This file is indexed.

/usr/share/perl5/Math/PlanePath/SquareSpiral.pm is in libmath-planepath-perl 125-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
# Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# http://d4maths.lowtech.org/mirage/ulam.htm
# http://d4maths.lowtech.org/mirage/img/ulam.gif
#     sample gif of primes made by APL or something
#
# http://www.sciencenews.org/view/generic/id/2696/title/Prime_Spirals
#     Ulam's spiral of primes
#
# http://yoyo.cc.monash.edu.au/%7Ebunyip/primes/primeSpiral.htm
# http://yoyo.cc.monash.edu.au/%7Ebunyip/primes/triangleUlam.htm
#     Pulchritudinous Primes of Ulam spiral.

# http://mathworld.wolfram.com/PrimeSpiral.html
#
# Mark C. Chu-Carroll "The Surprises Never Eend: The Ulam Spiral of Primes"
# http://scienceblogs.com/goodmath/2010/06/the_surprises_never_eend_the_u.php
#
# http://yoyo.cc.monash.edu.au/%7Ebunyip/primes/index.html
# including image highlighting the lines

# S. M. Ellerstein, The square spiral, J. Recreational
# Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
#
# Stein, M. and Ulam, S. M. "An Observation on the
# Distribution of Primes." Amer. Math. Monthly 74, 43-44,
# 1967.
#
# Stein, M. L.; Ulam, S. M.; and Wells, M. B. "A Visual
# Display of Some Properties of the Distribution of Primes."
# Amer. Math. Monthly 71, 516-520, 1964.

# cf sides alternately prime and fibonacci
# A160790 corner N
# A160791 side lengths, alternately integer and triangular adding that integer
# A160792 corner N
# A160793 side lengths, alternately integer and sum primes
# A160794 corner N
# A160795 side lengths, alternately primes and fibonaccis


package Math::PlanePath::SquareSpiral;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 125;
use Math::PlanePath;
*_sqrtint = \&Math::PlanePath::_sqrtint;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
        'Math::PlanePath');

use Math::PlanePath::Base::Generic
  'round_nearest';

# uncomment this to run the ### lines
#use Smart::Comments '###';


# Note: this shared by other paths
use constant parameter_info_array =>
  [
   { name        => 'wider',
     display     => 'Wider',
     type        => 'integer',
     minimum     => 0,
     default     => 0,
     width       => 3,
     description => 'Wider path.',
   },
   Math::PlanePath::Base::Generic::parameter_info_nstart1(),
  ];

use constant xy_is_visited => 1;

#    2w+4 -- 2w+3 ----- w+2
#      |                 |
#    2w+5      0------- w+1
#      |     
#    2w+6 ---
#                  ^
#                 X=0
#
sub x_negative_at_n {
  my ($self) = @_;
  return $self->n_start + ($self->{'wider'} ? 0 : 4);
}
sub y_negative_at_n {
  my ($self) = @_;
  return $self->n_start + 2*$self->{'wider'} + 6;
}
sub _UNDOCUMENTED__dxdy_list_at_n {
  my ($self) = @_;
  return $self->n_start + 2*$self->{'wider'} + 4;
}

use constant turn_any_right => 0; # only left or straight

sub _UNDOCUMENTED__turn_any_left_at_n {
  my ($self) = @_;
  return $self->n_start + $self->{'wider'} + 1;
}


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new (@_);

  # parameters
  $self->{'wider'} ||= 0;  # default
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }

  return $self;
}

# wider==0
# base from bottom-right corner
#   d = [ 1,  2,  3,  4 ]
#   N = [ 2, 10, 26, 50 ]
#   N = (4 d^2 - 4 d + 2)
#   d = 1/2 + sqrt(1/4 * $n + -4/16)
#
# wider==1
# base from bottom-right corner
#   d = [ 1,  2,  3,  4 ]
#   N = [ 3, 13, 31, 57 ]
#   N = (4 d^2 - 2 d + 1)
#   d = 1/4 + sqrt(1/4 * $n + -3/16)
#
# wider==2
# base from bottom-right corner
#   d = [ 1,  2,  3, 4 ]
#   N = [ 4, 16, 36, 64 ]
#   N = (4 d^2)
#   d = 0 + sqrt(1/4 * $n + 0)
#
# wider==3
# base from bottom-right corner
#   d = [ 1,  2,  3 ]
#   N = [ 5, 19, 41 ]
#   N = (4 d^2 + 2 d - 1)
#   d = -1/4 + sqrt(1/4 * $n + 5/16)
#
# N = 4*d^2 + (-4+2*w)*d + (2-w)
#   = 4*$d*$d + (-4+2*$w)*$d + (2-$w)
# d = 1/2-w/4 + sqrt(1/4*$n + b^2-4ac)
# (b^2-4ac)/(2a)^2 = [ (2w-4)^2 - 4*4*(2-w) ] / 64
#                  = [ 4w^2 - 16w + 16 - 32 + 16w ] / 64
#                  = [ 4w^2 - 16 ] / 64
#                  = [ w^2 - 4 ] / 16
# d = 1/2-w/4 + sqrt(1/4*$n + (w^2 - 4) / 16)
#   = 1/4 * (2-w + sqrt(4*$n + w^2 - 4))
#   = 0.25 * (2-$w + sqrt(4*$n + $w*$w - 4))
#
# then offset the base by +4*$d+$w-1 for top left corner for +/- remainder
# rem = $n - (4*$d*$d + (-4+2*$w)*$d + (2-$w) + 4*$d + $w - 1)
#     = $n - (4*$d*$d + (-4+2*$w)*$d + 2 - $w + 4*$d + $w - 1)
#     = $n - (4*$d*$d + (-4+2*$w)*$d + 1 - $w + 4*$d + $w)
#     = $n - (4*$d*$d + (-4+2*$w)*$d + 1 + 4*$d)
#     = $n - (4*$d*$d + (2*$w)*$d + 1)
#     = $n - ((4*$d + 2*$w)*$d + 1)
#

sub n_to_xy {
  my ($self, $n) = @_;
  #### SquareSpiral n_to_xy: $n

  $n = $n - $self->{'n_start'};  # starting $n==0, warn if $n==undef
  if ($n < 0) {
    #### before n_start ...
    return;
  }

  my $w = $self->{'wider'};
  my $w_right = int($w/2);
  my $w_left = $w - $w_right;
  if ($n <= $w+1) {
    #### centre horizontal
    # n=0 at w_left
    # x = $n - int(($w+1)/2)
    #   = $n - int(($w+1)/2)
    return ($n - $w_left,  # n=0 at w_left
            0);
  }

  my $d = int ((2-$w + _sqrtint(4*$n + $w*$w)) / 4);
  #### d frac: ((2-$w + sqrt(int(4*$n) + $w*$w)) / 4)
  #### $d

  #### base: 4*$d*$d + (-4+2*$w)*$d + (2-$w)
  $n -= ((4*$d + 2*$w)*$d);
  #### remainder: $n

  if ($n >= 0) {
    if ($n <= 2*$d) {
      ### left vertical
      return (-$d - $w_left,
              -$n + $d);
    } else {
      ### bottom horizontal
      return ($n - $w_left - 3*$d,
              -$d);
    }
  } else {
    if ($n >= -2*$d-$w) {
      ### top horizontal
      return (-$n - $d - $w_left,
              $d);
    } else {
      ### right vertical
      return ($d + $w_right,
              $n + 3*$d + $w);
    }
  }
}

sub xy_to_n {
  my ($self, $x, $y) = @_;

  my $w = $self->{'wider'};
  my $w_right = int($w/2);
  my $w_left = $w - $w_right;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### xy_to_n: "x=$x, y=$y"
  ### $w_left
  ### $w_right

  my $d;
  if (($d = $x - $w_right) > abs($y)) {
    ### right vertical
    ### $d
    #
    # base bottom right per above
    ### BR: 4*$d*$d + (-4+2*$w)*$d + (2-$w)
    # then +$d-1 for the y=0 point
    # N_Y0  = 4*$d*$d + (-4+2*$w)*$d + (2-$w) + $d-1
    #       = 4*$d*$d + (-3+2*$w)*$d + (2-$w) + -1
    #       = 4*$d*$d + (-3+2*$w)*$d +  1-$w
    ### N_Y0: (4*$d + -3 + 2*$w)*$d + 1-$w
    #
    return (4*$d + -3 + 2*$w)*$d - $w + $y + $self->{'n_start'};
  }

  if (($d = -$x - $w_left) > abs($y)) {
    ### left vertical
    ### $d
    #
    # top left per above
    ### TL: 4*$d*$d + (2*$w)*$d + 1
    # then +$d for the y=0 point
    # N_Y0  = 4*$d*$d + (2*$w)*$d + 1 + $d
    #       = 4*$d*$d + (1 + 2*$w)*$d + 1
    ### N_Y0: (4*$d + 1 + 2*$w)*$d + 1
    #
    return (4*$d + 1 + 2*$w)*$d - $y + $self->{'n_start'};
  }

  $d = abs($y);
  if ($y > 0) {
    ### top horizontal
    ### $d
    #
    # top left per above
    ### TL: 4*$d*$d + (2*$w)*$d + 1
    # then -($d+$w_left) for the x=0 point
    # N_X0  = 4*$d*$d + (2*$w)*$d + 1 + -($d+$w_left)
    #       = 4*$d*$d + (-1 + 2*$w)*$d + 1 - $w_left
    ### N_Y0: (4*$d - 1 + 2*$w)*$d + 1 - $w_left
    #
    return (4*$d - 1 + 2*$w)*$d - $w_left - $x + $self->{'n_start'};
  }

  ### bottom horizontal, and centre y=0
  ### $d
  #
  # top left per above
  ### TL: 4*$d*$d + (2*$w)*$d + 1
  # then +2*$d to bottom left, +$d+$w_left for the x=0 point
  # N_X0  = 4*$d*$d + (2*$w)*$d + 1 + 2*$d + $d+$w_left)
  #       = 4*$d*$d + (3 + 2*$w)*$d + 1 + $w_left
  ### N_Y0: (4*$d + 3 + 2*$w)*$d + 1 + $w_left
  #
  return (4*$d + 3 + 2*$w)*$d + $w_left + $x + $self->{'n_start'};
}

# hi is exact but lo is not
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  # ENHANCE-ME: find actual minimum if rect doesn't cover 0,0
  return ($self->{'n_start'},
          max ($self->xy_to_n($x1,$y1),
               $self->xy_to_n($x2,$y1),
               $self->xy_to_n($x1,$y2),
               $self->xy_to_n($x2,$y2)));

  # my $w = $self->{'wider'};
  # my $w_right = int($w/2);
  # my $w_left = $w - $w_right;
  #
  # my $d = 1 + max (abs($y1),
  #                  abs($y2),
  #                  $x1 - $w_right, -$x1 - $w_left,
  #                  $x2 - $w_right, -$x2 - $w_left,
  #                  1);
  # ### $d
  # ### is: $d*$d
  #
  # # ENHANCE-ME: find actual minimum if rect doesn't cover 0,0
  # return (1,
  #         (4*$d - 4 + 2*$w)*$d + 2);  # bottom-right
}


# [ 1, 2, 3,  4,  5 ],
# [ 1, 3, 7, 13, 21 ]
# N = (d^2 - d + 1)
#   = ($d**2 - $d + 1)
#   = (($d - 1)*$d + 1)
# d = 1/2 + sqrt(1 * $n + -3/4)
#   = (1 + sqrt(4*$n - 3)) / 2
#
# wider=3
# [ 2, 3,  4,  5 ],
# [ 6, 13, 22, 33 ]
# N = (d^2 + 2 d - 2)
#   = ($d**2 + 2*$d - 2)
#   = (($d + 2)*$d - 2)
# d = -1 + sqrt(1 * $n + 3)
#
# wider=5
# [ 2, 3,  4,  5 ],
# [ 8, 17, 28, 41 ]
# N = (d^2 + 4 d - 4)
#   = ($d**2 + 4*$d - 4)
#   = (($d + 4)*$d - 4)
# d = -2 + sqrt(1 * $n + 8)
#
# wider=7
# [ 2, 3,  4,  5 ],
# [ 10, 21, 34, 49 ]
# N = (d^2 + 6 d - 6)
#   = ($d**2 + 6*$d - 6)
#   = (($d + 6)*$d - 6)
# d = -3 + sqrt(1 * $n + 15)
#
#
# N = (d^2 + (w-1)*d + 1-w)
# d = (1-w)/2 + sqrt($n + (w^2 + 2w - 3)/4)
#   = (1-w + sqrt(4*$n + (w-3)(w+1))) / 2
#
# extra subtract d+w-1
# Nbase = (d^2 + (w-1)*d + 1-w) + d+w-1
#       = d^2 + w*d

sub n_to_dxdy {
  my ($self, $n) = @_;
  ### n_to_dxdy(): $n

  $n = $n - $self->{'n_start'};  # starting $n==0, warn if $n==undef
  if ($n < 0) {
    #### before n_start ...
    return;
  }

  my $w = $self->{'wider'};
  my $d = int((1-$w + _sqrtint(4*$n + ($w+2)*$w+1)) / 2);

  my $int = int($n);
  $n -= $int;  # fraction 0 <= $n < 1
  $int -= ($d+$w)*$d-1;

  ### $d
  ### $w
  ### $n
  ### $int

  my ($dx, $dy);
  if ($int <= 0) {
    if ($int < 0) {
      ### horizontal ...
      $dx = 1;
      $dy = 0;
    } else {
      ### corner horiz to vert ...
      $dx = 1-$n;
      $dy = $n;
    }
  } else {
    if ($int < $d) {
      ### vertical ...
      $dx = 0;
      $dy = 1;
    } else {
      ### corner vert to horiz ...
      $dx = -$n;
      $dy = 1-$n;
    }
  }

  unless ($d % 2) {
    ### rotate +180 for even d ...
    $dx = -$dx;
    $dy = -$dy;
  }

  ### result: "$dx, $dy"
  return ($dx,$dy);
}



# old bit:
#
# wider==0
# base from two-way diagonal top-right and bottom-left
# s even for top-right diagonal doing top leftwards then left downwards
# s odd for bottom-left diagonal doing bottom rightwards then right pupwards
#   s = [ 0,  1,   2,   3,   4,   5,   6 ]
#   N = [ 1,  1,   3,   7,  13,  21,  31 ]
#         +0  +2  +4  +6  +8  +10
#            2   2   2   2   2
#
#   n = (($d - 1)*$d + 1)
#   s = 1/2 + sqrt(1 * $n + -3/4)
#     = .5 + sqrt ($n - .75)
#
#

#------------------------------------------------------------------------------

sub _NOTDOCUMENTED_n_to_figure_boundary {
  my ($self, $n) = @_;
  ### _NOTDOCUMENTED_n_to_figure_boundary(): $n

  # adjust to N=1 at origin X=0,Y=0
  $n = $n - $self->{'n_start'} + 1;

  if ($n < 1) {
    return undef;
  }

  my $wider = $self->{'wider'};
  if ($n <= $wider) {
    # single block row
    # +---+-----+----+
    # | 1 | ... | $n |  boundary = 2*N + 2
    # +---+-----+----+
    return 2*$n + 2;
  }

  my $d = int((_sqrtint(4*$n + $wider*$wider - 2) - $wider) / 2);
  ### $d
  ### $wider
  ### cmp: $d*($d+1+$wider) + $wider + 1

  if ($n > $d*($d+1+$wider)) {
    $wider++;
    ### increment for +2 after turn ...
  }
  return 4*$d + 2*$wider + 2;
}

#------------------------------------------------------------------------------
1;
__END__


=for stopwords Stanislaw Ulam pronic PlanePath Ryde Math-PlanePath Ulam's Honaker's decagonal OEIS Nbase sqrt BigRat Nrem wl wr Nsig incrementing

=head1 NAME

Math::PlanePath::SquareSpiral -- integer points drawn around a square (or rectangle)

=head1 SYNOPSIS

 use Math::PlanePath::SquareSpiral;
 my $path = Math::PlanePath::SquareSpiral->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path makes a square spiral,

=cut

# math-image --path=SquareSpiral --all --output=numbers_dash --size=40x16

=pod

    37--36--35--34--33--32--31              3
     |                       |
    38  17--16--15--14--13  30              2
     |   |               |   |
    39  18   5---4---3  12  29              1
     |   |   |       |   |   |
    40  19   6   1---2  11  28  ...    <- Y=0
     |   |   |           |   |   |
    41  20   7---8---9--10  27  52         -1
     |   |                   |   |
    42  21--22--23--24--25--26  51         -2
     |                           |
    43--44--45--46--47--48--49--50         -3

                 ^
    -3  -2  -1  X=0  1   2   3   4

See F<examples/square-numbers.pl> for a simple program printing these
numbers.

=head2 Ulam Spiral

This path is well known from Stanislaw Ulam finding interesting straight
lines when plotting the prime numbers on it.

=over

Stein, Ulam and Wells, "A Visual Display of Some Properties of the
Distribution of Primes", American Mathematical Monthly, volume 71, number 5,
May 1964, pages 516-520.  L<http://www.jstor.org/stable/2312588>

=back

=cut

# math-image --wx --path=SquareSpiral --primes

=pod

The cover of Scientific American March 1964 featured this spiral,

=over

L<http://www.nature.com/scientificamerican/journal/v210/n3/covers/index.html>

L<http://oeis.org/A143861/a143861.jpg>

=back

See F<examples/ulam-spiral-xpm.pl> for a standalone program, or see
L<math-image> using this C<SquareSpiral> to draw this pattern and more.

Stein, Ulam and Wells also considered primes on the
L<Math::PlanePath::Corner> path, and on a half-plane like two corners.

=head2 Straight Lines

X<Square numbers>The perfect squares 1,4,9,16,25 fall on two diagonals with
the even perfect squares going to the upper left and the odd squares to the
lower right.  The X<Pronic numbers>pronic numbers 2,6,12,20,30,42 etc k^2+k
half way between the squares fall on similar diagonals to the upper right
and lower left.  The decagonal numbers 10,27,52,85 etc 4*k^2-3*k go
horizontally to the right at Y=-1.

In general straight lines and diagonals are 4*k^2 + b*k + c.  b=0 is the
even perfect squares up to the left, then incrementing b is an eighth turn
anti-clockwise, or clockwise if negative.  So b=1 is horizontal West, b=2
diagonally down South-West, b=3 down South, etc.

Honaker's prime-generating polynomial 4*k^2 + 4*k + 59 goes down to the
right, after the first 30 or so values loop around a bit.

=head2 Wider

An optional C<wider> parameter makes the path wider, becoming a rectangle
spiral instead of a square.  For example

    wider => 3

    29--28--27--26--25--24--23--22        2
     |                           |
    30  11--10-- 9-- 8-- 7-- 6  21        1
     |   |                   |   |
    31  12   1-- 2-- 3-- 4-- 5  20   <- Y=0
     |   |                       |
    32  13--14--15--16--17--18--19       -1
     |
    33--34--35--36-...                   -2

                     ^
    -4  -3  -2  -1  X=0  1   2   3

The centre horizontal 1 to 2 is extended by C<wider> many further places,
then the path loops around that shape.  The starting point 1 is shifted to
the left by ceil(wider/2) places to keep the spiral centred on the origin
X=0,Y=0.

Widening doesn't change the nature of the straight lines which arise, it
just rotates them around.  For example in this wider=3 example the perfect
squares are still on diagonals, but the even squares go towards the bottom
left (instead of top left when wider=0) and the odd squares to the top right
(instead of the bottom right).

Each loop is still 8 longer than the previous, as the widening is basically
a constant amount in each loop.

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start with the same shape.  For example to
start at 0,

=cut

# math-image --path=SquareSpiral,n_start=0 --all --output=numbers_dash --size=35x16

=pod

    n_start => 0

    16-15-14-13-12 ...
     |           |  | 
    17  4--3--2 11 28 
     |  |     |  |  | 
    18  5  0--1 10 27 
     |  |        |  | 
    19  6--7--8--9 26 
     |              | 
    20-21-22-23-24-25 

The only effect is to push the N values around by a constant amount.  It
might help match coordinates with something else zero-based.

=head2 Corners

Other spirals can be formed by cutting the corners of the square so as to go
around faster.  See the following modules,

    Corners Cut    Class
    -----------    -----
         1        HeptSpiralSkewed
         2        HexSpiralSkewed
         3        PentSpiralSkewed
         4        DiamondSpiral

The C<PyramidSpiral> is a re-shaped C<SquareSpiral> looping at the same
rate.  It shifts corners but doesn't cut them.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::SquareSpiral-E<gt>new ()>

=item C<$path = Math::PlanePath::SquareSpiral-E<gt>new (wider =E<gt> $integer, n_start =E<gt> $n)>

Create and return a new square spiral object.  An optional C<wider>
parameter widens the spiral path, it defaults to 0 which is no widening.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

For C<$n E<lt> 1> the return is an empty list, as the path starts at 1.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  C<$x> and C<$y> are
each rounded to the nearest integer, which has the effect of treating each N
in the path as centred in a square of side 1, so the entire plane is
covered.

=back

=head1 FORMULAS

=head2 N to X,Y

There's a few ways to break an N into a side and offset into the side.  One
convenient way is to treat a loop as starting at the bottom right turn, so
N=2,10,26,50,etc, If the first loop at N=2 is reckoned loop number d=1 then
the loop starts at

    Nbase = 4*d^2 - 4*d + 2
          = 2,10,26,50,... for d=1,2,3,4,... 
                   (A069894 but it going from d=0)

For example d=3 is Nbase=4*3^2-4*3+2=26 at X=3,Y=-2.  The biggest d with
Nbase E<lt>= N can be found by inverting with the usual quadratic formula

    d = floor (1/2 + sqrt(N/4 - 1/4))

For Perl it's good to keep the sqrt argument an integer (when a UV integer
is bigger than an NV float, and for BigRat accuracy), so rearranging to

    d = floor ((1+sqrt(N-1)) / 2)

So Nbase from this d leaves a remainder which is an offset into the loop

    Nrem = N - Nbase
         = N - (4*d^2 - 4*d + 2)

The loop starts at X=d,Y=d-1 and has sides length 2d, 2d+1, 2d+1 and 2d+2,

             2d      
         +------------+        <- Y=d
         |            |
    2d   |            |  2d-1
         |     .      |
         |            |
         |            + X=d,Y=-d+1
         |
         +---------------+     <- Y=-d
             2d+1

         ^
       X=-d

The X,Y for an Nrem is then

     side      Nrem range            X,Y result
     ----      ----------            ----------
    right           Nrem <= 2d-1     X = d
                                     Y = -d+1+Nrem
    top     2d-1 <= Nrem <= 4d-1     X = d-(Nrem-(2d-1)) = 3d-1-Nrem
                                     Y = d
    left    4d-1 <= Nrem <= 6d-1     X = -d
                                     Y = d-(Nrem-(4d-1)) = 5d-1-Nrem
    bottom  6d-1 <= Nrem             X = -d+(Nrem-(6d-1)) = -7d+1+Nrem
                                     Y = -d

The corners Nrem=2d-1, Nrem=4d-1 and Nrem=6d-1 get the same result from the
two sides that meet so it doesn't matter if the high comparison is "E<lt>"
or "E<lt>=".

The bottom edge runs through to Nrem E<lt> 8d, but there's no need to
check that since d=floor(sqrt()) above ensures Nrem is within the loop.

A small simplification can be had by subtracting an extra 4d-1 from Nrem to
make negatives for the right and top sides and positives for the left and
bottom.

    Nsig = N - Nbase - (4d-1)
         = N - (4*d^2 - 4*d + 2) - (4d-1)
         = N - (4*d^2 + 1)

     side      Nsig range            X,Y result
     ----      ----------            ----------
    right           Nsig <= -2d      X = d
                                     Y = d+(Nsig+2d) = 3d+Nsig
    top      -2d <= Nsig <= 0        X = -d-Nsig
                                     Y = d
    left       0 <= Nsig <= 2d       X = -d
                                     Y = d-Nsig
    bottom    2d <= Nsig             X = -d+1+(Nsig-(2d+1)) = Nsig-3d
                                     Y = -d

This calculation can be found as an exercise in Graham, Knuth and Patashnik
"Concrete Mathematics", chapter 3 "Integer Functions", exercise 40, page 99.
They start the spiral from 0, and vertically so their x is -Y here.  Their
formula for x(n) tests a floor(2*sqrt(N)) to decide whether on a horizontal
and so whether to apply the equivalent of Nrem to the result.

=head2 N to X,Y with Wider

With the C<wider> parameter stretching the spiral loops the formulas above
become

    Nbase = 4*d^2 + (-4+2w)*d + 2-w

    d = floor ((2-w + sqrt(4N + w^2 - 4)) / 4)

Notice for Nbase the w is a term 2*w*d, being an extra 2*w for each loop.

The left offset ceil(w/2) described above (L</Wider>) for the N=1 starting
position is written here as wl, and the other half wr arises too,

    wl = ceil(w/2)
    wr = floor(w/2) = w - wl

The horizontal lengths increase by w, and positions shift by wl or wr, but
the verticals are unchanged.

             2d+w      
         +------------+        <- Y=d
         |            |
    2d   |            |  2d-1
         |     .      |
         |            |
         |            + X=d+wr,Y=-d+1
         |
         +---------------+     <- Y=-d
             2d+1+w

         ^
       X=-d-wl

The Nsig formulas then have w, wl or wr variously inserted.  In all cases if
w=wl=wr=0 then they simplify to the plain versions.

    Nsig = N - Nbase - (4d-1+w)
         = N - ((4d + 2w)*d + 1)

     side      Nsig range            X,Y result
     ----      ----------            ----------
    right         Nsig <= -(2d+w)    X = d+wr
                                     Y = d+(Nsig+2d+w) = 3d+w+Nsig
    top      -(2d+w) <= Nsig <= 0    X = -d-wl-Nsig
                                     Y = d
    left       0 <= Nsig <= 2d       X = -d-wl
                                     Y = d-Nsig
    bottom    2d <= Nsig             X = -d+1-wl+(Nsig-(2d+1)) = Nsig-wl-3d
                                     Y = -d

=head2 Rectangle to N Range

Within each row the minimum N is on the X=Y diagonal and N values increases
monotonically as X moves away to the left or right.  Similarly in each
column there's a minimum N on the X=-Y opposite diagonal, or X=-Y+1 diagonal
when X negative, and N increases monotonically as Y moves away from there up
or down.  When widerE<gt>0 the location of the minimum changes, but N is
still monotonic moving away from the minimum.

On that basis the maximum N in a rectangle is at one of the four corners,

              |
    x1,y2 M---|----M x2,y2      corner candidates
          |   |    |            for maximum N
       -------O---------
          |   |    |
          |   |    |
    x1,y1 M---|----M x1,y1
              |

=head1 OEIS

This path is in Sloane's Online Encyclopedia of Integer Sequences in various
forms.  Summary at

=over

L<http://oeis.org/A068225/a068225.html>

=back

And various sequences,

=over

L<http://oeis.org/A174344> (etc),
L<https://oeis.org/wiki/Ulam's_spiral>

=back

    wider=0 (the default)
      A174344    X coordinate
      A214526    abs(X)+abs(Y) "Manhattan" distance

      A079813    abs(dY), being k 0s followed by k 1s
      A063826    direction 1=right,2=up,3=left,4=down

      A027709    boundary length of N unit squares
      A078633    grid sticks to make N unit squares

      A033638    N turn positions (extra initial 1, 1)
      A172979    N turn positions which are primes too

      A054552    N values on X axis (East)
      A054556    N values on Y axis (North)
      A054567    N values on negative X axis (West)
      A033951    N values on negative Y axis (South)
      A054554    N values on X=Y diagonal (NE)
      A054569    N values on negative X=Y diagonal (SW)
      A053755    N values on X=-Y opp diagonal X<=0 (NW)
      A016754    N values on X=-Y opp diagonal X>=0 (SE)
      A200975    N values on all four diagonals

      A137928    N values on X=-Y+1 opposite diagonal
      A002061    N values on X=Y diagonal pos and neg
      A016814    (4k+1)^2, every second N on south-east diagonal

      A143856    N values on ENE slope dX=2,dY=1
      A143861    N values on NNE slope dX=1,dY=2
      A215470    N prime and >=4 primes among its 8 neighbours

      A214664    X coordinate of prime N (Ulam's spiral)
      A214665    Y coordinate of prime N (Ulam's spiral)
      A214666    -X  \ reckoning spiral starting West
      A214667    -Y  /

      A053999    prime[N] on X=-Y opp diagonal X>=0 (SE)
      A054551    prime[N] on the X axis (E)
      A054553    prime[N] on the X=Y diagonal (NE)
      A054555    prime[N] on the Y axis (N)
      A054564    prime[N] on X=-Y opp diagonal X<=0 (NW)
      A054566    prime[N] on negative X axis (W)

      A090925    permutation N at rotate +90
      A090928    permutation N at rotate +180
      A090929    permutation N at rotate +270
      A090930    permutation N at clockwise spiralling
      A020703    permutation N at rotate +90 and go clockwise
      A090861    permutation N at rotate +180 and go clockwise
      A090915    permutation N at rotate +270 and go clockwise
      A185413    permutation N at 1-X,Y
                   being rotate +180, offset X+1, clockwise

      A068225    permutation N to the N to its right, X+1,Y
      A121496     run lengths of consecutive N in that permutation
      A068226    permutation N to the N to its left, X-1,Y
      A020703    permutation N at transpose Y,X
                   (clockwise <-> anti-clockwise)

      A033952    digits on negative Y axis
      A033953    digits on negative Y axis, starting 0
      A033988    digits on negative X axis, starting 0
      A033989    digits on Y axis, starting 0
      A033990    digits on X axis, starting 0

      A062410    total sum previous row or column

    wider=1
      A069894    N on South-West diagonal

The following have "offset 0" in the OEIS and therefore are based on
starting from N=0.

    n_start=0
      A180714    X+Y coordinate sum
      A053615    abs(X-Y), runs n to 0 to n, distance to nearest pronic

      A001107    N on X axis
      A033991    N on Y axis
      A033954    N on negative Y axis, second 10-gonals
      A002939    N on X=Y diagonal North-East
      A016742    N on North-West diagonal, 4*k^2
      A002943    N on South-West diagonal
      A156859    N on Y axis positive and negative

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::PyramidSpiral>

L<Math::PlanePath::DiamondSpiral>,
L<Math::PlanePath::PentSpiralSkewed>,
L<Math::PlanePath::HexSpiralSkewed>,
L<Math::PlanePath::HeptSpiralSkewed>

L<Math::PlanePath::CretanLabyrinth>

L<Math::NumSeq::SpiroFibonacci>

X11 cursor font "box spiral" cursor which is this style (but going
clockwise).

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut