This file is indexed.

/usr/share/perl5/Math/Utils.pm is in libmath-utils-perl 1.11-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
package Math::Utils;

use 5.010001;
use strict;
use warnings;
use Carp;

use Exporter;
our @ISA = qw(Exporter);

our %EXPORT_TAGS = (
	compare => [ qw(generate_fltcmp generate_relational) ],
	fortran => [ qw(log10 copysign) ],
	utility => [ qw(log10 log2 copysign flipsign
			sign floor ceil fsum moduli) ],
	polynomial => [ qw(pl_evaluate pl_dxevaluate
			pl_add pl_sub pl_div pl_mult
			pl_derivative pl_antiderivative) ],
);

our @EXPORT_OK = (
	@{ $EXPORT_TAGS{compare} },
	@{ $EXPORT_TAGS{utility} },
	@{ $EXPORT_TAGS{polynomial} },
);

our $VERSION = '1.11';

=head1 NAME

Math::Utils - Useful mathematical functions not in Perl.

=head1 SYNOPSIS

    use Math::Utils qw(:utility);    # Useful functions

    #
    # Base 10 and base 2 logarithms.
    #
    $scale = log10($pagewidth);
    $bits = log2(1/$probability);

    #
    # Two uses of sign().
    #
    $d = sign($z - $w);

    @ternaries = sign(@coefficients);

    #
    # Using copysign(), $dist will be doubled negative or
    # positive $offest, depending upon whether ($from - $to)
    # is positive or negative.
    #
    my $dist = copysign(2 * $offset, $from - $to);

    #
    # Change increment direction if goal is negative.
    #
    $incr = flipsign($incr, $goal);

    #
    # floor() and ceil() functions.
    #
    $point = floor($goal);
    $limit = ceil($goal);

    #
    # Safe(r) summation.
    #
    $tot = fsum(@inputs);

    #
    # The remainders of n after successive divisions of b, or
    # remainders after a set of divisions.
    #
    @rems = moduli($n, $b);

or

    use Math::Utils qw(:compare);    # Make comparison functions with tolerance.

    #
    # Floating point comparison function.
    #
    my $fltcmp = generate_fltmcp(1.0e-7);

    if (&$fltcmp($x0, $x1) < 0)
    {
        add_left($data);
    }
    else
    {
        add_right($data);
    }

    #
    # Or we can create single-operation comparison functions.
    #
    # Here we are only interested in the greater than and less than
    # comparison functions.
    #
    my(undef, undef,
        $approx_gt, undef, $approx_lt) = generate_relational(1.5e-5);

or

    use Math::Utils qw(:polynomial);    # Basic polynomial ops

    #
    # Coefficient lists run from 0th degree upward, left to right.
    #
    my @c1 = (1, 3, 5, 7, 11, 13, 17, 19);
    my @c2 = (1, 3, 1, 7);
    my @c3 = (1, -1, 1)

    my $c_ref = pl_mult(\@c1, \@c2);
    $c_ref = pl_add($c_ref, \@c3);

=head1 EXPORT

All functions can be exported by name, or by using the tag that they're
grouped under.

=cut

=head2 utility tag

Useful, general-purpose functions, including those that originated in
FORTRAN and were implemented in Perl in the module L<Math::Fortran>,
by J. A. R. Williams.

There is a name change -- copysign() was known as sign()
in Math::Fortran.

=head3 log10()

    $xlog10 = log10($x);
    @xlog10 = log10(@x);

Return the log base ten of the argument. A list form of the function
is also provided.

=cut

sub log10
{
	my $log10 = log(10);
	return wantarray? map(log($_)/$log10, @_): log($_[0])/$log10;
}

=head3 log2()

    $xlog2 = log2($x);
    @xlog2 = log2(@x);

Return the log base ten of the argument. A list form of the function
is also provided.

=cut

sub log2
{
	my $log2 = log(2);
	return wantarray? map(log($_)/$log2, @_): log($_[0])/$log2;
}

=head3 sign()

    $s = sign($x);
    @valsigns = sign(@values);

Returns -1 if the argument is negative, 0 if the argument is zero, and 1
if the argument is positive.

In list form it applies the same operation to each member of the list.

=cut

sub sign
{
	return wantarray? map{($_ < 0)? -1: (($_ > 0)? 1: 0)} @_:
		($_[0] < 0)? -1: (($_[0] > 0)? 1: 0);
}

=head3 copysign()

    $ms = copysign($m, $n);
    $s = copysign($x);

Take the sign of the second argument and apply it to the first. Zero
is considered part of the positive signs.

    copysign(-5, 0);  # Returns 5.
    copysign(-5, 7);  # Returns 5.
    copysign(-5, -7); # Returns -5.
    copysign(5, -7);  # Returns -5.

If there is only one argument, return -1 if the argument is negative,
otherwise return 1. For example, copysign(1, -4) and copysign(-4) both
return -1.

=cut

sub copysign
{
	return ($_[1] < 0)? -abs($_[0]): abs($_[0]) if (@_ == 2);
	return ($_[0] < 0)? -1: 1;
}

=head3 flipsign()

    $ms = flipsign($m, $n);

Multiply the signs of the arguments and apply it to the first. As
with copysign(), zero is considered part of the positive signs.

Effectively this means change the sign of the first argument if
the second argument is negative.

    flipsign(-5, 0);  # Returns -5.
    flipsign(-5, 7);  # Returns -5.
    flipsign(-5, -7); # Returns 5.
    flipsign(5, -7);  # Returns -5.

If for some reason flipsign() is called with a single argument,
that argument is returned unchanged.

=cut

sub flipsign
{
	return -$_[0] if (@_ == 2 and $_[1] < 0);
	return $_[0];
}

=head3 floor()

    $b = floor($a/2);

    @ilist = floor(@numbers);

Returns the greatest integer less than or equal to its argument.
A list form of the function also exists.

    floor(1.5, 1.87, 1);        # Returns (1, 1, 1)
    floor(-1.5, -1.87, -1);     # Returns (-2, -2, -1)

=cut

sub floor
{
	return wantarray? map(($_ < 0 and int($_) != $_)? int($_ - 1): int($_), @_):
		($_[0] < 0 and int($_[0]) != $_[0])? int($_[0] - 1): int($_[0]);
}

=head3 ceil()

    $b = ceil($a/2);

    @ilist = ceil(@numbers);

Returns the lowest integer greater than or equal to its argument.
A list form of the function also exists.

    ceil(1.5, 1.87, 1);        # Returns (2, 2, 1)
    ceil(-1.5, -1.87, -1);     # Returns (-1, -1, -1)

=cut

sub ceil
{
	return wantarray? map(($_ > 0 and int($_) != $_)? int($_ + 1): int($_), @_):
		($_[0] > 0 and int($_[0]) != $_[0])? int($_[0] + 1): int($_[0]);
}

=head3 fsum()

Return a sum of the values in the list, done in a manner to avoid rounding
and cancellation errors. Currently this is done via
L<Kahan's summation algorithm|https://en.wikipedia.org/wiki/Kahan_summation_algorithm>.

=cut

sub fsum
{
	my($sum, $c) = (0, 0);

	for my $v (@_)
	{
		my $y = $v - $c;
		my $t = $sum + $y;

		#
		# If we lost low-order bits of $y (usually because
		# $sum is much larger than $y), save them in $c
		# for the next loop iteration.
		#
		$c = ($t - $sum) - $y;
		$sum = $t;
	}

	return $sum;
}

=head3 moduli()

Return the moduli of a number after repeated divisions. The remainders are
returned in a list from left to right.

    @rems = moduli(29, 3);        # Returns (2, 0, 0, 1)
    @digits = moduli(1899, 10);   # Returns (9, 9, 8, 1)

=cut

sub moduli
{
	my($n, $b) = @_;
	my @mlist;
	use integer;

	for (;;)
	{
		push @mlist, $n % $b;
		$n /= $b;
		return @mlist if ($n == 0);
	}
	return ();
}

=head2 compare tag

Create comparison functions for floating point (non-integer) numbers.

Since exact comparisons of floating point numbers tend to be iffy,
the comparison functions use a tolerance chosen by you. You may
then use those functions from then on confident that comparisons
will be consistent.

If you do not provide a tolerance, a default tolerance of 1.49012e-8
(approximately the square root of an Intel Pentium's
L<machine epsilon|https://en.wikipedia.org/wiki/Machine_epsilon>)
will be used.

=head3 generate_fltcmp()

Returns a comparison function that will compare values using a tolerance
that you supply. The generated function will return -1 if the first
argument compares as less than the second, 0 if the two arguments
compare as equal, and 1 if the first argument compares as greater than
the second.

    my $fltcmp = generate_fltcmp(1.5e-7);

    my(@xpos) = grep {&$fltcmp($_, 0) == 1} @xvals;

=cut

my $default_tolerance = 1.49012e-8;

sub generate_fltcmp
{
	my $tol = $_[0] // $default_tolerance;

	return sub {
		my($x, $y) = @_;
		return 0 if (abs($x - $y) <= $tol);
		return -1 if ($x < $y);
		return 1;
	}
}

=head3 generate_relational()

Returns a list of comparison functions that will compare values using a
tolerance that you supply. The generated functions will be the equivalent
of the equal, not equal, greater than, greater than or equal, less than,
and less than or equal operators.

    my($eq, $ne, $gt, $ge, $lt, $le) = generate_relational(1.5e-7);

    my(@approx_5) = grep {&$eq($_, 5)} @xvals;

Of course, if you were only interested in not equal, you could use:

    my(undef, $ne) = generate_relational(1.5e-7);

    my(@not_around5) = grep {&$ne($_, 5)} @xvals;

=cut

sub generate_relational
{
	my $tol = $_[0] // $default_tolerance;

	#
	# In order: eq, ne, gt, ge, lt, le.
	#
	return (
		sub {return (abs($_[0] - $_[1]) <= $tol)? 1: 0;},	# eq
		sub {return (abs($_[0] - $_[1]) >  $tol)? 1: 0;},	# ne

		sub {return ((abs($_[0] - $_[1]) > $tol) and ($_[0] > $_[1]))? 1: 0;},	# gt
		sub {return ((abs($_[0] - $_[1]) <= $tol) or ($_[0] > $_[1]))? 1: 0;},	# ge

		sub {return ((abs($_[0] - $_[1]) > $tol) and ($_[0] < $_[1]))? 1: 0;},	# lt
		sub {return ((abs($_[0] - $_[1]) <= $tol) or ($_[0] < $_[1]))? 1: 0;}	# le
	);
}

=head2 polynomial tag

Perform some polynomial operations on plain lists of coefficients.

    #
    # The coefficient lists are presumed to go from low order to high:
    #
    @coefficients = (1, 2, 4, 8);    # 1 + 2x + 4x**2 + 8x**3

In all functions the coeffcient list is passed by reference to the function,
and the functions that return coefficients all return references to a coefficient list.

B<It is assumed that any leading zeros in the coefficient lists have
already been removed before calling these functions, and that any leading
zeros found in the returned lists will be handled by the caller.> This caveat
is particulary important to note in the case of C<pl_div()>.

Although these functions are convenient for simple polynomial operations,
for more advanced polynonial operations L<Math::Polynomial> is recommended.

=head3 pl_evaluate()

    $y = pl_evaluate(\@coefficients, $x);
    @yvalues = pl_evaluate(\@coefficients, \@xvalues);

You can also use lists of the X values or X array references:

    @yvalues = pl_evaluate(\@coefficients, \@xvalues, \@primes, $x, @negatives);

Returns either a y-value for a corresponding x-value, or a list of
y-values on the polynomial for a corresponding list of x-values,
using Horner's method.

=cut

sub pl_evaluate
{
	my @coefficients = @{$_[0]};

	#
	# It could happen. Someone might type \$x instead of $x.
	#
	my @xvalues = map{(ref $_ eq "ARRAY")? @$_:
			((ref $_ eq "SCALAR")? $$_: $_)} @_[1 .. $#_];

	#
	# Move the leading coefficient off the polynomial list
	# and use it as our starting value(s).
	#
	my @results = (pop @coefficients) x scalar @xvalues;

	for my $c (reverse @coefficients)
	{
		for my $j (0..$#xvalues)
		{
			$results[$j] = $results[$j] * $xvalues[$j] + $c;
		}
	}

	return wantarray? @results: $results[0];
}

=head3 pl_dxevaluate()

    ($y, $dy, $ddy) = pl_dxevaluate(\@coefficients, $x);

Returns p(x), p'(x), and p"(x) of the polynomial for an
x-value, using Horner's method. Note that unlike C<pl_evaluate()>
above, the function can only use one x-value.

If the polynomial is a linear equation, the second derivative value
will be zero.  Similarly, if the polynomial is a simple constant,
the first derivative value will be zero.

=cut

sub pl_dxevaluate
{
	my($coef_ref, $x) = @_;
	my(@coefficients) = @$coef_ref;
	my $n = $#coefficients;
	my $val = pop @coefficients;
	my $d1val = $val * $n;
	my $d2val = 0;

	#
	# Special case for the linear eq'n (the y = constant eq'n
	# takes care of itself).
	#
	if ($n == 1)
	{
		$val = $val * $x + $coefficients[0];
	}
	elsif ($n >= 2)
	{
		my $lastn = --$n;
		$d2val = $d1val * $n;

		#
		# Loop through the coefficients, except for
		# the linear and constant terms.
		#
		for my $c (reverse @coefficients[2..$lastn])
		{
			$val = $val * $x + $c;
			$d1val = $d1val * $x + ($c *= $n--);
			$d2val = $d2val * $x + ($c * $n);
		}

		#
		# Handle the last two coefficients.
		#
		$d1val = $d1val * $x + $coefficients[1];
		$val = ($val * $x + $coefficients[1]) * $x + $coefficients[0];
	}

	return ($val, $d1val, $d2val);
}

=head3 pl_add()

    $polyn_ref = pl_add(\@m, \@n);

Add two lists of numbers as though they were polynomial coefficients.

=cut

sub pl_add
{
	my(@av) = @{$_[0]};
	my(@bv) = @{$_[1]};
	my $ldiff = scalar @av - scalar @bv;

	my @result = ($ldiff < 0)?
		splice(@bv, scalar @bv + $ldiff, -$ldiff):
		splice(@av, scalar @av - $ldiff, $ldiff);

	unshift @result, map($av[$_] + $bv[$_], 0.. $#av);

	return \@result;
}

=head3 pl_sub()

    $polyn_ref = pl_sub(\@m, \@n);

Subtract the second list of numbers from the first as though they
were polynomial coefficients.

=cut

sub pl_sub
{
	my(@av) = @{$_[0]};
	my(@bv) = @{$_[1]};
	my $ldiff = scalar @av - scalar @bv;

	my @result = ($ldiff < 0)?
		map {-$_} splice(@bv, scalar @bv + $ldiff, -$ldiff):
		splice(@av, scalar @av - $ldiff, $ldiff);

	unshift @result, map($av[$_] - $bv[$_], 0.. $#av);

	return \@result;
}

=head3 pl_div()

    ($q_ref, $r_ref) = pl_div(\@numerator, \@divisor);

Synthetic division for polynomials. Divides the first list of coefficients
by the second list.

Returns references to the quotient and the remainder.

Remember to check for leading zeros (which are rightmost in the list) in
the returned values. For example,

    my @n = (4, 12, 9, 3);
    my @d = (1, 3, 3, 1);

    my($q_ref, $r_ref) = pl_div(\@n, \@d);

After division you will have returned C<(3)> as the quotient,
and C<(1, 3, 0)> as the remainder. In general, you will want to remove
the leading zero, or for that matter values within epsilon of zero, in
the remainder.

    my($q_ref, $r_ref) = pl_div($f1, $f2);

    #
    # Remove any leading zeros in the remainder.
    #
    my @remd = @{$r_ref};
    pop @remd while (@remd and abs($remd[$#remd]) < $epsilon);

    $f1 = $f2;
    $f2 = [@remd];

If C<$f1> and C<$f2> were to go through that bit of code again, not
removing the leading zeros would lead to a divide-by-zero error.

=cut

sub pl_div
{
	my @numerator = @{$_[0]};
	my @divisor = @{$_[1]};

	my @quotient;

	my $n_degree = $#numerator;
	my $d_degree = $#divisor;

	#
	# Sanity checks: a numerator less than the divisor
	# is automatically the remainder; and return a pair
	# of undefs if either set of coefficients are
	# empty lists.
	#
	return ([0], \@numerator) if ($n_degree < $d_degree);
	return (undef, undef) if ($d_degree < 0 or $n_degree < 0);

	my $lead_coefficient = $divisor[$#divisor];

	#
	# Perform the synthetic division. The remainder will
	# be what's left in the numerator.
	# (4, 13, 4, -9, 6) / (1, 2) = (4, 5, -6, 3)
	#
	@quotient = reverse map {
		#
		# Get the next term for the quotient. We pop
		# off the lead numerator term, which would become
		# zero due to subtraction anyway.
		#
		my $q = (pop @numerator)/$lead_coefficient;

		for my $k (0..$d_degree - 1)
		{
			$numerator[$#numerator - $k] -= $q * $divisor[$d_degree - $k - 1];
		}

		$q;
	} reverse (0 .. $n_degree - $d_degree);

	return (\@quotient, \@numerator);
}

=head3 pl_mult()

    $m_ref = pl_mult(\@coefficients1, \@coefficients2);

Returns the reference to the product of the two multiplicands.

=cut

sub pl_mult
{
	my($av, $bv) = @_;
	my $a_degree = $#{$av};
	my $b_degree = $#{$bv};

	#
	# Rather than multiplying left to right for each element,
	# sum to each degree of the resulting polynomial (the list
	# after the map block). Still an O(n**2) operation, but
	# we don't need separate storage variables.
	#
	return [ map {
		my $a_idx = ($a_degree > $_)? $_: $a_degree;
		my $b_to = ($b_degree > $_)? $_: $b_degree;
		my $b_from = $_ - $a_idx;

		my $c = $av->[$a_idx] * $bv->[$b_from];

		for my $b_idx ($b_from+1 .. $b_to)
		{
			$c += $av->[--$a_idx] * $bv->[$b_idx];
		}
		$c;
	} (0 .. $a_degree + $b_degree) ];
}

=head3 pl_derivative()

    $poly_ref = pl_derivative(\@coefficients);

Returns the derivative of a polynomial.

=cut

sub pl_derivative
{
	my @coefficients = @{$_[0]};
	my $degree = $#coefficients;

	return [] if ($degree < 1);

	$coefficients[$_] *= $_ for (2..$degree);

	shift @coefficients;
	return \@coefficients;
}

=head3 pl_antiderivative()

    $poly_ref = pl_antiderivative(\@coefficients);

Returns the antiderivative of a polynomial. The constant value is
always set to zero and will need to be changed by the caller if a
different constant is needed.

  my @coefficients = (1, 2, -3, 2);
  my $integral = pl_antiderivative(\@coefficients);

  #
  # Integral needs to be 0 at x = 1.
  #
  my @coeff1 = @{$integral};
  $coeff1[0] = - pl_evaluate($integral, 1);

=cut

sub pl_antiderivative
{
	my @coefficients = @{$_[0]};
	my $degree = scalar @coefficients;

	#
	# Sanity check if its an empty list.
	#
	return [0] if ($degree < 1);

	$coefficients[$_ - 1] /= $_ for (2..$degree);

	unshift @coefficients, 0;
	return \@coefficients;
}

=head1 AUTHOR

John M. Gamble, C<< <jgamble at cpan.org> >>

=head1 SEE ALSO

L<Math::Polynomial> for a complete set of polynomial operations, with the
added convenience that objects bring.

Among its other functions, L<List::Util> has the mathematically useful
functions max(), min(), product(), sum(), and sum0().

L<List::MoreUtils> has the function minmax().

L<Math::Prime::Util> has gcd() and lcm() functions, as well as vecsum(),
vecprod(), vecmin(), and vecmax(), which are like the L<List::Util>
functions but which can force integer use, and when appropriate use
L<Math::BigInt>.

L<Math::VecStat> Likewise has min(), max(), sum() (which can take
as arguments array references as well as arrays), plus maxabs(),
minabs(), sumbyelement(), convolute(), and other functions.

=head1 BUGS

Please report any bugs or feature requests to C<bug-math-util at rt.cpan.org>, or through
the web interface at L<http://rt.cpan.org/NoAuth/ReportBug.html?Queue=Math-Utils>.  I will be notified, and then you'll
automatically be notified of progress on your bug as I make changes.

=head1 SUPPORT

This module is on Github at L<https://github.com/jgamble/Math-Utils>.

You can also look for information at:

=over 4

=item * RT: CPAN's request tracker (report bugs here)

L<http://rt.cpan.org/NoAuth/Bugs.html?Dist=Math-Utils>

=item * AnnoCPAN: Annotated CPAN documentation

L<http://annocpan.org/dist/Math-Utils>

=item * CPAN Ratings

L<http://cpanratings.perl.org/d/Math-Utils>

=item * Search CPAN

L<http://search.cpan.org/dist/Math-Utils/>

=back


=head1 ACKNOWLEDGEMENTS

To J. A. R. Williams who got the ball rolling with L<Math::Fortran>.

=head1 LICENSE AND COPYRIGHT

Copyright (c) 2017 John M. Gamble. All rights reserved. This program is
free software; you can redistribute it and/or modify it under the same
terms as Perl itself.

=cut

1; # End of Math::Utils