed array references. This makes for
a fairly limited amount of manipulation, but vector math is not
complicated stuff. Hopefully, you can save at least two lines of code
per calculation using this module.
=head2 Dot
Returns the dot product of $vec 'dot' $othervec.
$vec->Dot($othervec);
=cut
sub Dot {
my $self = shift;
my ($operand) = @_;
$operand = _vec_check($operand);
my @r = map( {$self->[$_] * $operand->[$_]} 0,1,2);
return( $r[0] + $r[1] + $r[2]);
} # end subroutine Dot definition
########################################################################
=head2 DotProduct
Alias to Dot()
$number = $vec->DotProduct($othervec);
=cut
sub DotProduct {
my $self = shift;
return($self->Dot(@_));
} # end subroutine DotProduct definition
########################################################################
=head2 Cross
Returns $vec x $other_vec
@list = $vec->Cross($other_vec);
# or, to use the result as a vec:
$cvec = NewVec($vec->Cross($other_vec));
=cut
sub Cross {
my $a = shift;
my $b = shift;
$b = _vec_check($b);
my $x = (($a->[1] * $b->[2]) - ($a->[2] * $b->[1]));
my $y = (($a->[2] * $b->[0]) - ($a->[0] * $b->[2]));
my $z = (($a->[0] * $b->[1]) - ($a->[1] * $b->[0]));
return($x, $y, $z);
} # end subroutine Cross definition
########################################################################
=head2 CrossProduct
Alias to Cross() (should really strip out all of this clunkiness and go
to operator overloading, but that gets into other hairiness.)
$vec->CrossProduct();
=cut
sub CrossProduct {
my $self = shift;
return($self->Cross(@_));
} # end subroutine CrossProduct definition
########################################################################
=head2 Length
Returns the length of $vec
$length = $vec->Length();
=cut
sub Length {
my Math::Vec $self = shift;
my $sum;
map( {$sum+=$_**2} @$self );
return(sqrt($sum));
} # end subroutine Length definition
########################################################################
=head2 Magnitude
$vec->Magnitude();
=cut
sub Magnitude {
my Math::Vec $self = shift;
return($self->Length());
} # end subroutine Magnitude definition
########################################################################
=head2 UnitVector
$vec->UnitVector();
=cut
sub UnitVector {
my Math::Vec $self = shift;
my $mag = $self->Length();
$mag || croak("zero-length vector (@$self) has no unit vector");
return(map({$_ / $mag} @$self) );
} # end subroutine UnitVector definition
########################################################################
=head2 ScalarMult
Factors each element of $vec by $factor.
@new = $vec->ScalarMult($factor);
=cut
sub ScalarMult {
my Math::Vec $self = shift;
my($factor) = @_;
return(map( {$_ * $factor} @{$self}));
} # end subroutine ScalarMult definition
########################################################################
=head2 Minus
Subtracts an arbitrary number of vectors.
@result = $vec->Minus($other_vec, $another_vec?);
This would be equivelant to:
@result = $vec->Minus([$other_vec->Plus(@list_of_vectors)]);
=cut
sub Minus {
my Math::Vec $self = shift;
my @list = @_;
my @result = @$self;
foreach my $vec (@list) {
@result = map( {$result[$_] - $vec->[$_]} 0..$#$vec);
}
return(@result);
} # end subroutine Minus definition
########################################################################
=head2 VecSub
Alias to Minus()
$vec->VecSub();
=cut
sub VecSub {
my Math::Vec $self = shift;
return($self->Minus(@_));
} # end subroutine VecSub definition
########################################################################
=head2 InnerAngle
Returns the acute angle (in radians) in the plane defined by the two
vectors.
$vec->InnerAngle($other_vec);
=cut
sub InnerAngle {
my $A = shift;
my $B = shift;
my $dot_prod = $A->Dot($B);
my $m_A = $A->Length();
my $m_B = $B->Length();
# NOTE occasionally returned an answer with a very small imaginary
# part (for d/(A*B) values very slightly under -1 or very slightly
# over 1.) Large imaginary results are not possible with vector
# inputs, so we can just drop the imaginary bit.
return(Math::Vec::Support::acos($dot_prod / ($m_A * $m_B)) );
} # end subroutine InnerAngle definition
########################################################################
=head2 DirAngles
$vec->DirAngles();
=cut
sub DirAngles {
my Math::Vec $self = shift;
my @unit = $self->UnitVector();
return( map( {acos($_)} @unit) );
} # end subroutine DirAngles definition
########################################################################
=head2 Plus
Adds an arbitrary number of vectors.
@result = $vec->Plus($other_vec, $another_vec);
=cut
sub Plus {
my Math::Vec $self = shift;
my @list = @_;
my @result = @$self;
foreach my $vec (@list) {
@result = map( {$result[$_] + $vec->[$_]} 0..$#$vec);
}
return(@result);
} # end subroutine Plus definition
########################################################################
=head2 PlanarAngles
If called in list context, returns the angle of the vector in each of
the primary planes. If called in scalar context, returns only the
angle in the xy plane. Angles are returned in radians
counter-clockwise from the primary axis (the one listed first in the
pairs below.)
($xy_ang, $xz_ang, $yz_ang) = $vec->PlanarAngles();
=cut
sub PlanarAngles {
my $self = shift;
my $xy = atan2($self->[1], $self->[0]);
wantarray || return($xy);
my $xz = atan2($self->[2], $self->[0]);
my $yz = atan2($self->[2], $self->[1]);
return($xy, $xz, $yz);
} # end subroutine PlanarAngles definition
########################################################################
=head2 Ang
A simpler alias to PlanarAngles() which eliminates the concerns about
context and simply returns the angle in the xy plane.
$xy_ang = $vec->Ang();
=cut
sub Ang {
my $self = shift;
my ($xy) = $self->PlanarAngles();
return($xy);
} # end subroutine Ang definition
########################################################################
=head2 VecAdd
$vec->VecAdd();
=cut
sub VecAdd {
my Math::Vec $self = shift;
return($self->Plus(@_));
} # end subroutine VecAdd definition
########################################################################
=head2 UnitVectorPoints
Returns a unit vector which points from $A to $B.
$A->UnitVectorPoints($B);
=cut
sub UnitVectorPoints {
my $A = shift;
my $B = shift;
$B = NewVec(@$B); # because we cannot guarantee that it was blessed
return(NewVec($B->Minus($A))->UnitVector());
} # end subroutine UnitVectorPoints definition
########################################################################
=head2 InnerAnglePoints
Returns the InnerAngle() between the three points. $Vert is the vertex
of the points.
$Vert->InnerAnglePoints($endA, $endB);
=cut
sub InnerAnglePoints {
my $v = shift;
my ($A, $B) = @_;
my $lead = NewVec($v->UnitVectorPoints($A));
my $tail = NewVec($v->UnitVectorPoints($B));
return($lead->InnerAngle($tail));
} # end subroutine InnerAnglePoints definition
########################################################################
=head2 PlaneUnitNormal
Returns a unit vector normal to the plane described by the three
points. The sense of this vector is according to the right-hand rule
and the order of the given points. The $Vert vector is taken as the
vertex of the three points. e.g. if $Vert is the origin of a
coordinate system where the x-axis is $A and the y-axis is $B, then the
return value would be a unit vector along the positive z-axis.
$Vert->PlaneUnitNormal($A, $B);
=cut
sub PlaneUnitNormal {
my $v = shift;
my ($A, $B) = @_;
$A = NewVec(@$A);
$B = NewVec(@$B);
my $lead = NewVec($A->Minus($v));
my $tail = NewVec($B->Minus($v));
return(NewVec($lead->Cross($tail))->UnitVector);
} # end subroutine PlaneUnitNormal definition
########################################################################
=head2 TriAreaPoints
Returns the angle of the triangle formed by the three points.
$A->TriAreaPoints($B, $C);
=cut
sub TriAreaPoints {
my $A = shift;
my ($B, $C) = @_;
$B = NewVec(@$B);
$C = NewVec(@$C);
my $lead = NewVec($A->Minus($B));
my $tail = NewVec($A->Minus($C));
return(NewVec($lead->Cross($tail))->Length() / 2);
} # end subroutine TriAreaPoints definition
########################################################################
=head2 Comp
Returns the scalar projection of $B onto $A (also called the component
of $B along $A.)
$A->Comp($B);
=cut
sub Comp {
my $self = shift;
my $B = _vec_check(shift);
my $length = $self->Length();
$length || croak("cannot Comp() vector without length");
return($self->Dot($B) / $length);
} # end subroutine Comp definition
########################################################################
=head2 Proj
Returns the vector projection of $B onto $A.
$A->Proj($B);
=cut
sub Proj {
my $self = shift;
my $B = shift;
return(NewVec($self->UnitVector())->ScalarMult($self->Comp($B)));
} # end subroutine Proj definition
########################################################################
=head2 PerpFoot
Returns a point on line $A,$B which is as close to $pt as possible (and
therefore perpendicular to the line.)
$pt->PerpFoot($A, $B);
=cut
sub PerpFoot {
my $pt = shift;
my ($A, $B) = @_;
$pt = NewVec($pt->Minus($A));
$B = NewVec(NewVec(@$B)->Minus($A));
my $proj = NewVec($B->Proj($pt));
return($proj->Plus($A));
} # end subroutine PerpFoot definition
########################################################################
=head1 Incomplete Methods
The following have yet to be translated into this interface. They are
shown here simply because I intended to fully preserve the function
names from the original Math::Vector module written by Wayne M.
Syvinski.
=head2 TripleProduct
$vec->TripleProduct();
=cut
sub TripleProduct {
die("not written");
} # end subroutine TripleProduct definition
########################################################################
=head2 IJK
$vec->IJK();
=cut
sub IJK {
die("not written");
} # end subroutine IJK definition
########################################################################
=head2 OrdTrip
$vec->OrdTrip();
=cut
sub OrdTrip {
die("not written");
} # end subroutine OrdTrip definition
########################################################################
=head2 STV
$vec->STV();
=cut
sub STV {
die("not written");
} # end subroutine STV definition
########################################################################
=head2 Equil
$vec->Equil();
=cut
sub Equil {
die("not written");
} # end subroutine Equil definition
########################################################################
1;
# vim:ts=4:sw=4:noet
|