/usr/share/perl5/Math/BigInt.pm is in libmath-bigint-perl 1.999811-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 | package Math::BigInt;
#
# "Mike had an infinite amount to do and a negative amount of time in which
# to do it." - Before and After
#
# The following hash values are used:
# value: unsigned int with actual value (as a Math::BigInt::Calc or similar)
# sign : +, -, NaN, +inf, -inf
# _a : accuracy
# _p : precision
# Remember not to take shortcuts ala $xs = $x->{value}; $CALC->foo($xs); since
# underlying lib might change the reference!
use 5.006001;
use strict;
use warnings;
use Carp ();
our $VERSION = '1.999811';
our @ISA = qw(Exporter);
our @EXPORT_OK = qw(objectify bgcd blcm);
my $class = "Math::BigInt";
# Inside overload, the first arg is always an object. If the original code had
# it reversed (like $x = 2 * $y), then the third parameter is true.
# In some cases (like add, $x = $x + 2 is the same as $x = 2 + $x) this makes
# no difference, but in some cases it does.
# For overloaded ops with only one argument we simple use $_[0]->copy() to
# preserve the argument.
# Thus inheritance of overload operators becomes possible and transparent for
# our subclasses without the need to repeat the entire overload section there.
use overload
# overload key: with_assign
'+' => sub { $_[0] -> copy() -> badd($_[1]); },
'-' => sub { my $c = $_[0] -> copy;
$_[2] ? $c -> bneg() -> badd($_[1])
: $c -> bsub($_[1]); },
'*' => sub { $_[0] -> copy() -> bmul($_[1]); },
'/' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bdiv($_[0])
: $_[0] -> copy -> bdiv($_[1]); },
'%' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bmod($_[0])
: $_[0] -> copy -> bmod($_[1]); },
'**' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bpow($_[0])
: $_[0] -> copy -> bpow($_[1]); },
'<<' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> blsft($_[0])
: $_[0] -> copy -> blsft($_[1]); },
'>>' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> brsft($_[0])
: $_[0] -> copy -> brsft($_[1]); },
# overload key: assign
'+=' => sub { $_[0]->badd($_[1]); },
'-=' => sub { $_[0]->bsub($_[1]); },
'*=' => sub { $_[0]->bmul($_[1]); },
'/=' => sub { scalar $_[0]->bdiv($_[1]); },
'%=' => sub { $_[0]->bmod($_[1]); },
'**=' => sub { $_[0]->bpow($_[1]); },
'<<=' => sub { $_[0]->blsft($_[1]); },
'>>=' => sub { $_[0]->brsft($_[1]); },
# 'x=' => sub { },
# '.=' => sub { },
# overload key: num_comparison
'<' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> blt($_[0])
: $_[0] -> blt($_[1]); },
'<=' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> ble($_[0])
: $_[0] -> ble($_[1]); },
'>' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bgt($_[0])
: $_[0] -> bgt($_[1]); },
'>=' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bge($_[0])
: $_[0] -> bge($_[1]); },
'==' => sub { $_[0] -> beq($_[1]); },
'!=' => sub { $_[0] -> bne($_[1]); },
# overload key: 3way_comparison
'<=>' => sub { my $cmp = $_[0] -> bcmp($_[1]);
defined($cmp) && $_[2] ? -$cmp : $cmp; },
'cmp' => sub { $_[2] ? "$_[1]" cmp $_[0] -> bstr()
: $_[0] -> bstr() cmp "$_[1]"; },
# overload key: str_comparison
# 'lt' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bstrlt($_[0])
# : $_[0] -> bstrlt($_[1]); },
#
# 'le' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bstrle($_[0])
# : $_[0] -> bstrle($_[1]); },
#
# 'gt' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bstrgt($_[0])
# : $_[0] -> bstrgt($_[1]); },
#
# 'ge' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bstrge($_[0])
# : $_[0] -> bstrge($_[1]); },
#
# 'eq' => sub { $_[0] -> bstreq($_[1]); },
#
# 'ne' => sub { $_[0] -> bstrne($_[1]); },
# overload key: binary
'&' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> band($_[0])
: $_[0] -> copy -> band($_[1]); },
'&=' => sub { $_[0] -> band($_[1]); },
'|' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bior($_[0])
: $_[0] -> copy -> bior($_[1]); },
'|=' => sub { $_[0] -> bior($_[1]); },
'^' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bxor($_[0])
: $_[0] -> copy -> bxor($_[1]); },
'^=' => sub { $_[0] -> bxor($_[1]); },
# '&.' => sub { },
# '&.=' => sub { },
# '|.' => sub { },
# '|.=' => sub { },
# '^.' => sub { },
# '^.=' => sub { },
# overload key: unary
'neg' => sub { $_[0] -> copy() -> bneg(); },
# '!' => sub { },
'~' => sub { $_[0] -> copy() -> bnot(); },
# '~.' => sub { },
# overload key: mutators
'++' => sub { $_[0] -> binc() },
'--' => sub { $_[0] -> bdec() },
# overload key: func
'atan2' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> batan2($_[0])
: $_[0] -> copy() -> batan2($_[1]); },
'cos' => sub { $_[0] -> copy -> bcos(); },
'sin' => sub { $_[0] -> copy -> bsin(); },
'exp' => sub { $_[0] -> copy() -> bexp($_[1]); },
'abs' => sub { $_[0] -> copy() -> babs(); },
'log' => sub { $_[0] -> copy() -> blog(); },
'sqrt' => sub { $_[0] -> copy() -> bsqrt(); },
'int' => sub { $_[0] -> copy() -> bint(); },
# overload key: conversion
'bool' => sub { $_[0] -> is_zero() ? '' : 1; },
'""' => sub { $_[0] -> bstr(); },
'0+' => sub { $_[0] -> numify(); },
'=' => sub { $_[0]->copy(); },
;
##############################################################################
# global constants, flags and accessory
# These vars are public, but their direct usage is not recommended, use the
# accessor methods instead
our $round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'
our $accuracy = undef;
our $precision = undef;
our $div_scale = 40;
our $upgrade = undef; # default is no upgrade
our $downgrade = undef; # default is no downgrade
# These are internally, and not to be used from the outside at all
our $_trap_nan = 0; # are NaNs ok? set w/ config()
our $_trap_inf = 0; # are infs ok? set w/ config()
my $nan = 'NaN'; # constants for easier life
my $CALC = 'Math::BigInt::Calc'; # module to do the low level math
# default is Calc.pm
my $IMPORT = 0; # was import() called yet?
# used to make require work
my %WARN; # warn only once for low-level libs
my %CAN; # cache for $CALC->can(...)
my %CALLBACKS; # callbacks to notify on lib loads
my $EMU_LIB = 'Math/BigInt/CalcEmu.pm'; # emulate low-level math
##############################################################################
# the old code had $rnd_mode, so we need to support it, too
our $rnd_mode = 'even';
sub TIESCALAR {
my ($class) = @_;
bless \$round_mode, $class;
}
sub FETCH {
return $round_mode;
}
sub STORE {
$rnd_mode = $_[0]->round_mode($_[1]);
}
BEGIN {
# tie to enable $rnd_mode to work transparently
tie $rnd_mode, 'Math::BigInt';
# set up some handy alias names
*as_int = \&as_number;
*is_pos = \&is_positive;
*is_neg = \&is_negative;
}
###############################################################################
# Configuration methods
###############################################################################
sub round_mode {
no strict 'refs';
# make Class->round_mode() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
if (defined $_[0]) {
my $m = shift;
if ($m !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/) {
Carp::croak("Unknown round mode '$m'");
}
return ${"${class}::round_mode"} = $m;
}
${"${class}::round_mode"};
}
sub upgrade {
no strict 'refs';
# make Class->upgrade() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
# need to set new value?
if (@_ > 0) {
return ${"${class}::upgrade"} = $_[0];
}
${"${class}::upgrade"};
}
sub downgrade {
no strict 'refs';
# make Class->downgrade() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
# need to set new value?
if (@_ > 0) {
return ${"${class}::downgrade"} = $_[0];
}
${"${class}::downgrade"};
}
sub div_scale {
no strict 'refs';
# make Class->div_scale() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
if (defined $_[0]) {
if ($_[0] < 0) {
Carp::croak('div_scale must be greater than zero');
}
${"${class}::div_scale"} = $_[0];
}
${"${class}::div_scale"};
}
sub accuracy {
# $x->accuracy($a); ref($x) $a
# $x->accuracy(); ref($x)
# Class->accuracy(); class
# Class->accuracy($a); class $a
my $x = shift;
my $class = ref($x) || $x || __PACKAGE__;
no strict 'refs';
# need to set new value?
if (@_ > 0) {
my $a = shift;
# convert objects to scalars to avoid deep recursion. If object doesn't
# have numify(), then hopefully it will have overloading for int() and
# boolean test without wandering into a deep recursion path...
$a = $a->numify() if ref($a) && $a->can('numify');
if (defined $a) {
# also croak on non-numerical
if (!$a || $a <= 0) {
Carp::croak('Argument to accuracy must be greater than zero');
}
if (int($a) != $a) {
Carp::croak('Argument to accuracy must be an integer');
}
}
if (ref($x)) {
# $object->accuracy() or fallback to global
$x->bround($a) if $a; # not for undef, 0
$x->{_a} = $a; # set/overwrite, even if not rounded
delete $x->{_p}; # clear P
$a = ${"${class}::accuracy"} unless defined $a; # proper return value
} else {
${"${class}::accuracy"} = $a; # set global A
${"${class}::precision"} = undef; # clear global P
}
return $a; # shortcut
}
my $a;
# $object->accuracy() or fallback to global
$a = $x->{_a} if ref($x);
# but don't return global undef, when $x's accuracy is 0!
$a = ${"${class}::accuracy"} if !defined $a;
$a;
}
sub precision {
# $x->precision($p); ref($x) $p
# $x->precision(); ref($x)
# Class->precision(); class
# Class->precision($p); class $p
my $x = shift;
my $class = ref($x) || $x || __PACKAGE__;
no strict 'refs';
if (@_ > 0) {
my $p = shift;
# convert objects to scalars to avoid deep recursion. If object doesn't
# have numify(), then hopefully it will have overloading for int() and
# boolean test without wandering into a deep recursion path...
$p = $p->numify() if ref($p) && $p->can('numify');
if ((defined $p) && (int($p) != $p)) {
Carp::croak('Argument to precision must be an integer');
}
if (ref($x)) {
# $object->precision() or fallback to global
$x->bfround($p) if $p; # not for undef, 0
$x->{_p} = $p; # set/overwrite, even if not rounded
delete $x->{_a}; # clear A
$p = ${"${class}::precision"} unless defined $p; # proper return value
} else {
${"${class}::precision"} = $p; # set global P
${"${class}::accuracy"} = undef; # clear global A
}
return $p; # shortcut
}
my $p;
# $object->precision() or fallback to global
$p = $x->{_p} if ref($x);
# but don't return global undef, when $x's precision is 0!
$p = ${"${class}::precision"} if !defined $p;
$p;
}
sub config {
# return (or set) configuration data as hash ref
my $class = shift || __PACKAGE__;
no strict 'refs';
if (@_ > 1 || (@_ == 1 && (ref($_[0]) eq 'HASH'))) {
# try to set given options as arguments from hash
my $args = $_[0];
if (ref($args) ne 'HASH') {
$args = { @_ };
}
# these values can be "set"
my $set_args = {};
foreach my $key (qw/
accuracy precision
round_mode div_scale
upgrade downgrade
trap_inf trap_nan
/)
{
$set_args->{$key} = $args->{$key} if exists $args->{$key};
delete $args->{$key};
}
if (keys %$args > 0) {
Carp::croak("Illegal key(s) '", join("', '", keys %$args),
"' passed to $class\->config()");
}
foreach my $key (keys %$set_args) {
if ($key =~ /^trap_(inf|nan)\z/) {
${"${class}::_trap_$1"} = ($set_args->{"trap_$1"} ? 1 : 0);
next;
}
# use a call instead of just setting the $variable to check argument
$class->$key($set_args->{$key});
}
}
# now return actual configuration
my $cfg = {
lib => $CALC,
lib_version => ${"${CALC}::VERSION"},
class => $class,
trap_nan => ${"${class}::_trap_nan"},
trap_inf => ${"${class}::_trap_inf"},
version => ${"${class}::VERSION"},
};
foreach my $key (qw/
accuracy precision
round_mode div_scale
upgrade downgrade
/)
{
$cfg->{$key} = ${"${class}::$key"};
}
if (@_ == 1 && (ref($_[0]) ne 'HASH')) {
# calls of the style config('lib') return just this value
return $cfg->{$_[0]};
}
$cfg;
}
sub _scale_a {
# select accuracy parameter based on precedence,
# used by bround() and bfround(), may return undef for scale (means no op)
my ($x, $scale, $mode) = @_;
$scale = $x->{_a} unless defined $scale;
no strict 'refs';
my $class = ref($x);
$scale = ${ $class . '::accuracy' } unless defined $scale;
$mode = ${ $class . '::round_mode' } unless defined $mode;
if (defined $scale) {
$scale = $scale->can('numify') ? $scale->numify()
: "$scale" if ref($scale);
$scale = int($scale);
}
($scale, $mode);
}
sub _scale_p {
# select precision parameter based on precedence,
# used by bround() and bfround(), may return undef for scale (means no op)
my ($x, $scale, $mode) = @_;
$scale = $x->{_p} unless defined $scale;
no strict 'refs';
my $class = ref($x);
$scale = ${ $class . '::precision' } unless defined $scale;
$mode = ${ $class . '::round_mode' } unless defined $mode;
if (defined $scale) {
$scale = $scale->can('numify') ? $scale->numify()
: "$scale" if ref($scale);
$scale = int($scale);
}
($scale, $mode);
}
###############################################################################
# Constructor methods
###############################################################################
sub new {
# Create a new Math::BigInt object from a string or another Math::BigInt
# object. See hash keys documented at top.
# The argument could be an object, so avoid ||, && etc. on it. This would
# cause costly overloaded code to be called. The only allowed ops are ref()
# and defined.
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
# The POD says:
#
# "Currently, Math::BigInt->new() defaults to 0, while Math::BigInt->new('')
# results in 'NaN'. This might change in the future, so use always the
# following explicit forms to get a zero or NaN:
# $zero = Math::BigInt->bzero();
# $nan = Math::BigInt->bnan();
#
# But although this use has been discouraged for more than 10 years, people
# apparently still use it, so we still support it.
return $self->bzero() unless @_;
my ($wanted, $a, $p, $r) = @_;
# Always return a new object, so it called as an instance method, copy the
# invocand, and if called as a class method, initialize a new object.
$self = $selfref ? $self -> copy()
: bless {}, $class;
unless (defined $wanted) {
#Carp::carp("Use of uninitialized value in new()");
return $self->bzero($a, $p, $r);
}
if (ref($wanted) && $wanted->isa($class)) { # MBI or subclass
# Using "$copy = $wanted -> copy()" here fails some tests. Fixme!
my $copy = $class -> copy($wanted);
if ($selfref) {
%$self = %$copy;
} else {
$self = $copy;
}
return $self;
}
$class->import() if $IMPORT == 0; # make require work
# Shortcut for non-zero scalar integers with no non-zero exponent.
if (!ref($wanted) &&
$wanted =~ / ^
([+-]?) # optional sign
([1-9][0-9]*) # non-zero significand
(\.0*)? # ... with optional zero fraction
([Ee][+-]?0+)? # optional zero exponent
\z
/x)
{
my $sgn = $1;
my $abs = $2;
$self->{sign} = $sgn || '+';
$self->{value} = $CALC->_new($abs);
no strict 'refs';
if (defined($a) || defined($p)
|| defined(${"${class}::precision"})
|| defined(${"${class}::accuracy"}))
{
$self->round($a, $p, $r)
unless @_ >= 3 && !defined $a && !defined $p;
}
return $self;
}
# Handle Infs.
if ($wanted =~ /^\s*([+-]?)inf(inity)?\s*\z/i) {
my $sgn = $1 || '+';
$self->{sign} = $sgn . 'inf'; # set a default sign for bstr()
return $class->binf($sgn);
}
# Handle explicit NaNs (not the ones returned due to invalid input).
if ($wanted =~ /^\s*([+-]?)nan\s*\z/i) {
$self = $class -> bnan();
$self->round($a, $p, $r) unless @_ >= 3 && !defined $a && !defined $p;
return $self;
}
# Handle hexadecimal numbers.
if ($wanted =~ /^\s*[+-]?0[Xx]/) {
$self = $class -> from_hex($wanted);
$self->round($a, $p, $r) unless @_ >= 3 && !defined $a && !defined $p;
return $self;
}
# Handle binary numbers.
if ($wanted =~ /^\s*[+-]?0[Bb]/) {
$self = $class -> from_bin($wanted);
$self->round($a, $p, $r) unless @_ >= 3 && !defined $a && !defined $p;
return $self;
}
# Split string into mantissa, exponent, integer, fraction, value, and sign.
my ($mis, $miv, $mfv, $es, $ev) = _split($wanted);
if (!ref $mis) {
if ($_trap_nan) {
Carp::croak("$wanted is not a number in $class");
}
$self->{value} = $CALC->_zero();
$self->{sign} = $nan;
return $self;
}
if (!ref $miv) {
# _from_hex or _from_bin
$self->{value} = $mis->{value};
$self->{sign} = $mis->{sign};
return $self; # throw away $mis
}
# Make integer from mantissa by adjusting exponent, then convert to a
# Math::BigInt.
$self->{sign} = $$mis; # store sign
$self->{value} = $CALC->_zero(); # for all the NaN cases
my $e = int("$$es$$ev"); # exponent (avoid recursion)
if ($e > 0) {
my $diff = $e - CORE::length($$mfv);
if ($diff < 0) { # Not integer
if ($_trap_nan) {
Carp::croak("$wanted not an integer in $class");
}
#print "NOI 1\n";
return $upgrade->new($wanted, $a, $p, $r) if defined $upgrade;
$self->{sign} = $nan;
} else { # diff >= 0
# adjust fraction and add it to value
#print "diff > 0 $$miv\n";
$$miv = $$miv . ($$mfv . '0' x $diff);
}
}
else {
if ($$mfv ne '') { # e <= 0
# fraction and negative/zero E => NOI
if ($_trap_nan) {
Carp::croak("$wanted not an integer in $class");
}
#print "NOI 2 \$\$mfv '$$mfv'\n";
return $upgrade->new($wanted, $a, $p, $r) if defined $upgrade;
$self->{sign} = $nan;
} elsif ($e < 0) {
# xE-y, and empty mfv
# Split the mantissa at the decimal point. E.g., if
# $$miv = 12345 and $e = -2, then $frac = 45 and $$miv = 123.
my $frac = substr($$miv, $e); # $frac is fraction part
substr($$miv, $e) = ""; # $$miv is now integer part
if ($frac =~ /[^0]/) {
if ($_trap_nan) {
Carp::croak("$wanted not an integer in $class");
}
#print "NOI 3\n";
return $upgrade->new($wanted, $a, $p, $r) if defined $upgrade;
$self->{sign} = $nan;
}
}
}
unless ($self->{sign} eq $nan) {
$self->{sign} = '+' if $$miv eq '0'; # normalize -0 => +0
$self->{value} = $CALC->_new($$miv) if $self->{sign} =~ /^[+-]$/;
}
# If any of the globals are set, use them to round, and store them inside
# $self. Do not round for new($x, undef, undef) since that is used by MBF
# to signal no rounding.
$self->round($a, $p, $r) unless @_ >= 3 && !defined $a && !defined $p;
$self;
}
# Create a Math::BigInt from a hexadecimal string.
sub from_hex {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
# Don't modify constant (read-only) objects.
return if $selfref && $self->modify('from_hex');
my $str = shift;
# If called as a class method, initialize a new object.
$self = $class -> bzero() unless $selfref;
if ($str =~ s/
^
\s*
( [+-]? )
(0?x)?
(
[0-9a-fA-F]*
( _ [0-9a-fA-F]+ )*
)
\s*
$
//x)
{
# Get a "clean" version of the string, i.e., non-emtpy and with no
# underscores or invalid characters.
my $sign = $1;
my $chrs = $3;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
# The library method requires a prefix.
$self->{value} = $CALC->_from_hex('0x' . $chrs);
# Place the sign.
$self->{sign} = $sign eq '-' && ! $CALC->_is_zero($self->{value})
? '-' : '+';
return $self;
}
# CORE::hex() parses as much as it can, and ignores any trailing garbage.
# For backwards compatibility, we return NaN.
return $self->bnan();
}
# Create a Math::BigInt from an octal string.
sub from_oct {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
# Don't modify constant (read-only) objects.
return if $selfref && $self->modify('from_oct');
my $str = shift;
# If called as a class method, initialize a new object.
$self = $class -> bzero() unless $selfref;
if ($str =~ s/
^
\s*
( [+-]? )
(
[0-7]*
( _ [0-7]+ )*
)
\s*
$
//x)
{
# Get a "clean" version of the string, i.e., non-emtpy and with no
# underscores or invalid characters.
my $sign = $1;
my $chrs = $2;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
# The library method requires a prefix.
$self->{value} = $CALC->_from_oct('0' . $chrs);
# Place the sign.
$self->{sign} = $sign eq '-' && ! $CALC->_is_zero($self->{value})
? '-' : '+';
return $self;
}
# CORE::oct() parses as much as it can, and ignores any trailing garbage.
# For backwards compatibility, we return NaN.
return $self->bnan();
}
# Create a Math::BigInt from a binary string.
sub from_bin {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
# Don't modify constant (read-only) objects.
return if $selfref && $self->modify('from_bin');
my $str = shift;
# If called as a class method, initialize a new object.
$self = $class -> bzero() unless $selfref;
if ($str =~ s/
^
\s*
( [+-]? )
(0?b)?
(
[01]*
( _ [01]+ )*
)
\s*
$
//x)
{
# Get a "clean" version of the string, i.e., non-emtpy and with no
# underscores or invalid characters.
my $sign = $1;
my $chrs = $3;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
# The library method requires a prefix.
$self->{value} = $CALC->_from_bin('0b' . $chrs);
# Place the sign.
$self->{sign} = $sign eq '-' && ! $CALC->_is_zero($self->{value})
? '-' : '+';
return $self;
}
# For consistency with from_hex() and from_oct(), we return NaN when the
# input is invalid.
return $self->bnan();
}
# Create a Math::BigInt from a byte string.
sub from_bytes {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
# Don't modify constant (read-only) objects.
return if $selfref && $self->modify('from_bytes');
Carp::croak("from_bytes() requires a newer version of the $CALC library.")
unless $CALC->can('_from_bytes');
my $str = shift;
# If called as a class method, initialize a new object.
$self = $class -> bzero() unless $selfref;
$self -> {sign} = '+';
$self -> {value} = $CALC -> _from_bytes($str);
return $self;
}
sub bzero {
# create/assign '+0'
if (@_ == 0) {
#Carp::carp("Using bzero() as a function is deprecated;",
# " use bzero() as a method instead");
unshift @_, __PACKAGE__;
}
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
$self->import() if $IMPORT == 0; # make require work
# Don't modify constant (read-only) objects.
return if $selfref && $self->modify('bzero');
$self = bless {}, $class unless $selfref;
$self->{sign} = '+';
$self->{value} = $CALC->_zero();
if (@_ > 0) {
if (@_ > 3) {
# call like: $x->bzero($a, $p, $r, $y, ...);
($self, $self->{_a}, $self->{_p}) = $self->_find_round_parameters(@_);
} else {
# call like: $x->bzero($a, $p, $r);
$self->{_a} = $_[0]
if !defined $self->{_a} || (defined $_[0] && $_[0] > $self->{_a});
$self->{_p} = $_[1]
if !defined $self->{_p} || (defined $_[1] && $_[1] > $self->{_p});
}
}
return $self;
}
sub bone {
# Create or assign '+1' (or -1 if given sign '-').
if (@_ == 0 || (defined($_[0]) && ($_[0] eq '+' || $_[0] eq '-'))) {
#Carp::carp("Using bone() as a function is deprecated;",
# " use bone() as a method instead");
unshift @_, __PACKAGE__;
}
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
$self->import() if $IMPORT == 0; # make require work
# Don't modify constant (read-only) objects.
return if $selfref && $self->modify('bone');
my $sign = shift;
$sign = defined $sign && $sign =~ /^\s*-/ ? "-" : "+";
$self = bless {}, $class unless $selfref;
$self->{sign} = $sign;
$self->{value} = $CALC->_one();
if (@_ > 0) {
if (@_ > 3) {
# call like: $x->bone($sign, $a, $p, $r, $y, ...);
($self, $self->{_a}, $self->{_p}) = $self->_find_round_parameters(@_);
} else {
# call like: $x->bone($sign, $a, $p, $r);
$self->{_a} = $_[0]
if !defined $self->{_a} || (defined $_[0] && $_[0] > $self->{_a});
$self->{_p} = $_[1]
if !defined $self->{_p} || (defined $_[1] && $_[1] > $self->{_p});
}
}
return $self;
}
sub binf {
# create/assign a '+inf' or '-inf'
if (@_ == 0 || (defined($_[0]) && !ref($_[0]) &&
$_[0] =~ /^\s*[+-](inf(inity)?)?\s*$/))
{
#Carp::carp("Using binf() as a function is deprecated;",
# " use binf() as a method instead");
unshift @_, __PACKAGE__;
}
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
{
no strict 'refs';
if (${"${class}::_trap_inf"}) {
Carp::croak("Tried to create +-inf in $class->binf()");
}
}
$self->import() if $IMPORT == 0; # make require work
# Don't modify constant (read-only) objects.
return if $selfref && $self->modify('binf');
my $sign = shift;
$sign = defined $sign && $sign =~ /^\s*-/ ? "-" : "+";
$self = bless {}, $class unless $selfref;
$self -> {sign} = $sign . 'inf';
$self -> {value} = $CALC -> _zero();
return $self;
}
sub bnan {
# create/assign a 'NaN'
if (@_ == 0) {
#Carp::carp("Using bnan() as a function is deprecated;",
# " use bnan() as a method instead");
unshift @_, __PACKAGE__;
}
my $self = shift;
my $selfref = ref($self);
my $class = $selfref || $self;
{
no strict 'refs';
if (${"${class}::_trap_nan"}) {
Carp::croak("Tried to create NaN in $class->bnan()");
}
}
$self->import() if $IMPORT == 0; # make require work
# Don't modify constant (read-only) objects.
return if $selfref && $self->modify('bnan');
$self = bless {}, $class unless $selfref;
$self -> {sign} = $nan;
$self -> {value} = $CALC -> _zero();
return $self;
}
sub bpi {
# Calculate PI to N digits. Unless upgrading is in effect, returns the
# result truncated to an integer, that is, always returns '3'.
my ($self, $n) = @_;
if (@_ == 1) {
# called like Math::BigInt::bpi(10);
$n = $self;
$self = $class;
}
$self = ref($self) if ref($self);
return $upgrade->new($n) if defined $upgrade;
# hard-wired to "3"
$self->new(3);
}
sub copy {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
# If called as a class method, the object to copy is the next argument.
$self = shift() unless $selfref;
my $copy = bless {}, $class;
$copy->{sign} = $self->{sign};
$copy->{value} = $CALC->_copy($self->{value});
$copy->{_a} = $self->{_a} if exists $self->{_a};
$copy->{_p} = $self->{_p} if exists $self->{_p};
return $copy;
}
sub as_number {
# An object might be asked to return itself as bigint on certain overloaded
# operations. This does exactly this, so that sub classes can simple inherit
# it or override with their own integer conversion routine.
$_[0]->copy();
}
###############################################################################
# Boolean methods
###############################################################################
sub is_zero {
# return true if arg (BINT or num_str) is zero (array '+', '0')
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
return 0 if $x->{sign} !~ /^\+$/; # -, NaN & +-inf aren't
$CALC->_is_zero($x->{value});
}
sub is_one {
# return true if arg (BINT or num_str) is +1, or -1 if sign is given
my ($class, $x, $sign) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
$sign = '+' if !defined $sign || $sign ne '-';
return 0 if $x->{sign} ne $sign; # -1 != +1, NaN, +-inf aren't either
$CALC->_is_one($x->{value});
}
sub is_finite {
my $x = shift;
return $x->{sign} eq '+' || $x->{sign} eq '-';
}
sub is_inf {
# return true if arg (BINT or num_str) is +-inf
my ($class, $x, $sign) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
if (defined $sign) {
$sign = '[+-]inf' if $sign eq ''; # +- doesn't matter, only that's inf
$sign = "[$1]inf" if $sign =~ /^([+-])(inf)?$/; # extract '+' or '-'
return $x->{sign} =~ /^$sign$/ ? 1 : 0;
}
$x->{sign} =~ /^[+-]inf$/ ? 1 : 0; # only +-inf is infinity
}
sub is_nan {
# return true if arg (BINT or num_str) is NaN
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
$x->{sign} eq $nan ? 1 : 0;
}
sub is_positive {
# return true when arg (BINT or num_str) is positive (> 0)
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
return 1 if $x->{sign} eq '+inf'; # +inf is positive
# 0+ is neither positive nor negative
($x->{sign} eq '+' && !$x->is_zero()) ? 1 : 0;
}
sub is_negative {
# return true when arg (BINT or num_str) is negative (< 0)
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
$x->{sign} =~ /^-/ ? 1 : 0; # -inf is negative, but NaN is not
}
sub is_odd {
# return true when arg (BINT or num_str) is odd, false for even
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
$CALC->_is_odd($x->{value});
}
sub is_even {
# return true when arg (BINT or num_str) is even, false for odd
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
$CALC->_is_even($x->{value});
}
sub is_int {
# return true when arg (BINT or num_str) is an integer
# always true for Math::BigInt, but different for Math::BigFloat objects
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
$x->{sign} =~ /^[+-]$/ ? 1 : 0; # inf/-inf/NaN aren't
}
###############################################################################
# Comparison methods
###############################################################################
sub bcmp {
# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
# (BINT or num_str, BINT or num_str) return cond_code
# set up parameters
my ($class, $x, $y) = ref($_[0]) && ref($_[0]) eq ref($_[1])
? (ref($_[0]), @_)
: objectify(2, @_);
return $upgrade->bcmp($x, $y) if defined $upgrade &&
((!$x->isa($class)) || (!$y->isa($class)));
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) {
# handle +-inf and NaN
return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
return +1 if $x->{sign} eq '+inf';
return -1 if $x->{sign} eq '-inf';
return -1 if $y->{sign} eq '+inf';
return +1;
}
# check sign for speed first
return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y
return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0
# have same sign, so compare absolute values. Don't make tests for zero
# here because it's actually slower than testing in Calc (especially w/ Pari
# et al)
# post-normalized compare for internal use (honors signs)
if ($x->{sign} eq '+') {
# $x and $y both > 0
return $CALC->_acmp($x->{value}, $y->{value});
}
# $x && $y both < 0
$CALC->_acmp($y->{value}, $x->{value}); # swapped acmp (lib returns 0, 1, -1)
}
sub bacmp {
# Compares 2 values, ignoring their signs.
# Returns one of undef, <0, =0, >0. (suitable for sort)
# (BINT, BINT) return cond_code
# set up parameters
my ($class, $x, $y) = ref($_[0]) && ref($_[0]) eq ref($_[1])
? (ref($_[0]), @_)
: objectify(2, @_);
return $upgrade->bacmp($x, $y) if defined $upgrade &&
((!$x->isa($class)) || (!$y->isa($class)));
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) {
# handle +-inf and NaN
return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/;
return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/;
return -1;
}
$CALC->_acmp($x->{value}, $y->{value}); # lib does only 0, 1, -1
}
sub beq {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
Carp::croak 'beq() is an instance method, not a class method' unless $selfref;
Carp::croak 'Wrong number of arguments for beq()' unless @_ == 1;
my $cmp = $self -> bcmp(shift);
return defined($cmp) && ! $cmp;
}
sub bne {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
Carp::croak 'bne() is an instance method, not a class method' unless $selfref;
Carp::croak 'Wrong number of arguments for bne()' unless @_ == 1;
my $cmp = $self -> bcmp(shift);
return defined($cmp) && ! $cmp ? '' : 1;
}
sub blt {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
Carp::croak 'blt() is an instance method, not a class method' unless $selfref;
Carp::croak 'Wrong number of arguments for blt()' unless @_ == 1;
my $cmp = $self -> bcmp(shift);
return defined($cmp) && $cmp < 0;
}
sub ble {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
Carp::croak 'ble() is an instance method, not a class method' unless $selfref;
Carp::croak 'Wrong number of arguments for ble()' unless @_ == 1;
my $cmp = $self -> bcmp(shift);
return defined($cmp) && $cmp <= 0;
}
sub bgt {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
Carp::croak 'bgt() is an instance method, not a class method' unless $selfref;
Carp::croak 'Wrong number of arguments for bgt()' unless @_ == 1;
my $cmp = $self -> bcmp(shift);
return defined($cmp) && $cmp > 0;
}
sub bge {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
Carp::croak 'bge() is an instance method, not a class method'
unless $selfref;
Carp::croak 'Wrong number of arguments for bge()' unless @_ == 1;
my $cmp = $self -> bcmp(shift);
return defined($cmp) && $cmp >= 0;
}
###############################################################################
# Arithmetic methods
###############################################################################
sub bneg {
# (BINT or num_str) return BINT
# negate number or make a negated number from string
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
return $x if $x->modify('bneg');
# for +0 do not negate (to have always normalized +0). Does nothing for 'NaN'
$x->{sign} =~ tr/+-/-+/ unless ($x->{sign} eq '+' && $CALC->_is_zero($x->{value}));
$x;
}
sub babs {
# (BINT or num_str) return BINT
# make number absolute, or return absolute BINT from string
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
return $x if $x->modify('babs');
# post-normalized abs for internal use (does nothing for NaN)
$x->{sign} =~ s/^-/+/;
$x;
}
sub bsgn {
# Signum function.
my $self = shift;
return $self if $self->modify('bsgn');
return $self -> bone("+") if $self -> is_pos();
return $self -> bone("-") if $self -> is_neg();
return $self; # zero or NaN
}
sub bnorm {
# (numstr or BINT) return BINT
# Normalize number -- no-op here
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
$x;
}
sub binc {
# increment arg by one
my ($class, $x, $a, $p, $r) = ref($_[0]) ? (ref($_[0]), @_) : objectify(1, @_);
return $x if $x->modify('binc');
if ($x->{sign} eq '+') {
$x->{value} = $CALC->_inc($x->{value});
return $x->round($a, $p, $r);
} elsif ($x->{sign} eq '-') {
$x->{value} = $CALC->_dec($x->{value});
$x->{sign} = '+' if $CALC->_is_zero($x->{value}); # -1 +1 => -0 => +0
return $x->round($a, $p, $r);
}
# inf, nan handling etc
$x->badd($class->bone(), $a, $p, $r); # badd does round
}
sub bdec {
# decrement arg by one
my ($class, $x, @r) = ref($_[0]) ? (ref($_[0]), @_) : objectify(1, @_);
return $x if $x->modify('bdec');
if ($x->{sign} eq '-') {
# x already < 0
$x->{value} = $CALC->_inc($x->{value});
} else {
return $x->badd($class->bone('-'), @r)
unless $x->{sign} eq '+'; # inf or NaN
# >= 0
if ($CALC->_is_zero($x->{value})) {
# == 0
$x->{value} = $CALC->_one();
$x->{sign} = '-'; # 0 => -1
} else {
# > 0
$x->{value} = $CALC->_dec($x->{value});
}
}
$x->round(@r);
}
#sub bstrcmp {
# my $self = shift;
# my $selfref = ref $self;
# my $class = $selfref || $self;
#
# Carp::croak 'bstrcmp() is an instance method, not a class method'
# unless $selfref;
# Carp::croak 'Wrong number of arguments for bstrcmp()' unless @_ == 1;
#
# return $self -> bstr() CORE::cmp shift;
#}
#
#sub bstreq {
# my $self = shift;
# my $selfref = ref $self;
# my $class = $selfref || $self;
#
# Carp::croak 'bstreq() is an instance method, not a class method'
# unless $selfref;
# Carp::croak 'Wrong number of arguments for bstreq()' unless @_ == 1;
#
# my $cmp = $self -> bstrcmp(shift);
# return defined($cmp) && ! $cmp;
#}
#
#sub bstrne {
# my $self = shift;
# my $selfref = ref $self;
# my $class = $selfref || $self;
#
# Carp::croak 'bstrne() is an instance method, not a class method'
# unless $selfref;
# Carp::croak 'Wrong number of arguments for bstrne()' unless @_ == 1;
#
# my $cmp = $self -> bstrcmp(shift);
# return defined($cmp) && ! $cmp ? '' : 1;
#}
#
#sub bstrlt {
# my $self = shift;
# my $selfref = ref $self;
# my $class = $selfref || $self;
#
# Carp::croak 'bstrlt() is an instance method, not a class method'
# unless $selfref;
# Carp::croak 'Wrong number of arguments for bstrlt()' unless @_ == 1;
#
# my $cmp = $self -> bstrcmp(shift);
# return defined($cmp) && $cmp < 0;
#}
#
#sub bstrle {
# my $self = shift;
# my $selfref = ref $self;
# my $class = $selfref || $self;
#
# Carp::croak 'bstrle() is an instance method, not a class method'
# unless $selfref;
# Carp::croak 'Wrong number of arguments for bstrle()' unless @_ == 1;
#
# my $cmp = $self -> bstrcmp(shift);
# return defined($cmp) && $cmp <= 0;
#}
#
#sub bstrgt {
# my $self = shift;
# my $selfref = ref $self;
# my $class = $selfref || $self;
#
# Carp::croak 'bstrgt() is an instance method, not a class method'
# unless $selfref;
# Carp::croak 'Wrong number of arguments for bstrgt()' unless @_ == 1;
#
# my $cmp = $self -> bstrcmp(shift);
# return defined($cmp) && $cmp > 0;
#}
#
#sub bstrge {
# my $self = shift;
# my $selfref = ref $self;
# my $class = $selfref || $self;
#
# Carp::croak 'bstrge() is an instance method, not a class method'
# unless $selfref;
# Carp::croak 'Wrong number of arguments for bstrge()' unless @_ == 1;
#
# my $cmp = $self -> bstrcmp(shift);
# return defined($cmp) && $cmp >= 0;
#}
sub badd {
# add second arg (BINT or string) to first (BINT) (modifies first)
# return result as BINT
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x->modify('badd');
return $upgrade->badd($upgrade->new($x), $upgrade->new($y), @r) if defined $upgrade &&
((!$x->isa($class)) || (!$y->isa($class)));
$r[3] = $y; # no push!
# inf and NaN handling
if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/) {
# NaN first
return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/)) {
# +inf++inf or -inf+-inf => same, rest is NaN
return $x if $x->{sign} eq $y->{sign};
return $x->bnan();
}
# +-inf + something => +inf
# something +-inf => +-inf
$x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/;
return $x;
}
my ($sx, $sy) = ($x->{sign}, $y->{sign}); # get signs
if ($sx eq $sy) {
$x->{value} = $CALC->_add($x->{value}, $y->{value}); # same sign, abs add
} else {
my $a = $CALC->_acmp ($y->{value}, $x->{value}); # absolute compare
if ($a > 0) {
$x->{value} = $CALC->_sub($y->{value}, $x->{value}, 1); # abs sub w/ swap
$x->{sign} = $sy;
} elsif ($a == 0) {
# speedup, if equal, set result to 0
$x->{value} = $CALC->_zero();
$x->{sign} = '+';
} else # a < 0
{
$x->{value} = $CALC->_sub($x->{value}, $y->{value}); # abs sub
}
}
$x->round(@r);
}
sub bsub {
# (BINT or num_str, BINT or num_str) return BINT
# subtract second arg from first, modify first
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x -> modify('bsub');
return $upgrade -> new($x) -> bsub($upgrade -> new($y), @r)
if defined $upgrade && (!$x -> isa($class) || !$y -> isa($class));
return $x -> round(@r) if $y -> is_zero();
# To correctly handle the lone special case $x -> bsub($x), we note the
# sign of $x, then flip the sign from $y, and if the sign of $x did change,
# too, then we caught the special case:
my $xsign = $x -> {sign};
$y -> {sign} =~ tr/+-/-+/; # does nothing for NaN
if ($xsign ne $x -> {sign}) {
# special case of $x -> bsub($x) results in 0
return $x -> bzero(@r) if $xsign =~ /^[+-]$/;
return $x -> bnan(); # NaN, -inf, +inf
}
$x -> badd($y, @r); # badd does not leave internal zeros
$y -> {sign} =~ tr/+-/-+/; # refix $y (does nothing for NaN)
$x; # already rounded by badd() or no rounding
}
sub bmul {
# multiply the first number by the second number
# (BINT or num_str, BINT or num_str) return BINT
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x->modify('bmul');
return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/)) {
return $x->bnan() if $x->is_zero() || $y->is_zero();
# result will always be +-inf:
# +inf * +/+inf => +inf, -inf * -/-inf => +inf
# +inf * -/-inf => -inf, -inf * +/+inf => -inf
return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
return $x->binf('-');
}
return $upgrade->bmul($x, $upgrade->new($y), @r)
if defined $upgrade && !$y->isa($class);
$r[3] = $y; # no push here
$x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +
$x->{value} = $CALC->_mul($x->{value}, $y->{value}); # do actual math
$x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0
$x->round(@r);
}
sub bmuladd {
# multiply two numbers and then add the third to the result
# (BINT or num_str, BINT or num_str, BINT or num_str) return BINT
# set up parameters
my ($class, $x, $y, $z, @r) = objectify(3, @_);
return $x if $x->modify('bmuladd');
return $x->bnan() if (($x->{sign} eq $nan) ||
($y->{sign} eq $nan) ||
($z->{sign} eq $nan));
# inf handling of x and y
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/)) {
return $x->bnan() if $x->is_zero() || $y->is_zero();
# result will always be +-inf:
# +inf * +/+inf => +inf, -inf * -/-inf => +inf
# +inf * -/-inf => -inf, -inf * +/+inf => -inf
return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
return $x->binf('-');
}
# inf handling x*y and z
if (($z->{sign} =~ /^[+-]inf$/)) {
# something +-inf => +-inf
$x->{sign} = $z->{sign}, return $x if $z->{sign} =~ /^[+-]inf$/;
}
return $upgrade->bmuladd($x, $upgrade->new($y), $upgrade->new($z), @r)
if defined $upgrade && (!$y->isa($class) || !$z->isa($class) || !$x->isa($class));
# TODO: what if $y and $z have A or P set?
$r[3] = $z; # no push here
$x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +
$x->{value} = $CALC->_mul($x->{value}, $y->{value}); # do actual math
$x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0
my ($sx, $sz) = ( $x->{sign}, $z->{sign} ); # get signs
if ($sx eq $sz) {
$x->{value} = $CALC->_add($x->{value}, $z->{value}); # same sign, abs add
} else {
my $a = $CALC->_acmp ($z->{value}, $x->{value}); # absolute compare
if ($a > 0) {
$x->{value} = $CALC->_sub($z->{value}, $x->{value}, 1); # abs sub w/ swap
$x->{sign} = $sz;
} elsif ($a == 0) {
# speedup, if equal, set result to 0
$x->{value} = $CALC->_zero();
$x->{sign} = '+';
} else # a < 0
{
$x->{value} = $CALC->_sub($x->{value}, $z->{value}); # abs sub
}
}
$x->round(@r);
}
sub bdiv {
# This does floored division, where the quotient is floored, i.e., rounded
# towards negative infinity. As a consequence, the remainder has the same
# sign as the divisor.
# Set up parameters.
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify() is costly, so avoid it if we can.
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x -> modify('bdiv');
my $wantarray = wantarray; # call only once
# At least one argument is NaN. Return NaN for both quotient and the
# modulo/remainder.
if ($x -> is_nan() || $y -> is_nan()) {
return $wantarray ? ($x -> bnan(), $class -> bnan()) : $x -> bnan();
}
# Divide by zero and modulo zero.
#
# Division: Use the common convention that x / 0 is inf with the same sign
# as x, except when x = 0, where we return NaN. This is also what earlier
# versions did.
#
# Modulo: In modular arithmetic, the congruence relation z = x (mod y)
# means that there is some integer k such that z - x = k y. If y = 0, we
# get z - x = 0 or z = x. This is also what earlier versions did, except
# that 0 % 0 returned NaN.
#
# inf / 0 = inf inf % 0 = inf
# 5 / 0 = inf 5 % 0 = 5
# 0 / 0 = NaN 0 % 0 = 0
# -5 / 0 = -inf -5 % 0 = -5
# -inf / 0 = -inf -inf % 0 = -inf
if ($y -> is_zero()) {
my $rem;
if ($wantarray) {
$rem = $x -> copy();
}
if ($x -> is_zero()) {
$x -> bnan();
} else {
$x -> binf($x -> {sign});
}
return $wantarray ? ($x, $rem) : $x;
}
# Numerator (dividend) is +/-inf, and denominator is finite and non-zero.
# The divide by zero cases are covered above. In all of the cases listed
# below we return the same as core Perl.
#
# inf / -inf = NaN inf % -inf = NaN
# inf / -5 = -inf inf % -5 = NaN
# inf / 5 = inf inf % 5 = NaN
# inf / inf = NaN inf % inf = NaN
#
# -inf / -inf = NaN -inf % -inf = NaN
# -inf / -5 = inf -inf % -5 = NaN
# -inf / 5 = -inf -inf % 5 = NaN
# -inf / inf = NaN -inf % inf = NaN
if ($x -> is_inf()) {
my $rem;
$rem = $class -> bnan() if $wantarray;
if ($y -> is_inf()) {
$x -> bnan();
} else {
my $sign = $x -> bcmp(0) == $y -> bcmp(0) ? '+' : '-';
$x -> binf($sign);
}
return $wantarray ? ($x, $rem) : $x;
}
# Denominator (divisor) is +/-inf. The cases when the numerator is +/-inf
# are covered above. In the modulo cases (in the right column) we return
# the same as core Perl, which does floored division, so for consistency we
# also do floored division in the division cases (in the left column).
#
# -5 / inf = -1 -5 % inf = inf
# 0 / inf = 0 0 % inf = 0
# 5 / inf = 0 5 % inf = 5
#
# -5 / -inf = 0 -5 % -inf = -5
# 0 / -inf = 0 0 % -inf = 0
# 5 / -inf = -1 5 % -inf = -inf
if ($y -> is_inf()) {
my $rem;
if ($x -> is_zero() || $x -> bcmp(0) == $y -> bcmp(0)) {
$rem = $x -> copy() if $wantarray;
$x -> bzero();
} else {
$rem = $class -> binf($y -> {sign}) if $wantarray;
$x -> bone('-');
}
return $wantarray ? ($x, $rem) : $x;
}
# At this point, both the numerator and denominator are finite numbers, and
# the denominator (divisor) is non-zero.
return $upgrade -> bdiv($upgrade -> new($x), $upgrade -> new($y), @r)
if defined $upgrade;
$r[3] = $y; # no push!
# Inialize remainder.
my $rem = $class -> bzero();
# Are both operands the same object, i.e., like $x -> bdiv($x)? If so,
# flipping the sign of $y also flips the sign of $x.
my $xsign = $x -> {sign};
my $ysign = $y -> {sign};
$y -> {sign} =~ tr/+-/-+/; # Flip the sign of $y, and see ...
my $same = $xsign ne $x -> {sign}; # ... if that changed the sign of $x.
$y -> {sign} = $ysign; # Re-insert the original sign.
if ($same) {
$x -> bone();
} else {
($x -> {value}, $rem -> {value}) =
$CALC -> _div($x -> {value}, $y -> {value});
if ($CALC -> _is_zero($rem -> {value})) {
if ($xsign eq $ysign || $CALC -> _is_zero($x -> {value})) {
$x -> {sign} = '+';
} else {
$x -> {sign} = '-';
}
} else {
if ($xsign eq $ysign) {
$x -> {sign} = '+';
} else {
if ($xsign eq '+') {
$x -> badd(1);
} else {
$x -> bsub(1);
}
$x -> {sign} = '-';
}
}
}
$x -> round(@r);
if ($wantarray) {
unless ($CALC -> _is_zero($rem -> {value})) {
if ($xsign ne $ysign) {
$rem = $y -> copy() -> babs() -> bsub($rem);
}
$rem -> {sign} = $ysign;
}
$rem -> {_a} = $x -> {_a};
$rem -> {_p} = $x -> {_p};
$rem -> round(@r);
return ($x, $rem);
}
return $x;
}
sub btdiv {
# This does truncated division, where the quotient is truncted, i.e.,
# rounded towards zero.
#
# ($q, $r) = $x -> btdiv($y) returns $q and $r so that $q is int($x / $y)
# and $q * $y + $r = $x.
# Set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it if we can.
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x -> modify('btdiv');
my $wantarray = wantarray; # call only once
# At least one argument is NaN. Return NaN for both quotient and the
# modulo/remainder.
if ($x -> is_nan() || $y -> is_nan()) {
return $wantarray ? ($x -> bnan(), $class -> bnan()) : $x -> bnan();
}
# Divide by zero and modulo zero.
#
# Division: Use the common convention that x / 0 is inf with the same sign
# as x, except when x = 0, where we return NaN. This is also what earlier
# versions did.
#
# Modulo: In modular arithmetic, the congruence relation z = x (mod y)
# means that there is some integer k such that z - x = k y. If y = 0, we
# get z - x = 0 or z = x. This is also what earlier versions did, except
# that 0 % 0 returned NaN.
#
# inf / 0 = inf inf % 0 = inf
# 5 / 0 = inf 5 % 0 = 5
# 0 / 0 = NaN 0 % 0 = 0
# -5 / 0 = -inf -5 % 0 = -5
# -inf / 0 = -inf -inf % 0 = -inf
if ($y -> is_zero()) {
my $rem;
if ($wantarray) {
$rem = $x -> copy();
}
if ($x -> is_zero()) {
$x -> bnan();
} else {
$x -> binf($x -> {sign});
}
return $wantarray ? ($x, $rem) : $x;
}
# Numerator (dividend) is +/-inf, and denominator is finite and non-zero.
# The divide by zero cases are covered above. In all of the cases listed
# below we return the same as core Perl.
#
# inf / -inf = NaN inf % -inf = NaN
# inf / -5 = -inf inf % -5 = NaN
# inf / 5 = inf inf % 5 = NaN
# inf / inf = NaN inf % inf = NaN
#
# -inf / -inf = NaN -inf % -inf = NaN
# -inf / -5 = inf -inf % -5 = NaN
# -inf / 5 = -inf -inf % 5 = NaN
# -inf / inf = NaN -inf % inf = NaN
if ($x -> is_inf()) {
my $rem;
$rem = $class -> bnan() if $wantarray;
if ($y -> is_inf()) {
$x -> bnan();
} else {
my $sign = $x -> bcmp(0) == $y -> bcmp(0) ? '+' : '-';
$x -> binf($sign);
}
return $wantarray ? ($x, $rem) : $x;
}
# Denominator (divisor) is +/-inf. The cases when the numerator is +/-inf
# are covered above. In the modulo cases (in the right column) we return
# the same as core Perl, which does floored division, so for consistency we
# also do floored division in the division cases (in the left column).
#
# -5 / inf = 0 -5 % inf = -5
# 0 / inf = 0 0 % inf = 0
# 5 / inf = 0 5 % inf = 5
#
# -5 / -inf = 0 -5 % -inf = -5
# 0 / -inf = 0 0 % -inf = 0
# 5 / -inf = 0 5 % -inf = 5
if ($y -> is_inf()) {
my $rem;
$rem = $x -> copy() if $wantarray;
$x -> bzero();
return $wantarray ? ($x, $rem) : $x;
}
return $upgrade -> btdiv($upgrade -> new($x), $upgrade -> new($y), @r)
if defined $upgrade;
$r[3] = $y; # no push!
# Inialize remainder.
my $rem = $class -> bzero();
# Are both operands the same object, i.e., like $x -> bdiv($x)? If so,
# flipping the sign of $y also flips the sign of $x.
my $xsign = $x -> {sign};
my $ysign = $y -> {sign};
$y -> {sign} =~ tr/+-/-+/; # Flip the sign of $y, and see ...
my $same = $xsign ne $x -> {sign}; # ... if that changed the sign of $x.
$y -> {sign} = $ysign; # Re-insert the original sign.
if ($same) {
$x -> bone();
} else {
($x -> {value}, $rem -> {value}) =
$CALC -> _div($x -> {value}, $y -> {value});
$x -> {sign} = $xsign eq $ysign ? '+' : '-';
$x -> {sign} = '+' if $CALC -> _is_zero($x -> {value});
$x -> round(@r);
}
if (wantarray) {
$rem -> {sign} = $xsign;
$rem -> {sign} = '+' if $CALC -> _is_zero($rem -> {value});
$rem -> {_a} = $x -> {_a};
$rem -> {_p} = $x -> {_p};
$rem -> round(@r);
return ($x, $rem);
}
return $x;
}
sub bmod {
# This is the remainder after floored division.
# Set up parameters.
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x -> modify('bmod');
$r[3] = $y; # no push!
# At least one argument is NaN.
if ($x -> is_nan() || $y -> is_nan()) {
return $x -> bnan();
}
# Modulo zero. See documentation for bdiv().
if ($y -> is_zero()) {
return $x;
}
# Numerator (dividend) is +/-inf.
if ($x -> is_inf()) {
return $x -> bnan();
}
# Denominator (divisor) is +/-inf.
if ($y -> is_inf()) {
if ($x -> is_zero() || $x -> bcmp(0) == $y -> bcmp(0)) {
return $x;
} else {
return $x -> binf($y -> sign());
}
}
# Calc new sign and in case $y == +/- 1, return $x.
$x -> {value} = $CALC -> _mod($x -> {value}, $y -> {value});
if ($CALC -> _is_zero($x -> {value})) {
$x -> {sign} = '+'; # do not leave -0
} else {
$x -> {value} = $CALC -> _sub($y -> {value}, $x -> {value}, 1) # $y-$x
if ($x -> {sign} ne $y -> {sign});
$x -> {sign} = $y -> {sign};
}
$x -> round(@r);
}
sub btmod {
# Remainder after truncated division.
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x -> modify('btmod');
# At least one argument is NaN.
if ($x -> is_nan() || $y -> is_nan()) {
return $x -> bnan();
}
# Modulo zero. See documentation for btdiv().
if ($y -> is_zero()) {
return $x;
}
# Numerator (dividend) is +/-inf.
if ($x -> is_inf()) {
return $x -> bnan();
}
# Denominator (divisor) is +/-inf.
if ($y -> is_inf()) {
return $x;
}
return $upgrade -> btmod($upgrade -> new($x), $upgrade -> new($y), @r)
if defined $upgrade;
$r[3] = $y; # no push!
my $xsign = $x -> {sign};
my $ysign = $y -> {sign};
$x -> {value} = $CALC -> _mod($x -> {value}, $y -> {value});
$x -> {sign} = $xsign;
$x -> {sign} = '+' if $CALC -> _is_zero($x -> {value});
$x -> round(@r);
return $x;
}
sub bmodinv {
# Return modular multiplicative inverse:
#
# z is the modular inverse of x (mod y) if and only if
#
# x*z ≡ 1 (mod y)
#
# If the modulus y is larger than one, x and z are relative primes (i.e.,
# their greatest common divisor is one).
#
# If no modular multiplicative inverse exists, NaN is returned.
# set up parameters
my ($class, $x, $y, @r) = (undef, @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x->modify('bmodinv');
# Return NaN if one or both arguments is +inf, -inf, or nan.
return $x->bnan() if ($y->{sign} !~ /^[+-]$/ ||
$x->{sign} !~ /^[+-]$/);
# Return NaN if $y is zero; 1 % 0 makes no sense.
return $x->bnan() if $y->is_zero();
# Return 0 in the trivial case. $x % 1 or $x % -1 is zero for all finite
# integers $x.
return $x->bzero() if ($y->is_one() ||
$y->is_one('-'));
# Return NaN if $x = 0, or $x modulo $y is zero. The only valid case when
# $x = 0 is when $y = 1 or $y = -1, but that was covered above.
#
# Note that computing $x modulo $y here affects the value we'll feed to
# $CALC->_modinv() below when $x and $y have opposite signs. E.g., if $x =
# 5 and $y = 7, those two values are fed to _modinv(), but if $x = -5 and
# $y = 7, the values fed to _modinv() are $x = 2 (= -5 % 7) and $y = 7.
# The value if $x is affected only when $x and $y have opposite signs.
$x->bmod($y);
return $x->bnan() if $x->is_zero();
# Compute the modular multiplicative inverse of the absolute values. We'll
# correct for the signs of $x and $y later. Return NaN if no GCD is found.
($x->{value}, $x->{sign}) = $CALC->_modinv($x->{value}, $y->{value});
return $x->bnan() if !defined $x->{value};
# Library inconsistency workaround: _modinv() in Math::BigInt::GMP versions
# <= 1.32 return undef rather than a "+" for the sign.
$x->{sign} = '+' unless defined $x->{sign};
# When one or both arguments are negative, we have the following
# relations. If x and y are positive:
#
# modinv(-x, -y) = -modinv(x, y)
# modinv(-x, y) = y - modinv(x, y) = -modinv(x, y) (mod y)
# modinv( x, -y) = modinv(x, y) - y = modinv(x, y) (mod -y)
# We must swap the sign of the result if the original $x is negative.
# However, we must compensate for ignoring the signs when computing the
# inverse modulo. The net effect is that we must swap the sign of the
# result if $y is negative.
$x -> bneg() if $y->{sign} eq '-';
# Compute $x modulo $y again after correcting the sign.
$x -> bmod($y) if $x->{sign} ne $y->{sign};
return $x;
}
sub bmodpow {
# Modular exponentiation. Raises a very large number to a very large exponent
# in a given very large modulus quickly, thanks to binary exponentiation.
# Supports negative exponents.
my ($class, $num, $exp, $mod, @r) = objectify(3, @_);
return $num if $num->modify('bmodpow');
# When the exponent 'e' is negative, use the following relation, which is
# based on finding the multiplicative inverse 'd' of 'b' modulo 'm':
#
# b^(-e) (mod m) = d^e (mod m) where b*d = 1 (mod m)
$num->bmodinv($mod) if ($exp->{sign} eq '-');
# Check for valid input. All operands must be finite, and the modulus must be
# non-zero.
return $num->bnan() if ($num->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf
$exp->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf
$mod->{sign} =~ /NaN|inf/); # NaN, -inf, +inf
# Modulo zero. See documentation for Math::BigInt's bmod() method.
if ($mod -> is_zero()) {
if ($num -> is_zero()) {
return $class -> bnan();
} else {
return $num -> copy();
}
}
# Compute 'a (mod m)', ignoring the signs on 'a' and 'm'. If the resulting
# value is zero, the output is also zero, regardless of the signs on 'a' and
# 'm'.
my $value = $CALC->_modpow($num->{value}, $exp->{value}, $mod->{value});
my $sign = '+';
# If the resulting value is non-zero, we have four special cases, depending
# on the signs on 'a' and 'm'.
unless ($CALC->_is_zero($value)) {
# There is a negative sign on 'a' (= $num**$exp) only if the number we
# are exponentiating ($num) is negative and the exponent ($exp) is odd.
if ($num->{sign} eq '-' && $exp->is_odd()) {
# When both the number 'a' and the modulus 'm' have a negative sign,
# use this relation:
#
# -a (mod -m) = -(a (mod m))
if ($mod->{sign} eq '-') {
$sign = '-';
}
# When only the number 'a' has a negative sign, use this relation:
#
# -a (mod m) = m - (a (mod m))
else {
# Use copy of $mod since _sub() modifies the first argument.
my $mod = $CALC->_copy($mod->{value});
$value = $CALC->_sub($mod, $value);
$sign = '+';
}
} else {
# When only the modulus 'm' has a negative sign, use this relation:
#
# a (mod -m) = (a (mod m)) - m
# = -(m - (a (mod m)))
if ($mod->{sign} eq '-') {
# Use copy of $mod since _sub() modifies the first argument.
my $mod = $CALC->_copy($mod->{value});
$value = $CALC->_sub($mod, $value);
$sign = '-';
}
# When neither the number 'a' nor the modulus 'm' have a negative
# sign, directly return the already computed value.
#
# (a (mod m))
}
}
$num->{value} = $value;
$num->{sign} = $sign;
return $num;
}
sub bpow {
# (BINT or num_str, BINT or num_str) return BINT
# compute power of two numbers -- stolen from Knuth Vol 2 pg 233
# modifies first argument
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x->modify('bpow');
return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/)) {
if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/)) {
# +-inf ** +-inf
return $x->bnan();
}
# +-inf ** Y
if ($x->{sign} =~ /^[+-]inf/) {
# +inf ** 0 => NaN
return $x->bnan() if $y->is_zero();
# -inf ** -1 => 1/inf => 0
return $x->bzero() if $y->is_one('-') && $x->is_negative();
# +inf ** Y => inf
return $x if $x->{sign} eq '+inf';
# -inf ** Y => -inf if Y is odd
return $x if $y->is_odd();
return $x->babs();
}
# X ** +-inf
# 1 ** +inf => 1
return $x if $x->is_one();
# 0 ** inf => 0
return $x if $x->is_zero() && $y->{sign} =~ /^[+]/;
# 0 ** -inf => inf
return $x->binf() if $x->is_zero();
# -1 ** -inf => NaN
return $x->bnan() if $x->is_one('-') && $y->{sign} =~ /^[-]/;
# -X ** -inf => 0
return $x->bzero() if $x->{sign} eq '-' && $y->{sign} =~ /^[-]/;
# -1 ** inf => NaN
return $x->bnan() if $x->{sign} eq '-';
# X ** inf => inf
return $x->binf() if $y->{sign} =~ /^[+]/;
# X ** -inf => 0
return $x->bzero();
}
return $upgrade->bpow($upgrade->new($x), $y, @r)
if defined $upgrade && (!$y->isa($class) || $y->{sign} eq '-');
$r[3] = $y; # no push!
# cases 0 ** Y, X ** 0, X ** 1, 1 ** Y are handled by Calc or Emu
my $new_sign = '+';
$new_sign = $y->is_odd() ? '-' : '+' if ($x->{sign} ne '+');
# 0 ** -7 => ( 1 / (0 ** 7)) => 1 / 0 => +inf
return $x->binf()
if $y->{sign} eq '-' && $x->{sign} eq '+' && $CALC->_is_zero($x->{value});
# 1 ** -y => 1 / (1 ** |y|)
# so do test for negative $y after above's clause
return $x->bnan() if $y->{sign} eq '-' && !$CALC->_is_one($x->{value});
$x->{value} = $CALC->_pow($x->{value}, $y->{value});
$x->{sign} = $new_sign;
$x->{sign} = '+' if $CALC->_is_zero($y->{value});
$x->round(@r);
}
sub blog {
# Return the logarithm of the operand. If a second operand is defined, that
# value is used as the base, otherwise the base is assumed to be Euler's
# constant.
my ($class, $x, $base, @r);
# Don't objectify the base, since an undefined base, as in $x->blog() or
# $x->blog(undef) signals that the base is Euler's number.
if (!ref($_[0]) && $_[0] =~ /^[A-Za-z]|::/) {
# E.g., Math::BigInt->blog(256, 2)
($class, $x, $base, @r) =
defined $_[2] ? objectify(2, @_) : objectify(1, @_);
} else {
# E.g., Math::BigInt::blog(256, 2) or $x->blog(2)
($class, $x, $base, @r) =
defined $_[1] ? objectify(2, @_) : objectify(1, @_);
}
return $x if $x->modify('blog');
# Handle all exception cases and all trivial cases. I have used Wolfram
# Alpha (http://www.wolframalpha.com) as the reference for these cases.
return $x -> bnan() if $x -> is_nan();
if (defined $base) {
$base = $class -> new($base) unless ref $base;
if ($base -> is_nan() || $base -> is_one()) {
return $x -> bnan();
} elsif ($base -> is_inf() || $base -> is_zero()) {
return $x -> bnan() if $x -> is_inf() || $x -> is_zero();
return $x -> bzero();
} elsif ($base -> is_negative()) { # -inf < base < 0
return $x -> bzero() if $x -> is_one(); # x = 1
return $x -> bone() if $x == $base; # x = base
return $x -> bnan(); # otherwise
}
return $x -> bone() if $x == $base; # 0 < base && 0 < x < inf
}
# We now know that the base is either undefined or >= 2 and finite.
return $x -> binf('+') if $x -> is_inf(); # x = +/-inf
return $x -> bnan() if $x -> is_neg(); # -inf < x < 0
return $x -> bzero() if $x -> is_one(); # x = 1
return $x -> binf('-') if $x -> is_zero(); # x = 0
# At this point we are done handling all exception cases and trivial cases.
return $upgrade -> blog($upgrade -> new($x), $base, @r) if defined $upgrade;
# fix for bug #24969:
# the default base is e (Euler's number) which is not an integer
if (!defined $base) {
require Math::BigFloat;
my $u = Math::BigFloat->blog(Math::BigFloat->new($x))->as_int();
# modify $x in place
$x->{value} = $u->{value};
$x->{sign} = $u->{sign};
return $x;
}
my ($rc, $exact) = $CALC->_log_int($x->{value}, $base->{value});
return $x->bnan() unless defined $rc; # not possible to take log?
$x->{value} = $rc;
$x->round(@r);
}
sub bexp {
# Calculate e ** $x (Euler's number to the power of X), truncated to
# an integer value.
my ($class, $x, @r) = ref($_[0]) ? (ref($_[0]), @_) : objectify(1, @_);
return $x if $x->modify('bexp');
# inf, -inf, NaN, <0 => NaN
return $x->bnan() if $x->{sign} eq 'NaN';
return $x->bone() if $x->is_zero();
return $x if $x->{sign} eq '+inf';
return $x->bzero() if $x->{sign} eq '-inf';
my $u;
{
# run through Math::BigFloat unless told otherwise
require Math::BigFloat unless defined $upgrade;
local $upgrade = 'Math::BigFloat' unless defined $upgrade;
# calculate result, truncate it to integer
$u = $upgrade->bexp($upgrade->new($x), @r);
}
if (defined $upgrade) {
$x = $u;
} else {
$u = $u->as_int();
# modify $x in place
$x->{value} = $u->{value};
$x->round(@r);
}
}
sub bnok {
# Calculate n over k (binomial coefficient or "choose" function) as integer.
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x->modify('bnok');
return $x->bnan() if $x->{sign} eq 'NaN' || $y->{sign} eq 'NaN';
return $x->binf() if $x->{sign} eq '+inf';
# k > n or k < 0 => 0
my $cmp = $x->bacmp($y);
return $x->bzero() if $cmp < 0 || substr($y->{sign}, 0, 1) eq "-";
if ($CALC->can('_nok')) {
$x->{value} = $CALC->_nok($x->{value}, $y->{value});
} else {
# ( 7 ) 7! 1*2*3*4 * 5*6*7 5 * 6 * 7 6 7
# ( - ) = --------- = --------------- = --------- = 5 * - * -
# ( 3 ) (7-3)! 3! 1*2*3*4 * 1*2*3 1 * 2 * 3 2 3
my $n = $x -> {value};
my $k = $y -> {value};
# If k > n/2, or, equivalently, 2*k > n, compute nok(n, k) as
# nok(n, n-k) to minimize the number if iterations in the loop.
{
my $twok = $CALC->_mul($CALC->_two(), $CALC->_copy($k));
if ($CALC->_acmp($twok, $n) > 0) {
$k = $CALC->_sub($CALC->_copy($n), $k);
}
}
if ($CALC->_is_zero($k)) {
$n = $CALC->_one();
} else {
# Make a copy of the original n, since we'll be modifying n
# in-place.
my $n_orig = $CALC->_copy($n);
$CALC->_sub($n, $k);
$CALC->_inc($n);
my $f = $CALC->_copy($n);
$CALC->_inc($f);
my $d = $CALC->_two();
# while f <= n (the original n, that is) ...
while ($CALC->_acmp($f, $n_orig) <= 0) {
$CALC->_mul($n, $f);
$CALC->_div($n, $d);
$CALC->_inc($f);
$CALC->_inc($d);
}
}
$x -> {value} = $n;
}
$x->round(@r);
}
sub bsin {
# Calculate sinus(x) to N digits. Unless upgrading is in effect, returns the
# result truncated to an integer.
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
return $x if $x->modify('bsin');
return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN
return $upgrade->new($x)->bsin(@r) if defined $upgrade;
require Math::BigFloat;
# calculate the result and truncate it to integer
my $t = Math::BigFloat->new($x)->bsin(@r)->as_int();
$x->bone() if $t->is_one();
$x->bzero() if $t->is_zero();
$x->round(@r);
}
sub bcos {
# Calculate cosinus(x) to N digits. Unless upgrading is in effect, returns the
# result truncated to an integer.
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
return $x if $x->modify('bcos');
return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN
return $upgrade->new($x)->bcos(@r) if defined $upgrade;
require Math::BigFloat;
# calculate the result and truncate it to integer
my $t = Math::BigFloat->new($x)->bcos(@r)->as_int();
$x->bone() if $t->is_one();
$x->bzero() if $t->is_zero();
$x->round(@r);
}
sub batan {
# Calculate arcus tangens of x to N digits. Unless upgrading is in effect, returns the
# result truncated to an integer.
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
return $x if $x->modify('batan');
return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN
return $upgrade->new($x)->batan(@r) if defined $upgrade;
# calculate the result and truncate it to integer
my $t = Math::BigFloat->new($x)->batan(@r);
$x->{value} = $CALC->_new($x->as_int()->bstr());
$x->round(@r);
}
sub batan2 {
# calculate arcus tangens of ($y/$x)
# set up parameters
my ($class, $y, $x, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $y, $x, @r) = objectify(2, @_);
}
return $y if $y->modify('batan2');
return $y->bnan() if ($y->{sign} eq $nan) || ($x->{sign} eq $nan);
# Y X
# != 0 -inf result is +- pi
if ($x->is_inf() || $y->is_inf()) {
# upgrade to Math::BigFloat etc.
return $upgrade->new($y)->batan2($upgrade->new($x), @r) if defined $upgrade;
if ($y->is_inf()) {
if ($x->{sign} eq '-inf') {
# calculate 3 pi/4 => 2.3.. => 2
$y->bone(substr($y->{sign}, 0, 1));
$y->bmul($class->new(2));
} elsif ($x->{sign} eq '+inf') {
# calculate pi/4 => 0.7 => 0
$y->bzero();
} else {
# calculate pi/2 => 1.5 => 1
$y->bone(substr($y->{sign}, 0, 1));
}
} else {
if ($x->{sign} eq '+inf') {
# calculate pi/4 => 0.7 => 0
$y->bzero();
} else {
# PI => 3.1415.. => 3
$y->bone(substr($y->{sign}, 0, 1));
$y->bmul($class->new(3));
}
}
return $y;
}
return $upgrade->new($y)->batan2($upgrade->new($x), @r) if defined $upgrade;
require Math::BigFloat;
my $r = Math::BigFloat->new($y)
->batan2(Math::BigFloat->new($x), @r)
->as_int();
$x->{value} = $r->{value};
$x->{sign} = $r->{sign};
$x;
}
sub bsqrt {
# calculate square root of $x
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
return $x if $x->modify('bsqrt');
return $x->bnan() if $x->{sign} !~ /^\+/; # -x or -inf or NaN => NaN
return $x if $x->{sign} eq '+inf'; # sqrt(+inf) == inf
return $upgrade->bsqrt($x, @r) if defined $upgrade;
$x->{value} = $CALC->_sqrt($x->{value});
$x->round(@r);
}
sub broot {
# calculate $y'th root of $x
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
$y = $class->new(2) unless defined $y;
# objectify is costly, so avoid it
if ((!ref($x)) || (ref($x) ne ref($y))) {
($class, $x, $y, @r) = objectify(2, $class || $class, @_);
}
return $x if $x->modify('broot');
# NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0
return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() ||
$y->{sign} !~ /^\+$/;
return $x->round(@r)
if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one();
return $upgrade->new($x)->broot($upgrade->new($y), @r) if defined $upgrade;
$x->{value} = $CALC->_root($x->{value}, $y->{value});
$x->round(@r);
}
sub bfac {
# (BINT or num_str, BINT or num_str) return BINT
# compute factorial number from $x, modify $x in place
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
return $x if $x->modify('bfac') || $x->{sign} eq '+inf'; # inf => inf
return $x->bnan() if $x->{sign} ne '+'; # NaN, <0 etc => NaN
$x->{value} = $CALC->_fac($x->{value});
$x->round(@r);
}
sub bdfac {
# compute double factorial, modify $x in place
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
return $x if $x->modify('bdfac') || $x->{sign} eq '+inf'; # inf => inf
return $x->bnan() if $x->{sign} ne '+'; # NaN, <0 etc => NaN
Carp::croak("bdfac() requires a newer version of the $CALC library.")
unless $CALC->can('_dfac');
$x->{value} = $CALC->_dfac($x->{value});
$x->round(@r);
}
sub bfib {
# compute Fibonacci number(s)
my ($class, $x, @r) = objectify(1, @_);
Carp::croak("bfib() requires a newer version of the $CALC library.")
unless $CALC->can('_fib');
return $x if $x->modify('bfib');
# List context.
if (wantarray) {
return () if $x -> is_nan();
Carp::croak("bfib() can't return an infinitely long list of numbers")
if $x -> is_inf();
# Use the backend library to compute the first $x Fibonacci numbers.
my @values = $CALC->_fib($x->{value});
# Make objects out of them. The last element in the array is the
# invocand.
for (my $i = 0 ; $i < $#values ; ++ $i) {
my $fib = $class -> bzero();
$fib -> {value} = $values[$i];
$values[$i] = $fib;
}
$x -> {value} = $values[-1];
$values[-1] = $x;
# If negative, insert sign as appropriate.
if ($x -> is_neg()) {
for (my $i = 2 ; $i <= $#values ; $i += 2) {
$values[$i]{sign} = '-';
}
}
@values = map { $_ -> round(@r) } @values;
return @values;
}
# Scalar context.
else {
return $x if $x->modify('bdfac') || $x -> is_inf('+');
return $x->bnan() if $x -> is_nan() || $x -> is_inf('-');
$x->{sign} = $x -> is_neg() && $x -> is_even() ? '-' : '+';
$x->{value} = $CALC->_fib($x->{value});
return $x->round(@r);
}
}
sub blucas {
# compute Lucas number(s)
my ($class, $x, @r) = objectify(1, @_);
Carp::croak("blucas() requires a newer version of the $CALC library.")
unless $CALC->can('_lucas');
return $x if $x->modify('blucas');
# List context.
if (wantarray) {
return () if $x -> is_nan();
Carp::croak("blucas() can't return an infinitely long list of numbers")
if $x -> is_inf();
# Use the backend library to compute the first $x Lucas numbers.
my @values = $CALC->_lucas($x->{value});
# Make objects out of them. The last element in the array is the
# invocand.
for (my $i = 0 ; $i < $#values ; ++ $i) {
my $lucas = $class -> bzero();
$lucas -> {value} = $values[$i];
$values[$i] = $lucas;
}
$x -> {value} = $values[-1];
$values[-1] = $x;
# If negative, insert sign as appropriate.
if ($x -> is_neg()) {
for (my $i = 2 ; $i <= $#values ; $i += 2) {
$values[$i]{sign} = '-';
}
}
@values = map { $_ -> round(@r) } @values;
return @values;
}
# Scalar context.
else {
return $x if $x -> is_inf('+');
return $x->bnan() if $x -> is_nan() || $x -> is_inf('-');
$x->{sign} = $x -> is_neg() && $x -> is_even() ? '-' : '+';
$x->{value} = $CALC->_lucas($x->{value});
return $x->round(@r);
}
}
sub blsft {
# (BINT or num_str, BINT or num_str) return BINT
# compute x << y, base n, y >= 0
# set up parameters
my ($class, $x, $y, $b, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, $b, @r) = objectify(2, @_);
}
return $x if $x -> modify('blsft');
return $x -> bnan() if ($x -> {sign} !~ /^[+-]$/ ||
$y -> {sign} !~ /^[+-]$/);
return $x -> round(@r) if $y -> is_zero();
$b = 2 if !defined $b;
return $x -> bnan() if $b <= 0 || $y -> {sign} eq '-';
$x -> {value} = $CALC -> _lsft($x -> {value}, $y -> {value}, $b);
$x -> round(@r);
}
sub brsft {
# (BINT or num_str, BINT or num_str) return BINT
# compute x >> y, base n, y >= 0
# set up parameters
my ($class, $x, $y, $b, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, $b, @r) = objectify(2, @_);
}
return $x if $x -> modify('brsft');
return $x -> bnan() if ($x -> {sign} !~ /^[+-]$/ || $y -> {sign} !~ /^[+-]$/);
return $x -> round(@r) if $y -> is_zero();
return $x -> bzero(@r) if $x -> is_zero(); # 0 => 0
$b = 2 if !defined $b;
return $x -> bnan() if $b <= 0 || $y -> {sign} eq '-';
# this only works for negative numbers when shifting in base 2
if (($x -> {sign} eq '-') && ($b == 2)) {
return $x -> round(@r) if $x -> is_one('-'); # -1 => -1
if (!$y -> is_one()) {
# although this is O(N*N) in calc (as_bin!) it is O(N) in Pari et
# al but perhaps there is a better emulation for two's complement
# shift...
# if $y != 1, we must simulate it by doing:
# convert to bin, flip all bits, shift, and be done
$x -> binc(); # -3 => -2
my $bin = $x -> as_bin();
$bin =~ s/^-0b//; # strip '-0b' prefix
$bin =~ tr/10/01/; # flip bits
# now shift
if ($y >= CORE::length($bin)) {
$bin = '0'; # shifting to far right creates -1
# 0, because later increment makes
# that 1, attached '-' makes it '-1'
# because -1 >> x == -1 !
} else {
$bin =~ s/.{$y}$//; # cut off at the right side
$bin = '1' . $bin; # extend left side by one dummy '1'
$bin =~ tr/10/01/; # flip bits back
}
my $res = $class -> new('0b' . $bin); # add prefix and convert back
$res -> binc(); # remember to increment
$x -> {value} = $res -> {value}; # take over value
return $x -> round(@r); # we are done now, magic, isn't?
}
# x < 0, n == 2, y == 1
$x -> bdec(); # n == 2, but $y == 1: this fixes it
}
$x -> {value} = $CALC -> _rsft($x -> {value}, $y -> {value}, $b);
$x -> round(@r);
}
###############################################################################
# Bitwise methods
###############################################################################
sub band {
#(BINT or num_str, BINT or num_str) return BINT
# compute x & y
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x->modify('band');
$r[3] = $y; # no push!
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
my $sx = $x->{sign} eq '+' ? 1 : -1;
my $sy = $y->{sign} eq '+' ? 1 : -1;
if ($sx == 1 && $sy == 1) {
$x->{value} = $CALC->_and($x->{value}, $y->{value});
return $x->round(@r);
}
if ($CAN{signed_and}) {
$x->{value} = $CALC->_signed_and($x->{value}, $y->{value}, $sx, $sy);
return $x->round(@r);
}
require $EMU_LIB;
__emu_band($class, $x, $y, $sx, $sy, @r);
}
sub bior {
#(BINT or num_str, BINT or num_str) return BINT
# compute x | y
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x->modify('bior');
$r[3] = $y; # no push!
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
my $sx = $x->{sign} eq '+' ? 1 : -1;
my $sy = $y->{sign} eq '+' ? 1 : -1;
# the sign of X follows the sign of X, e.g. sign of Y irrelevant for bior()
# don't use lib for negative values
if ($sx == 1 && $sy == 1) {
$x->{value} = $CALC->_or($x->{value}, $y->{value});
return $x->round(@r);
}
# if lib can do negative values, let it handle this
if ($CAN{signed_or}) {
$x->{value} = $CALC->_signed_or($x->{value}, $y->{value}, $sx, $sy);
return $x->round(@r);
}
require $EMU_LIB;
__emu_bior($class, $x, $y, $sx, $sy, @r);
}
sub bxor {
#(BINT or num_str, BINT or num_str) return BINT
# compute x ^ y
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x->modify('bxor');
$r[3] = $y; # no push!
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
my $sx = $x->{sign} eq '+' ? 1 : -1;
my $sy = $y->{sign} eq '+' ? 1 : -1;
# don't use lib for negative values
if ($sx == 1 && $sy == 1) {
$x->{value} = $CALC->_xor($x->{value}, $y->{value});
return $x->round(@r);
}
# if lib can do negative values, let it handle this
if ($CAN{signed_xor}) {
$x->{value} = $CALC->_signed_xor($x->{value}, $y->{value}, $sx, $sy);
return $x->round(@r);
}
require $EMU_LIB;
__emu_bxor($class, $x, $y, $sx, $sy, @r);
}
sub bnot {
# (num_str or BINT) return BINT
# represent ~x as twos-complement number
# we don't need $class, so undef instead of ref($_[0]) make it slightly faster
my ($class, $x, $a, $p, $r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
return $x if $x->modify('bnot');
$x->binc()->bneg(); # binc already does round
}
###############################################################################
# Rounding methods
###############################################################################
sub round {
# Round $self according to given parameters, or given second argument's
# parameters or global defaults
# for speed reasons, _find_round_parameters is embedded here:
my ($self, $a, $p, $r, @args) = @_;
# $a accuracy, if given by caller
# $p precision, if given by caller
# $r round_mode, if given by caller
# @args all 'other' arguments (0 for unary, 1 for binary ops)
my $class = ref($self); # find out class of argument(s)
no strict 'refs';
# now pick $a or $p, but only if we have got "arguments"
if (!defined $a) {
foreach ($self, @args) {
# take the defined one, or if both defined, the one that is smaller
$a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
}
}
if (!defined $p) {
# even if $a is defined, take $p, to signal error for both defined
foreach ($self, @args) {
# take the defined one, or if both defined, the one that is bigger
# -2 > -3, and 3 > 2
$p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
}
}
# if still none defined, use globals (#2)
$a = ${"$class\::accuracy"} unless defined $a;
$p = ${"$class\::precision"} unless defined $p;
# A == 0 is useless, so undef it to signal no rounding
$a = undef if defined $a && $a == 0;
# no rounding today?
return $self unless defined $a || defined $p; # early out
# set A and set P is an fatal error
return $self->bnan() if defined $a && defined $p;
$r = ${"$class\::round_mode"} unless defined $r;
if ($r !~ /^(even|odd|[+-]inf|zero|trunc|common)$/) {
Carp::croak("Unknown round mode '$r'");
}
# now round, by calling either bround or bfround:
if (defined $a) {
$self->bround(int($a), $r) if !defined $self->{_a} || $self->{_a} >= $a;
} else { # both can't be undefined due to early out
$self->bfround(int($p), $r) if !defined $self->{_p} || $self->{_p} <= $p;
}
# bround() or bfround() already called bnorm() if nec.
$self;
}
sub bround {
# accuracy: +$n preserve $n digits from left,
# -$n preserve $n digits from right (f.i. for 0.1234 style in MBF)
# no-op for $n == 0
# and overwrite the rest with 0's, return normalized number
# do not return $x->bnorm(), but $x
my $x = shift;
$x = $class->new($x) unless ref $x;
my ($scale, $mode) = $x->_scale_a(@_);
return $x if !defined $scale || $x->modify('bround'); # no-op
if ($x->is_zero() || $scale == 0) {
$x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
return $x;
}
return $x if $x->{sign} !~ /^[+-]$/; # inf, NaN
# we have fewer digits than we want to scale to
my $len = $x->length();
# convert $scale to a scalar in case it is an object (put's a limit on the
# number length, but this would already limited by memory constraints), makes
# it faster
$scale = $scale->numify() if ref ($scale);
# scale < 0, but > -len (not >=!)
if (($scale < 0 && $scale < -$len-1) || ($scale >= $len)) {
$x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
return $x;
}
# count of 0's to pad, from left (+) or right (-): 9 - +6 => 3, or |-6| => 6
my ($pad, $digit_round, $digit_after);
$pad = $len - $scale;
$pad = abs($scale-1) if $scale < 0;
# do not use digit(), it is very costly for binary => decimal
# getting the entire string is also costly, but we need to do it only once
my $xs = $CALC->_str($x->{value});
my $pl = -$pad-1;
# pad: 123: 0 => -1, at 1 => -2, at 2 => -3, at 3 => -4
# pad+1: 123: 0 => 0, at 1 => -1, at 2 => -2, at 3 => -3
$digit_round = '0';
$digit_round = substr($xs, $pl, 1) if $pad <= $len;
$pl++;
$pl ++ if $pad >= $len;
$digit_after = '0';
$digit_after = substr($xs, $pl, 1) if $pad > 0;
# in case of 01234 we round down, for 6789 up, and only in case 5 we look
# closer at the remaining digits of the original $x, remember decision
my $round_up = 1; # default round up
$round_up -- if
($mode eq 'trunc') || # trunc by round down
($digit_after =~ /[01234]/) || # round down anyway,
# 6789 => round up
($digit_after eq '5') && # not 5000...0000
($x->_scan_for_nonzero($pad, $xs, $len) == 0) &&
(
($mode eq 'even') && ($digit_round =~ /[24680]/) ||
($mode eq 'odd') && ($digit_round =~ /[13579]/) ||
($mode eq '+inf') && ($x->{sign} eq '-') ||
($mode eq '-inf') && ($x->{sign} eq '+') ||
($mode eq 'zero') # round down if zero, sign adjusted below
);
my $put_back = 0; # not yet modified
if (($pad > 0) && ($pad <= $len)) {
substr($xs, -$pad, $pad) = '0' x $pad; # replace with '00...'
$put_back = 1; # need to put back
} elsif ($pad > $len) {
$x->bzero(); # round to '0'
}
if ($round_up) { # what gave test above?
$put_back = 1; # need to put back
$pad = $len, $xs = '0' x $pad if $scale < 0; # tlr: whack 0.51=>1.0
# we modify directly the string variant instead of creating a number and
# adding it, since that is faster (we already have the string)
my $c = 0;
$pad ++; # for $pad == $len case
while ($pad <= $len) {
$c = substr($xs, -$pad, 1) + 1;
$c = '0' if $c eq '10';
substr($xs, -$pad, 1) = $c;
$pad++;
last if $c != 0; # no overflow => early out
}
$xs = '1'.$xs if $c == 0;
}
$x->{value} = $CALC->_new($xs) if $put_back == 1; # put back, if needed
$x->{_a} = $scale if $scale >= 0;
if ($scale < 0) {
$x->{_a} = $len+$scale;
$x->{_a} = 0 if $scale < -$len;
}
$x;
}
sub bfround {
# precision: round to the $Nth digit left (+$n) or right (-$n) from the '.'
# $n == 0 || $n == 1 => round to integer
my $x = shift;
my $class = ref($x) || $x;
$x = $class->new($x) unless ref $x;
my ($scale, $mode) = $x->_scale_p(@_);
return $x if !defined $scale || $x->modify('bfround'); # no-op
# no-op for Math::BigInt objects if $n <= 0
$x->bround($x->length()-$scale, $mode) if $scale > 0;
delete $x->{_a}; # delete to save memory
$x->{_p} = $scale; # store new _p
$x;
}
sub fround {
# Exists to make life easier for switch between MBF and MBI (should we
# autoload fxxx() like MBF does for bxxx()?)
my $x = shift;
$x = $class->new($x) unless ref $x;
$x->bround(@_);
}
sub bfloor {
# round towards minus infinity; no-op since it's already integer
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
$x->round(@r);
}
sub bceil {
# round towards plus infinity; no-op since it's already int
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
$x->round(@r);
}
sub bint {
# round towards zero; no-op since it's already integer
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
$x->round(@r);
}
###############################################################################
# Other mathematical methods
###############################################################################
sub bgcd {
# (BINT or num_str, BINT or num_str) return BINT
# does not modify arguments, but returns new object
# GCD -- Euclid's algorithm, variant C (Knuth Vol 3, pg 341 ff)
my ($class, @args) = objectify(0, @_);
my $x = shift @args;
$x = ref($x) && $x -> isa($class) ? $x -> copy() : $class -> new($x);
return $class->bnan() if $x->{sign} !~ /^[+-]$/; # x NaN?
while (@args) {
my $y = shift @args;
$y = $class->new($y) unless ref($y) && $y -> isa($class);
return $class->bnan() if $y->{sign} !~ /^[+-]$/; # y NaN?
$x->{value} = $CALC->_gcd($x->{value}, $y->{value});
last if $CALC->_is_one($x->{value});
}
return $x -> babs();
}
sub blcm {
# (BINT or num_str, BINT or num_str) return BINT
# does not modify arguments, but returns new object
# Least Common Multiple
my ($class, @args) = objectify(0, @_);
my $x = shift @args;
$x = ref($x) && $x -> isa($class) ? $x -> copy() : $class -> new($x);
return $class->bnan() if $x->{sign} !~ /^[+-]$/; # x NaN?
while (@args) {
my $y = shift @args;
$y = $class -> new($y) unless ref($y) && $y -> isa($class);
return $x->bnan() if $y->{sign} !~ /^[+-]$/; # y not integer
$x -> {value} = $CALC->_lcm($x -> {value}, $y -> {value});
}
return $x -> babs();
}
###############################################################################
# Object property methods
###############################################################################
sub sign {
# return the sign of the number: +/-/-inf/+inf/NaN
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
$x->{sign};
}
sub digit {
# return the nth decimal digit, negative values count backward, 0 is right
my ($class, $x, $n) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
$n = $n->numify() if ref($n);
$CALC->_digit($x->{value}, $n || 0);
}
sub length {
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
my $e = $CALC->_len($x->{value});
wantarray ? ($e, 0) : $e;
}
sub exponent {
# return a copy of the exponent (here always 0, NaN or 1 for $m == 0)
my ($class, $x) = ref($_[0]) ? (ref($_[0]), $_[0]) : objectify(1, @_);
if ($x->{sign} !~ /^[+-]$/) {
my $s = $x->{sign};
$s =~ s/^[+-]//; # NaN, -inf, +inf => NaN or inf
return $class->new($s);
}
return $class->bzero() if $x->is_zero();
# 12300 => 2 trailing zeros => exponent is 2
$class->new($CALC->_zeros($x->{value}));
}
sub mantissa {
# return the mantissa (compatible to Math::BigFloat, e.g. reduced)
my ($class, $x) = ref($_[0]) ? (ref($_[0]), $_[0]) : objectify(1, @_);
if ($x->{sign} !~ /^[+-]$/) {
# for NaN, +inf, -inf: keep the sign
return $class->new($x->{sign});
}
my $m = $x->copy();
delete $m->{_p};
delete $m->{_a};
# that's a bit inefficient:
my $zeros = $CALC->_zeros($m->{value});
$m->brsft($zeros, 10) if $zeros != 0;
$m;
}
sub parts {
# return a copy of both the exponent and the mantissa
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
($x->mantissa(), $x->exponent());
}
sub sparts {
my $self = shift;
my $class = ref $self;
Carp::croak("sparts() is an instance method, not a class method")
unless $class;
# Not-a-number.
if ($self -> is_nan()) {
my $mant = $self -> copy(); # mantissa
return $mant unless wantarray; # scalar context
my $expo = $class -> bnan(); # exponent
return ($mant, $expo); # list context
}
# Infinity.
if ($self -> is_inf()) {
my $mant = $self -> copy(); # mantissa
return $mant unless wantarray; # scalar context
my $expo = $class -> binf('+'); # exponent
return ($mant, $expo); # list context
}
# Finite number.
my $mant = $self -> copy();
my $nzeros = $CALC -> _zeros($mant -> {value});
$mant -> brsft($nzeros, 10) if $nzeros != 0;
return $mant unless wantarray;
my $expo = $class -> new($nzeros);
return ($mant, $expo);
}
sub nparts {
my $self = shift;
my $class = ref $self;
Carp::croak("nparts() is an instance method, not a class method")
unless $class;
# Not-a-number.
if ($self -> is_nan()) {
my $mant = $self -> copy(); # mantissa
return $mant unless wantarray; # scalar context
my $expo = $class -> bnan(); # exponent
return ($mant, $expo); # list context
}
# Infinity.
if ($self -> is_inf()) {
my $mant = $self -> copy(); # mantissa
return $mant unless wantarray; # scalar context
my $expo = $class -> binf('+'); # exponent
return ($mant, $expo); # list context
}
# Finite number.
my ($mant, $expo) = $self -> sparts();
if ($mant -> bcmp(0)) {
my ($ndigtot, $ndigfrac) = $mant -> length();
my $expo10adj = $ndigtot - $ndigfrac - 1;
if ($expo10adj != 0) {
return $upgrade -> new($self) -> nparts() if $upgrade;
$mant -> bnan();
return $mant unless wantarray;
$expo -> badd($expo10adj);
return ($mant, $expo);
}
}
return $mant unless wantarray;
return ($mant, $expo);
}
sub eparts {
my $self = shift;
my $class = ref $self;
Carp::croak("eparts() is an instance method, not a class method")
unless $class;
# Not-a-number and Infinity.
return $self -> sparts() if $self -> is_nan() || $self -> is_inf();
# Finite number.
my ($mant, $expo) = $self -> sparts();
if ($mant -> bcmp(0)) {
my $ndigmant = $mant -> length();
$expo -> badd($ndigmant);
# $c is the number of digits that will be in the integer part of the
# final mantissa.
my $c = $expo -> copy() -> bdec() -> bmod(3) -> binc();
$expo -> bsub($c);
if ($ndigmant > $c) {
return $upgrade -> new($self) -> eparts() if $upgrade;
$mant -> bnan();
return $mant unless wantarray;
return ($mant, $expo);
}
$mant -> blsft($c - $ndigmant, 10);
}
return $mant unless wantarray;
return ($mant, $expo);
}
sub dparts {
my $self = shift;
my $class = ref $self;
Carp::croak("dparts() is an instance method, not a class method")
unless $class;
my $int = $self -> copy();
return $int unless wantarray;
my $frc = $class -> bzero();
return ($int, $frc);
}
###############################################################################
# String conversion methods
###############################################################################
sub bstr {
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
if ($x->{sign} ne '+' && $x->{sign} ne '-') {
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
my $str = $CALC->_str($x->{value});
return $x->{sign} eq '-' ? "-$str" : $str;
}
# Scientific notation with significand/mantissa as an integer, e.g., "12345" is
# written as "1.2345e+4".
sub bsstr {
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
if ($x->{sign} ne '+' && $x->{sign} ne '-') {
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
my ($m, $e) = $x -> parts();
my $str = $CALC->_str($m->{value}) . 'e+' . $CALC->_str($e->{value});
return $x->{sign} eq '-' ? "-$str" : $str;
}
# Normalized notation, e.g., "12345" is written as "12345e+0".
sub bnstr {
my $x = shift;
if ($x->{sign} ne '+' && $x->{sign} ne '-') {
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
return $x -> bstr() if $x -> is_nan() || $x -> is_inf();
my ($mant, $expo) = $x -> parts();
# The "fraction posision" is the position (offset) for the decimal point
# relative to the end of the digit string.
my $fracpos = $mant -> length() - 1;
if ($fracpos == 0) {
my $str = $CALC->_str($mant->{value}) . "e+" . $CALC->_str($expo->{value});
return $x->{sign} eq '-' ? "-$str" : $str;
}
$expo += $fracpos;
my $mantstr = $CALC->_str($mant -> {value});
substr($mantstr, -$fracpos, 0) = '.';
my $str = $mantstr . 'e+' . $CALC->_str($expo -> {value});
return $x->{sign} eq '-' ? "-$str" : $str;
}
# Engineering notation, e.g., "12345" is written as "12.345e+3".
sub bestr {
my $x = shift;
if ($x->{sign} ne '+' && $x->{sign} ne '-') {
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
my ($mant, $expo) = $x -> parts();
my $sign = $mant -> sign();
$mant -> babs();
my $mantstr = $CALC->_str($mant -> {value});
my $mantlen = CORE::length($mantstr);
my $dotidx = 1;
$expo += $mantlen - 1;
my $c = $expo -> copy() -> bmod(3);
$expo -= $c;
$dotidx += $c;
if ($mantlen < $dotidx) {
$mantstr .= "0" x ($dotidx - $mantlen);
} elsif ($mantlen > $dotidx) {
substr($mantstr, $dotidx, 0) = ".";
}
my $str = $mantstr . 'e+' . $CALC->_str($expo -> {value});
return $sign eq "-" ? "-$str" : $str;
}
# Decimal notation, e.g., "12345".
sub bdstr {
my $x = shift;
if ($x->{sign} ne '+' && $x->{sign} ne '-') {
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
my $str = $CALC->_str($x->{value});
return $x->{sign} eq '-' ? "-$str" : $str;
}
sub to_hex {
# return as hex string, with prefixed 0x
my $x = shift;
$x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $hex = $CALC->_to_hex($x->{value});
return $x->{sign} eq '-' ? "-$hex" : $hex;
}
sub to_oct {
# return as octal string, with prefixed 0
my $x = shift;
$x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $oct = $CALC->_to_oct($x->{value});
return $x->{sign} eq '-' ? "-$oct" : $oct;
}
sub to_bin {
# return as binary string, with prefixed 0b
my $x = shift;
$x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $bin = $CALC->_to_bin($x->{value});
return $x->{sign} eq '-' ? "-$bin" : $bin;
}
sub to_bytes {
# return a byte string
my $x = shift;
$x = $class->new($x) if !ref($x);
Carp::croak("to_bytes() requires a finite, non-negative integer")
if $x -> is_neg() || ! $x -> is_int();
Carp::croak("to_bytes() requires a newer version of the $CALC library.")
unless $CALC->can('_to_bytes');
return $CALC->_to_bytes($x->{value});
}
sub as_hex {
# return as hex string, with prefixed 0x
my $x = shift;
$x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $hex = $CALC->_as_hex($x->{value});
return $x->{sign} eq '-' ? "-$hex" : $hex;
}
sub as_oct {
# return as octal string, with prefixed 0
my $x = shift;
$x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $oct = $CALC->_as_oct($x->{value});
return $x->{sign} eq '-' ? "-$oct" : $oct;
}
sub as_bin {
# return as binary string, with prefixed 0b
my $x = shift;
$x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $bin = $CALC->_as_bin($x->{value});
return $x->{sign} eq '-' ? "-$bin" : $bin;
}
*as_bytes = \&to_bytes;
###############################################################################
# Other conversion methods
###############################################################################
sub numify {
# Make a Perl scalar number from a Math::BigInt object.
my $x = shift;
$x = $class->new($x) unless ref $x;
if ($x -> is_nan()) {
require Math::Complex;
my $inf = Math::Complex::Inf();
return $inf - $inf;
}
if ($x -> is_inf()) {
require Math::Complex;
my $inf = Math::Complex::Inf();
return $x -> is_negative() ? -$inf : $inf;
}
my $num = 0 + $CALC->_num($x->{value});
return $x->{sign} eq '-' ? -$num : $num;
}
###############################################################################
# Private methods and functions.
###############################################################################
sub objectify {
# Convert strings and "foreign objects" to the objects we want.
# The first argument, $count, is the number of following arguments that
# objectify() looks at and converts to objects. The first is a classname.
# If the given count is 0, all arguments will be used.
# After the count is read, objectify obtains the name of the class to which
# the following arguments are converted. If the second argument is a
# reference, use the reference type as the class name. Otherwise, if it is
# a string that looks like a class name, use that. Otherwise, use $class.
# Caller: Gives us:
#
# $x->badd(1); => ref x, scalar y
# Class->badd(1, 2); => classname x (scalar), scalar x, scalar y
# Class->badd(Class->(1), 2); => classname x (scalar), ref x, scalar y
# Math::BigInt::badd(1, 2); => scalar x, scalar y
# A shortcut for the common case $x->unary_op(), in which case the argument
# list is (0, $x) or (1, $x).
return (ref($_[1]), $_[1]) if @_ == 2 && ($_[0] || 0) == 1 && ref($_[1]);
# Check the context.
unless (wantarray) {
Carp::croak("${class}::objectify() needs list context");
}
# Get the number of arguments to objectify.
my $count = shift;
# Initialize the output array.
my @a = @_;
# If the first argument is a reference, use that reference type as our
# class name. Otherwise, if the first argument looks like a class name,
# then use that as our class name. Otherwise, use the default class name.
my $class;
if (ref($a[0])) { # reference?
$class = ref($a[0]);
} elsif ($a[0] =~ /^[A-Z].*::/) { # string with class name?
$class = shift @a;
} else {
$class = __PACKAGE__; # default class name
}
$count ||= @a;
unshift @a, $class;
no strict 'refs';
# What we upgrade to, if anything.
my $up = ${"$a[0]::upgrade"};
# Disable downgrading, because Math::BigFloat -> foo('1.0', '2.0') needs
# floats.
my $down;
if (defined ${"$a[0]::downgrade"}) {
$down = ${"$a[0]::downgrade"};
${"$a[0]::downgrade"} = undef;
}
for my $i (1 .. $count) {
my $ref = ref $a[$i];
# Perl scalars are fed to the appropriate constructor.
unless ($ref) {
$a[$i] = $a[0] -> new($a[$i]);
next;
}
# If it is an object of the right class, all is fine.
next if $ref -> isa($a[0]);
# Upgrading is OK, so skip further tests if the argument is upgraded.
if (defined $up && $ref -> isa($up)) {
next;
}
# See if we can call one of the as_xxx() methods. We don't know whether
# the as_xxx() method returns an object or a scalar, so re-check
# afterwards.
my $recheck = 0;
if ($a[0] -> isa('Math::BigInt')) {
if ($a[$i] -> can('as_int')) {
$a[$i] = $a[$i] -> as_int();
$recheck = 1;
} elsif ($a[$i] -> can('as_number')) {
$a[$i] = $a[$i] -> as_number();
$recheck = 1;
}
}
elsif ($a[0] -> isa('Math::BigFloat')) {
if ($a[$i] -> can('as_float')) {
$a[$i] = $a[$i] -> as_float();
$recheck = $1;
}
}
# If we called one of the as_xxx() methods, recheck.
if ($recheck) {
$ref = ref($a[$i]);
# Perl scalars are fed to the appropriate constructor.
unless ($ref) {
$a[$i] = $a[0] -> new($a[$i]);
next;
}
# If it is an object of the right class, all is fine.
next if $ref -> isa($a[0]);
}
# Last resort.
$a[$i] = $a[0] -> new($a[$i]);
}
# Reset the downgrading.
${"$a[0]::downgrade"} = $down;
return @a;
}
sub import {
my $class = shift;
$IMPORT++; # remember we did import()
my @a;
my $l = scalar @_;
my $warn_or_die = 0; # 0 - no warn, 1 - warn, 2 - die
for (my $i = 0; $i < $l ; $i++) {
if ($_[$i] eq ':constant') {
# this causes overlord er load to step in
overload::constant
integer => sub { $class->new(shift) },
binary => sub { $class->new(shift) };
} elsif ($_[$i] eq 'upgrade') {
# this causes upgrading
$upgrade = $_[$i+1]; # or undef to disable
$i++;
} elsif ($_[$i] =~ /^(lib|try|only)\z/) {
# this causes a different low lib to take care...
$CALC = $_[$i+1] || '';
# lib => 1 (warn on fallback), try => 0 (no warn), only => 2 (die on fallback)
$warn_or_die = 1 if $_[$i] eq 'lib';
$warn_or_die = 2 if $_[$i] eq 'only';
$i++;
} else {
push @a, $_[$i];
}
}
# any non :constant stuff is handled by our parent, Exporter
if (@a > 0) {
require Exporter;
$class->SUPER::import(@a); # need it for subclasses
$class->export_to_level(1, $class, @a); # need it for MBF
}
# try to load core math lib
my @c = split /\s*,\s*/, $CALC;
foreach (@c) {
$_ =~ tr/a-zA-Z0-9://cd; # limit to sane characters
}
push @c, \'Calc' # if all fail, try these
if $warn_or_die < 2; # but not for "only"
$CALC = ''; # signal error
foreach my $l (@c) {
# fallback libraries are "marked" as \'string', extract string if nec.
my $lib = $l;
$lib = $$l if ref($l);
next if ($lib || '') eq '';
$lib = 'Math::BigInt::'.$lib if $lib !~ /^Math::BigInt/i;
$lib =~ s/\.pm$//;
if ($] < 5.006) {
# Perl < 5.6.0 dies with "out of memory!" when eval("") and ':constant' is
# used in the same script, or eval("") inside import().
my @parts = split /::/, $lib; # Math::BigInt => Math BigInt
my $file = pop @parts;
$file .= '.pm'; # BigInt => BigInt.pm
require File::Spec;
$file = File::Spec->catfile (@parts, $file);
eval {
require "$file";
$lib->import(@c);
}
} else {
eval "use $lib qw/@c/;";
}
if ($@ eq '') {
my $ok = 1;
# loaded it ok, see if the api_version() is high enough
if ($lib->can('api_version') && $lib->api_version() >= 1.0) {
$ok = 0;
# api_version matches, check if it really provides anything we need
for my $method (qw/
one two ten
str num
add mul div sub dec inc
acmp len digit is_one is_zero is_even is_odd
is_two is_ten
zeros new copy check
from_hex from_oct from_bin as_hex as_bin as_oct
rsft lsft xor and or
mod sqrt root fac pow modinv modpow log_int gcd
/) {
if (!$lib->can("_$method")) {
if (($WARN{$lib} || 0) < 2) {
Carp::carp("$lib is missing method '_$method'");
$WARN{$lib} = 1; # still warn about the lib
}
$ok++;
last;
}
}
}
if ($ok == 0) {
$CALC = $lib;
if ($warn_or_die > 0 && ref($l)) {
my $msg = "Math::BigInt: couldn't load specified"
. " math lib(s), fallback to $lib";
Carp::carp($msg) if $warn_or_die == 1;
Carp::croak($msg) if $warn_or_die == 2;
}
last; # found a usable one, break
} else {
if (($WARN{$lib} || 0) < 2) {
my $ver = eval "\$$lib\::VERSION" || 'unknown';
Carp::carp("Cannot load outdated $lib v$ver, please upgrade");
$WARN{$lib} = 2; # never warn again
}
}
}
}
if ($CALC eq '') {
if ($warn_or_die == 2) {
Carp::croak("Couldn't load specified math lib(s)" .
" and fallback disallowed");
} else {
Carp::croak("Couldn't load any math lib(s), not even fallback to Calc.pm");
}
}
# notify callbacks
foreach my $class (keys %CALLBACKS) {
&{$CALLBACKS{$class}}($CALC);
}
# Fill $CAN with the results of $CALC->can(...) for emulating lower math lib
# functions
%CAN = ();
for my $method (qw/ signed_and signed_or signed_xor /) {
$CAN{$method} = $CALC->can("_$method") ? 1 : 0;
}
# import done
}
sub _register_callback {
my ($class, $callback) = @_;
if (ref($callback) ne 'CODE') {
Carp::croak("$callback is not a coderef");
}
$CALLBACKS{$class} = $callback;
}
sub _split_dec_string {
my $str = shift;
if ($str =~ s/
^
# leading whitespace
( \s* )
# optional sign
( [+-]? )
# significand
(
\d+ (?: _ \d+ )*
(?:
\.
(?: \d+ (?: _ \d+ )* )?
)?
|
\.
\d+ (?: _ \d+ )*
)
# optional exponent
(?:
[Ee]
( [+-]? )
( \d+ (?: _ \d+ )* )
)?
# trailing stuff
( \D .*? )?
\z
//x) {
my $leading = $1;
my $significand_sgn = $2 || '+';
my $significand_abs = $3;
my $exponent_sgn = $4 || '+';
my $exponent_abs = $5 || '0';
my $trailing = $6;
# Remove underscores and leading zeros.
$significand_abs =~ tr/_//d;
$exponent_abs =~ tr/_//d;
$significand_abs =~ s/^0+(.)/$1/;
$exponent_abs =~ s/^0+(.)/$1/;
# If the significand contains a dot, remove it and adjust the exponent
# accordingly. E.g., "1234.56789e+3" -> "123456789e-2"
my $idx = index $significand_abs, '.';
if ($idx > -1) {
$significand_abs =~ s/0+\z//;
substr($significand_abs, $idx, 1) = '';
my $exponent = $exponent_sgn . $exponent_abs;
$exponent .= $idx - CORE::length($significand_abs);
$exponent_abs = abs $exponent;
$exponent_sgn = $exponent < 0 ? '-' : '+';
}
return($leading,
$significand_sgn, $significand_abs,
$exponent_sgn, $exponent_abs,
$trailing);
}
return undef;
}
sub _split {
# input: num_str; output: undef for invalid or
# (\$mantissa_sign, \$mantissa_value, \$mantissa_fraction,
# \$exp_sign, \$exp_value)
# Internal, take apart a string and return the pieces.
# Strip leading/trailing whitespace, leading zeros, underscore and reject
# invalid input.
my $x = shift;
# strip white space at front, also extraneous leading zeros
$x =~ s/^\s*([-]?)0*([0-9])/$1$2/g; # will not strip ' .2'
$x =~ s/^\s+//; # but this will
$x =~ s/\s+$//g; # strip white space at end
# shortcut, if nothing to split, return early
if ($x =~ /^[+-]?[0-9]+\z/) {
$x =~ s/^([+-])0*([0-9])/$2/;
my $sign = $1 || '+';
return (\$sign, \$x, \'', \'', \0);
}
# invalid starting char?
return if $x !~ /^[+-]?(\.?[0-9]|0b[0-1]|0x[0-9a-fA-F])/;
return Math::BigInt->from_hex($x) if $x =~ /^[+-]?0x/; # hex string
return Math::BigInt->from_bin($x) if $x =~ /^[+-]?0b/; # binary string
# strip underscores between digits
$x =~ s/([0-9])_([0-9])/$1$2/g;
$x =~ s/([0-9])_([0-9])/$1$2/g; # do twice for 1_2_3
# some possible inputs:
# 2.1234 # 0.12 # 1 # 1E1 # 2.134E1 # 434E-10 # 1.02009E-2
# .2 # 1_2_3.4_5_6 # 1.4E1_2_3 # 1e3 # +.2 # 0e999
my ($m, $e, $last) = split /[Ee]/, $x;
return if defined $last; # last defined => 1e2E3 or others
$e = '0' if !defined $e || $e eq "";
# sign, value for exponent, mantint, mantfrac
my ($es, $ev, $mis, $miv, $mfv);
# valid exponent?
if ($e =~ /^([+-]?)0*([0-9]+)$/) # strip leading zeros
{
$es = $1;
$ev = $2;
# valid mantissa?
return if $m eq '.' || $m eq '';
my ($mi, $mf, $lastf) = split /\./, $m;
return if defined $lastf; # lastf defined => 1.2.3 or others
$mi = '0' if !defined $mi;
$mi .= '0' if $mi =~ /^[\-\+]?$/;
$mf = '0' if !defined $mf || $mf eq '';
if ($mi =~ /^([+-]?)0*([0-9]+)$/) # strip leading zeros
{
$mis = $1 || '+';
$miv = $2;
return unless ($mf =~ /^([0-9]*?)0*$/); # strip trailing zeros
$mfv = $1;
# handle the 0e999 case here
$ev = 0 if $miv eq '0' && $mfv eq '';
return (\$mis, \$miv, \$mfv, \$es, \$ev);
}
}
return; # NaN, not a number
}
sub _trailing_zeros {
# return the amount of trailing zeros in $x (as scalar)
my $x = shift;
$x = $class->new($x) unless ref $x;
return 0 if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf etc
$CALC->_zeros($x->{value}); # must handle odd values, 0 etc
}
sub _scan_for_nonzero {
# internal, used by bround() to scan for non-zeros after a '5'
my ($x, $pad, $xs, $len) = @_;
return 0 if $len == 1; # "5" is trailed by invisible zeros
my $follow = $pad - 1;
return 0 if $follow > $len || $follow < 1;
# use the string form to check whether only '0's follow or not
substr ($xs, -$follow) =~ /[^0]/ ? 1 : 0;
}
sub _find_round_parameters {
# After any operation or when calling round(), the result is rounded by
# regarding the A & P from arguments, local parameters, or globals.
# !!!!!!! If you change this, remember to change round(), too! !!!!!!!!!!
# This procedure finds the round parameters, but it is for speed reasons
# duplicated in round. Otherwise, it is tested by the testsuite and used
# by bdiv().
# returns ($self) or ($self, $a, $p, $r) - sets $self to NaN of both A and P
# were requested/defined (locally or globally or both)
my ($self, $a, $p, $r, @args) = @_;
# $a accuracy, if given by caller
# $p precision, if given by caller
# $r round_mode, if given by caller
# @args all 'other' arguments (0 for unary, 1 for binary ops)
my $class = ref($self); # find out class of argument(s)
no strict 'refs';
# convert to normal scalar for speed and correctness in inner parts
$a = $a->can('numify') ? $a->numify() : "$a" if defined $a && ref($a);
$p = $p->can('numify') ? $p->numify() : "$p" if defined $p && ref($p);
# now pick $a or $p, but only if we have got "arguments"
if (!defined $a) {
foreach ($self, @args) {
# take the defined one, or if both defined, the one that is smaller
$a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
}
}
if (!defined $p) {
# even if $a is defined, take $p, to signal error for both defined
foreach ($self, @args) {
# take the defined one, or if both defined, the one that is bigger
# -2 > -3, and 3 > 2
$p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
}
}
# if still none defined, use globals (#2)
$a = ${"$class\::accuracy"} unless defined $a;
$p = ${"$class\::precision"} unless defined $p;
# A == 0 is useless, so undef it to signal no rounding
$a = undef if defined $a && $a == 0;
# no rounding today?
return ($self) unless defined $a || defined $p; # early out
# set A and set P is an fatal error
return ($self->bnan()) if defined $a && defined $p; # error
$r = ${"$class\::round_mode"} unless defined $r;
if ($r !~ /^(even|odd|[+-]inf|zero|trunc|common)$/) {
Carp::croak("Unknown round mode '$r'");
}
$a = int($a) if defined $a;
$p = int($p) if defined $p;
($self, $a, $p, $r);
}
###############################################################################
# this method returns 0 if the object can be modified, or 1 if not.
# We use a fast constant sub() here, to avoid costly calls. Subclasses
# may override it with special code (f.i. Math::BigInt::Constant does so)
sub modify () { 0; }
1;
__END__
=pod
=head1 NAME
Math::BigInt - Arbitrary size integer/float math package
=head1 SYNOPSIS
use Math::BigInt;
# or make it faster with huge numbers: install (optional)
# Math::BigInt::GMP and always use (it falls back to
# pure Perl if the GMP library is not installed):
# (See also the L<MATH LIBRARY> section!)
# warns if Math::BigInt::GMP cannot be found
use Math::BigInt lib => 'GMP';
# to suppress the warning use this:
# use Math::BigInt try => 'GMP';
# dies if GMP cannot be loaded:
# use Math::BigInt only => 'GMP';
my $str = '1234567890';
my @values = (64, 74, 18);
my $n = 1; my $sign = '-';
# Configuration methods (may be used as class methods and instance methods)
Math::BigInt->accuracy(); # get class accuracy
Math::BigInt->accuracy($n); # set class accuracy
Math::BigInt->precision(); # get class precision
Math::BigInt->precision($n); # set class precision
Math::BigInt->round_mode(); # get class rounding mode
Math::BigInt->round_mode($m); # set global round mode, must be one of
# 'even', 'odd', '+inf', '-inf', 'zero',
# 'trunc', or 'common'
Math::BigInt->config(); # return hash with configuration
# Constructor methods (when the class methods below are used as instance
# methods, the value is assigned the invocand)
$x = Math::BigInt->new($str); # defaults to 0
$x = Math::BigInt->new('0x123'); # from hexadecimal
$x = Math::BigInt->new('0b101'); # from binary
$x = Math::BigInt->from_hex('cafe'); # from hexadecimal
$x = Math::BigInt->from_oct('377'); # from octal
$x = Math::BigInt->from_bin('1101'); # from binary
$x = Math::BigInt->bzero(); # create a +0
$x = Math::BigInt->bone(); # create a +1
$x = Math::BigInt->bone('-'); # create a -1
$x = Math::BigInt->binf(); # create a +inf
$x = Math::BigInt->binf('-'); # create a -inf
$x = Math::BigInt->bnan(); # create a Not-A-Number
$x = Math::BigInt->bpi(); # returns pi
$y = $x->copy(); # make a copy (unlike $y = $x)
$y = $x->as_int(); # return as a Math::BigInt
# Boolean methods (these don't modify the invocand)
$x->is_zero(); # if $x is 0
$x->is_one(); # if $x is +1
$x->is_one("+"); # ditto
$x->is_one("-"); # if $x is -1
$x->is_inf(); # if $x is +inf or -inf
$x->is_inf("+"); # if $x is +inf
$x->is_inf("-"); # if $x is -inf
$x->is_nan(); # if $x is NaN
$x->is_positive(); # if $x > 0
$x->is_pos(); # ditto
$x->is_negative(); # if $x < 0
$x->is_neg(); # ditto
$x->is_odd(); # if $x is odd
$x->is_even(); # if $x is even
$x->is_int(); # if $x is an integer
# Comparison methods
$x->bcmp($y); # compare numbers (undef, < 0, == 0, > 0)
$x->bacmp($y); # compare absolutely (undef, < 0, == 0, > 0)
$x->beq($y); # true if and only if $x == $y
$x->bne($y); # true if and only if $x != $y
$x->blt($y); # true if and only if $x < $y
$x->ble($y); # true if and only if $x <= $y
$x->bgt($y); # true if and only if $x > $y
$x->bge($y); # true if and only if $x >= $y
# Arithmetic methods
$x->bneg(); # negation
$x->babs(); # absolute value
$x->bsgn(); # sign function (-1, 0, 1, or NaN)
$x->bnorm(); # normalize (no-op)
$x->binc(); # increment $x by 1
$x->bdec(); # decrement $x by 1
$x->badd($y); # addition (add $y to $x)
$x->bsub($y); # subtraction (subtract $y from $x)
$x->bmul($y); # multiplication (multiply $x by $y)
$x->bmuladd($y,$z); # $x = $x * $y + $z
$x->bdiv($y); # division (floored), set $x to quotient
# return (quo,rem) or quo if scalar
$x->btdiv($y); # division (truncated), set $x to quotient
# return (quo,rem) or quo if scalar
$x->bmod($y); # modulus (x % y)
$x->btmod($y); # modulus (truncated)
$x->bmodinv($mod); # modular multiplicative inverse
$x->bmodpow($y,$mod); # modular exponentiation (($x ** $y) % $mod)
$x->bpow($y); # power of arguments (x ** y)
$x->blog(); # logarithm of $x to base e (Euler's number)
$x->blog($base); # logarithm of $x to base $base (e.g., base 2)
$x->bexp(); # calculate e ** $x where e is Euler's number
$x->bnok($y); # x over y (binomial coefficient n over k)
$x->bsin(); # sine
$x->bcos(); # cosine
$x->batan(); # inverse tangent
$x->batan2($y); # two-argument inverse tangent
$x->bsqrt(); # calculate square-root
$x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root)
$x->bfac(); # factorial of $x (1*2*3*4*..$x)
$x->blsft($n); # left shift $n places in base 2
$x->blsft($n,$b); # left shift $n places in base $b
# returns (quo,rem) or quo (scalar context)
$x->brsft($n); # right shift $n places in base 2
$x->brsft($n,$b); # right shift $n places in base $b
# returns (quo,rem) or quo (scalar context)
# Bitwise methods
$x->band($y); # bitwise and
$x->bior($y); # bitwise inclusive or
$x->bxor($y); # bitwise exclusive or
$x->bnot(); # bitwise not (two's complement)
# Rounding methods
$x->round($A,$P,$mode); # round to accuracy or precision using
# rounding mode $mode
$x->bround($n); # accuracy: preserve $n digits
$x->bfround($n); # $n > 0: round to $nth digit left of dec. point
# $n < 0: round to $nth digit right of dec. point
$x->bfloor(); # round towards minus infinity
$x->bceil(); # round towards plus infinity
$x->bint(); # round towards zero
# Other mathematical methods
$x->bgcd($y); # greatest common divisor
$x->blcm($y); # least common multiple
# Object property methods (do not modify the invocand)
$x->sign(); # the sign, either +, - or NaN
$x->digit($n); # the nth digit, counting from the right
$x->digit(-$n); # the nth digit, counting from the left
$x->length(); # return number of digits in number
($xl,$f) = $x->length(); # length of number and length of fraction
# part, latter is always 0 digits long
# for Math::BigInt objects
$x->mantissa(); # return (signed) mantissa as a Math::BigInt
$x->exponent(); # return exponent as a Math::BigInt
$x->parts(); # return (mantissa,exponent) as a Math::BigInt
$x->sparts(); # mantissa and exponent (as integers)
$x->nparts(); # mantissa and exponent (normalised)
$x->eparts(); # mantissa and exponent (engineering notation)
$x->dparts(); # integer and fraction part
# Conversion methods (do not modify the invocand)
$x->bstr(); # decimal notation, possibly zero padded
$x->bsstr(); # string in scientific notation with integers
$x->bnstr(); # string in normalized notation
$x->bestr(); # string in engineering notation
$x->bdstr(); # string in decimal notation
$x->to_hex(); # as signed hexadecimal string
$x->to_bin(); # as signed binary string
$x->to_oct(); # as signed octal string
$x->to_bytes(); # as byte string
$x->as_hex(); # as signed hexadecimal string with prefixed 0x
$x->as_bin(); # as signed binary string with prefixed 0b
$x->as_oct(); # as signed octal string with prefixed 0
# Other conversion methods
$x->numify(); # return as scalar (might overflow or underflow)
=head1 DESCRIPTION
Math::BigInt provides support for arbitrary precision integers. Overloading is
also provided for Perl operators.
=head2 Input
Input values to these routines may be any scalar number or string that looks
like a number and represents an integer.
=over
=item *
Leading and trailing whitespace is ignored.
=item *
Leading and trailing zeros are ignored.
=item *
If the string has a "0x" prefix, it is interpreted as a hexadecimal number.
=item *
If the string has a "0b" prefix, it is interpreted as a binary number.
=item *
One underline is allowed between any two digits.
=item *
If the string can not be interpreted, NaN is returned.
=back
Octal numbers are typically prefixed by "0", but since leading zeros are
stripped, these methods can not automatically recognize octal numbers, so use
the constructor from_oct() to interpret octal strings.
Some examples of valid string input
Input string Resulting value
123 123
1.23e2 123
12300e-2 123
0xcafe 51966
0b1101 13
67_538_754 67538754
-4_5_6.7_8_9e+0_1_0 -4567890000000
Input given as scalar numbers might lose precision. Quote your input to ensure
that no digits are lost:
$x = Math::BigInt->new( 56789012345678901234 ); # bad
$x = Math::BigInt->new('56789012345678901234'); # good
Currently, Math::BigInt->new() defaults to 0, while Math::BigInt->new('')
results in 'NaN'. This might change in the future, so use always the following
explicit forms to get a zero or NaN:
$zero = Math::BigInt->bzero();
$nan = Math::BigInt->bnan();
=head2 Output
Output values are usually Math::BigInt objects.
Boolean operators C<is_zero()>, C<is_one()>, C<is_inf()>, etc. return true or
false.
Comparison operators C<bcmp()> and C<bacmp()>) return -1, 0, 1, or
undef.
=head1 METHODS
=head2 Configuration methods
Each of the methods below (except config(), accuracy() and precision()) accepts
three additional parameters. These arguments C<$A>, C<$P> and C<$R> are
C<accuracy>, C<precision> and C<round_mode>. Please see the section about
L</ACCURACY and PRECISION> for more information.
Setting a class variable effects all object instance that are created
afterwards.
=over
=item accuracy()
Math::BigInt->accuracy(5); # set class accuracy
$x->accuracy(5); # set instance accuracy
$A = Math::BigInt->accuracy(); # get class accuracy
$A = $x->accuracy(); # get instance accuracy
Set or get the accuracy, i.e., the number of significant digits. The accuracy
must be an integer. If the accuracy is set to C<undef>, no rounding is done.
Alternatively, one can round the results explicitly using one of L</round()>,
L</bround()> or L</bfround()> or by passing the desired accuracy to the method
as an additional parameter:
my $x = Math::BigInt->new(30000);
my $y = Math::BigInt->new(7);
print scalar $x->copy()->bdiv($y, 2); # prints 4300
print scalar $x->copy()->bdiv($y)->bround(2); # prints 4300
Please see the section about L</ACCURACY and PRECISION> for further details.
$y = Math::BigInt->new(1234567); # $y is not rounded
Math::BigInt->accuracy(4); # set class accuracy to 4
$x = Math::BigInt->new(1234567); # $x is rounded automatically
print "$x $y"; # prints "1235000 1234567"
print $x->accuracy(); # prints "4"
print $y->accuracy(); # also prints "4", since
# class accuracy is 4
Math::BigInt->accuracy(5); # set class accuracy to 5
print $x->accuracy(); # prints "4", since instance
# accuracy is 4
print $y->accuracy(); # prints "5", since no instance
# accuracy, and class accuracy is 5
Note: Each class has it's own globals separated from Math::BigInt, but it is
possible to subclass Math::BigInt and make the globals of the subclass aliases
to the ones from Math::BigInt.
=item precision()
Math::BigInt->precision(-2); # set class precision
$x->precision(-2); # set instance precision
$P = Math::BigInt->precision(); # get class precision
$P = $x->precision(); # get instance precision
Set or get the precision, i.e., the place to round relative to the decimal
point. The precision must be a integer. Setting the precision to $P means that
each number is rounded up or down, depending on the rounding mode, to the
nearest multiple of 10**$P. If the precision is set to C<undef>, no rounding is
done.
You might want to use L</accuracy()> instead. With L</accuracy()> you set the
number of digits each result should have, with L</precision()> you set the
place where to round.
Please see the section about L</ACCURACY and PRECISION> for further details.
$y = Math::BigInt->new(1234567); # $y is not rounded
Math::BigInt->precision(4); # set class precision to 4
$x = Math::BigInt->new(1234567); # $x is rounded automatically
print $x; # prints "1230000"
Note: Each class has its own globals separated from Math::BigInt, but it is
possible to subclass Math::BigInt and make the globals of the subclass aliases
to the ones from Math::BigInt.
=item div_scale()
Set/get the fallback accuracy. This is the accuracy used when neither accuracy
nor precision is set explicitly. It is used when a computation might otherwise
attempt to return an infinite number of digits.
=item round_mode()
Set/get the rounding mode.
=item upgrade()
Set/get the class for upgrading. When a computation might result in a
non-integer, the operands are upgraded to this class. This is used for instance
by L<bignum>. The default is C<undef>, thus the following operation creates
a Math::BigInt, not a Math::BigFloat:
my $i = Math::BigInt->new(123);
my $f = Math::BigFloat->new('123.1');
print $i + $f, "\n"; # prints 246
=item downgrade()
Set/get the class for downgrading. The default is C<undef>. Downgrading is not
done by Math::BigInt.
=item modify()
$x->modify('bpowd');
This method returns 0 if the object can be modified with the given operation,
or 1 if not.
This is used for instance by L<Math::BigInt::Constant>.
=item config()
use Data::Dumper;
print Dumper ( Math::BigInt->config() );
print Math::BigInt->config()->{lib},"\n";
print Math::BigInt->config('lib')},"\n";
Returns a hash containing the configuration, e.g. the version number, lib
loaded etc. The following hash keys are currently filled in with the
appropriate information.
key Description
Example
============================================================
lib Name of the low-level math library
Math::BigInt::Calc
lib_version Version of low-level math library (see 'lib')
0.30
class The class name of config() you just called
Math::BigInt
upgrade To which class math operations might be
upgraded Math::BigFloat
downgrade To which class math operations might be
downgraded undef
precision Global precision
undef
accuracy Global accuracy
undef
round_mode Global round mode
even
version version number of the class you used
1.61
div_scale Fallback accuracy for div
40
trap_nan If true, traps creation of NaN via croak()
1
trap_inf If true, traps creation of +inf/-inf via croak()
1
The following values can be set by passing C<config()> a reference to a hash:
accuracy precision round_mode div_scale
upgrade downgrade trap_inf trap_nan
Example:
$new_cfg = Math::BigInt->config(
{ trap_inf => 1, precision => 5 }
);
=back
=head2 Constructor methods
=over
=item new()
$x = Math::BigInt->new($str,$A,$P,$R);
Creates a new Math::BigInt object from a scalar or another Math::BigInt object.
The input is accepted as decimal, hexadecimal (with leading '0x') or binary
(with leading '0b').
See L</Input> for more info on accepted input formats.
=item from_hex()
$x = Math::BigInt->from_hex("0xcafe"); # input is hexadecimal
Interpret input as a hexadecimal string. A "0x" or "x" prefix is optional. A
single underscore character may be placed right after the prefix, if present,
or between any two digits. If the input is invalid, a NaN is returned.
=item from_oct()
$x = Math::BigInt->from_oct("0775"); # input is octal
Interpret the input as an octal string and return the corresponding value. A
"0" (zero) prefix is optional. A single underscore character may be placed
right after the prefix, if present, or between any two digits. If the input is
invalid, a NaN is returned.
=item from_bin()
$x = Math::BigInt->from_bin("0b10011"); # input is binary
Interpret the input as a binary string. A "0b" or "b" prefix is optional. A
single underscore character may be placed right after the prefix, if present,
or between any two digits. If the input is invalid, a NaN is returned.
=item from_bytes()
$x = Math::BigInt->from_bytes("\xf3\x6b"); # $x = 62315
Interpret the input as a byte string, assuming big endian byte order. The
output is always a non-negative, finite integer.
In some special cases, from_bytes() matches the conversion done by unpack():
$b = "\x4e"; # one char byte string
$x = Math::BigInt->from_bytes($b); # = 78
$y = unpack "C", $b; # ditto, but scalar
$b = "\xf3\x6b"; # two char byte string
$x = Math::BigInt->from_bytes($b); # = 62315
$y = unpack "S>", $b; # ditto, but scalar
$b = "\x2d\xe0\x49\xad"; # four char byte string
$x = Math::BigInt->from_bytes($b); # = 769673645
$y = unpack "L>", $b; # ditto, but scalar
$b = "\x2d\xe0\x49\xad\x2d\xe0\x49\xad"; # eight char byte string
$x = Math::BigInt->from_bytes($b); # = 3305723134637787565
$y = unpack "Q>", $b; # ditto, but scalar
=item bzero()
$x = Math::BigInt->bzero();
$x->bzero();
Returns a new Math::BigInt object representing zero. If used as an instance
method, assigns the value to the invocand.
=item bone()
$x = Math::BigInt->bone(); # +1
$x = Math::BigInt->bone("+"); # +1
$x = Math::BigInt->bone("-"); # -1
$x->bone(); # +1
$x->bone("+"); # +1
$x->bone('-'); # -1
Creates a new Math::BigInt object representing one. The optional argument is
either '-' or '+', indicating whether you want plus one or minus one. If used
as an instance method, assigns the value to the invocand.
=item binf()
$x = Math::BigInt->binf($sign);
Creates a new Math::BigInt object representing infinity. The optional argument
is either '-' or '+', indicating whether you want infinity or minus infinity.
If used as an instance method, assigns the value to the invocand.
$x->binf();
$x->binf('-');
=item bnan()
$x = Math::BigInt->bnan();
Creates a new Math::BigInt object representing NaN (Not A Number). If used as
an instance method, assigns the value to the invocand.
$x->bnan();
=item bpi()
$x = Math::BigInt->bpi(100); # 3
$x->bpi(100); # 3
Creates a new Math::BigInt object representing PI. If used as an instance
method, assigns the value to the invocand. With Math::BigInt this always
returns 3.
If upgrading is in effect, returns PI, rounded to N digits with the current
rounding mode:
use Math::BigFloat;
use Math::BigInt upgrade => "Math::BigFloat";
print Math::BigInt->bpi(3), "\n"; # 3.14
print Math::BigInt->bpi(100), "\n"; # 3.1415....
=item copy()
$x->copy(); # make a true copy of $x (unlike $y = $x)
=item as_int()
=item as_number()
These methods are called when Math::BigInt encounters an object it doesn't know
how to handle. For instance, assume $x is a Math::BigInt, or subclass thereof,
and $y is defined, but not a Math::BigInt, or subclass thereof. If you do
$x -> badd($y);
$y needs to be converted into an object that $x can deal with. This is done by
first checking if $y is something that $x might be upgraded to. If that is the
case, no further attempts are made. The next is to see if $y supports the
method C<as_int()>. If it does, C<as_int()> is called, but if it doesn't, the
next thing is to see if $y supports the method C<as_number()>. If it does,
C<as_number()> is called. The method C<as_int()> (and C<as_number()>) is
expected to return either an object that has the same class as $x, a subclass
thereof, or a string that C<ref($x)-E<gt>new()> can parse to create an object.
C<as_number()> is an alias to C<as_int()>. C<as_number> was introduced in
v1.22, while C<as_int()> was introduced in v1.68.
In Math::BigInt, C<as_int()> has the same effect as C<copy()>.
=back
=head2 Boolean methods
None of these methods modify the invocand object.
=over
=item is_zero()
$x->is_zero(); # true if $x is 0
Returns true if the invocand is zero and false otherwise.
=item is_one( [ SIGN ])
$x->is_one(); # true if $x is +1
$x->is_one("+"); # ditto
$x->is_one("-"); # true if $x is -1
Returns true if the invocand is one and false otherwise.
=item is_finite()
$x->is_finite(); # true if $x is not +inf, -inf or NaN
Returns true if the invocand is a finite number, i.e., it is neither +inf,
-inf, nor NaN.
=item is_inf( [ SIGN ] )
$x->is_inf(); # true if $x is +inf
$x->is_inf("+"); # ditto
$x->is_inf("-"); # true if $x is -inf
Returns true if the invocand is infinite and false otherwise.
=item is_nan()
$x->is_nan(); # true if $x is NaN
=item is_positive()
=item is_pos()
$x->is_positive(); # true if > 0
$x->is_pos(); # ditto
Returns true if the invocand is positive and false otherwise. A C<NaN> is
neither positive nor negative.
=item is_negative()
=item is_neg()
$x->is_negative(); # true if < 0
$x->is_neg(); # ditto
Returns true if the invocand is negative and false otherwise. A C<NaN> is
neither positive nor negative.
=item is_odd()
$x->is_odd(); # true if odd, false for even
Returns true if the invocand is odd and false otherwise. C<NaN>, C<+inf>, and
C<-inf> are neither odd nor even.
=item is_even()
$x->is_even(); # true if $x is even
Returns true if the invocand is even and false otherwise. C<NaN>, C<+inf>,
C<-inf> are not integers and are neither odd nor even.
=item is_int()
$x->is_int(); # true if $x is an integer
Returns true if the invocand is an integer and false otherwise. C<NaN>,
C<+inf>, C<-inf> are not integers.
=back
=head2 Comparison methods
None of these methods modify the invocand object. Note that a C<NaN> is neither
less than, greater than, or equal to anything else, even a C<NaN>.
=over
=item bcmp()
$x->bcmp($y);
Returns -1, 0, 1 depending on whether $x is less than, equal to, or grater than
$y. Returns undef if any operand is a NaN.
=item bacmp()
$x->bacmp($y);
Returns -1, 0, 1 depending on whether the absolute value of $x is less than,
equal to, or grater than the absolute value of $y. Returns undef if any operand
is a NaN.
=item beq()
$x -> beq($y);
Returns true if and only if $x is equal to $y, and false otherwise.
=item bne()
$x -> bne($y);
Returns true if and only if $x is not equal to $y, and false otherwise.
=item blt()
$x -> blt($y);
Returns true if and only if $x is equal to $y, and false otherwise.
=item ble()
$x -> ble($y);
Returns true if and only if $x is less than or equal to $y, and false
otherwise.
=item bgt()
$x -> bgt($y);
Returns true if and only if $x is greater than $y, and false otherwise.
=item bge()
$x -> bge($y);
Returns true if and only if $x is greater than or equal to $y, and false
otherwise.
=back
=head2 Arithmetic methods
These methods modify the invocand object and returns it.
=over
=item bneg()
$x->bneg();
Negate the number, e.g. change the sign between '+' and '-', or between '+inf'
and '-inf', respectively. Does nothing for NaN or zero.
=item babs()
$x->babs();
Set the number to its absolute value, e.g. change the sign from '-' to '+'
and from '-inf' to '+inf', respectively. Does nothing for NaN or positive
numbers.
=item bsgn()
$x->bsgn();
Signum function. Set the number to -1, 0, or 1, depending on whether the
number is negative, zero, or positive, respectively. Does not modify NaNs.
=item bnorm()
$x->bnorm(); # normalize (no-op)
Normalize the number. This is a no-op and is provided only for backwards
compatibility.
=item binc()
$x->binc(); # increment x by 1
=item bdec()
$x->bdec(); # decrement x by 1
=item badd()
$x->badd($y); # addition (add $y to $x)
=item bsub()
$x->bsub($y); # subtraction (subtract $y from $x)
=item bmul()
$x->bmul($y); # multiplication (multiply $x by $y)
=item bmuladd()
$x->bmuladd($y,$z);
Multiply $x by $y, and then add $z to the result,
This method was added in v1.87 of Math::BigInt (June 2007).
=item bdiv()
$x->bdiv($y); # divide, set $x to quotient
Divides $x by $y by doing floored division (F-division), where the quotient is
the floored (rounded towards negative infinity) quotient of the two operands.
In list context, returns the quotient and the remainder. The remainder is
either zero or has the same sign as the second operand. In scalar context, only
the quotient is returned.
The quotient is always the greatest integer less than or equal to the
real-valued quotient of the two operands, and the remainder (when it is
non-zero) always has the same sign as the second operand; so, for example,
1 / 4 => ( 0, 1)
1 / -4 => (-1, -3)
-3 / 4 => (-1, 1)
-3 / -4 => ( 0, -3)
-11 / 2 => (-5, 1)
11 / -2 => (-5, -1)
The behavior of the overloaded operator % agrees with the behavior of Perl's
built-in % operator (as documented in the perlop manpage), and the equation
$x == ($x / $y) * $y + ($x % $y)
holds true for any finite $x and finite, non-zero $y.
Perl's "use integer" might change the behaviour of % and / for scalars. This is
because under 'use integer' Perl does what the underlying C library thinks is
right, and this varies. However, "use integer" does not change the way things
are done with Math::BigInt objects.
=item btdiv()
$x->btdiv($y); # divide, set $x to quotient
Divides $x by $y by doing truncated division (T-division), where quotient is
the truncated (rouneded towards zero) quotient of the two operands. In list
context, returns the quotient and the remainder. The remainder is either zero
or has the same sign as the first operand. In scalar context, only the quotient
is returned.
=item bmod()
$x->bmod($y); # modulus (x % y)
Returns $x modulo $y, i.e., the remainder after floored division (F-division).
This method is like Perl's % operator. See L</bdiv()>.
=item btmod()
$x->btmod($y); # modulus
Returns the remainer after truncated division (T-division). See L</btdiv()>.
=item bmodinv()
$x->bmodinv($mod); # modular multiplicative inverse
Returns the multiplicative inverse of C<$x> modulo C<$mod>. If
$y = $x -> copy() -> bmodinv($mod)
then C<$y> is the number closest to zero, and with the same sign as C<$mod>,
satisfying
($x * $y) % $mod = 1 % $mod
If C<$x> and C<$y> are non-zero, they must be relative primes, i.e.,
C<bgcd($y, $mod)==1>. 'C<NaN>' is returned when no modular multiplicative
inverse exists.
=item bmodpow()
$num->bmodpow($exp,$mod); # modular exponentiation
# ($num**$exp % $mod)
Returns the value of C<$num> taken to the power C<$exp> in the modulus
C<$mod> using binary exponentiation. C<bmodpow> is far superior to
writing
$num ** $exp % $mod
because it is much faster - it reduces internal variables into
the modulus whenever possible, so it operates on smaller numbers.
C<bmodpow> also supports negative exponents.
bmodpow($num, -1, $mod)
is exactly equivalent to
bmodinv($num, $mod)
=item bpow()
$x->bpow($y); # power of arguments (x ** y)
C<bpow()> (and the rounding functions) now modifies the first argument and
returns it, unlike the old code which left it alone and only returned the
result. This is to be consistent with C<badd()> etc. The first three modifies
$x, the last one won't:
print bpow($x,$i),"\n"; # modify $x
print $x->bpow($i),"\n"; # ditto
print $x **= $i,"\n"; # the same
print $x ** $i,"\n"; # leave $x alone
The form C<$x **= $y> is faster than C<$x = $x ** $y;>, though.
=item blog()
$x->blog($base, $accuracy); # logarithm of x to the base $base
If C<$base> is not defined, Euler's number (e) is used:
print $x->blog(undef, 100); # log(x) to 100 digits
=item bexp()
$x->bexp($accuracy); # calculate e ** X
Calculates the expression C<e ** $x> where C<e> is Euler's number.
This method was added in v1.82 of Math::BigInt (April 2007).
See also L</blog()>.
=item bnok()
$x->bnok($y); # x over y (binomial coefficient n over k)
Calculates the binomial coefficient n over k, also called the "choose"
function. The result is equivalent to:
( n ) n!
| - | = -------
( k ) k!(n-k)!
This method was added in v1.84 of Math::BigInt (April 2007).
=item bsin()
my $x = Math::BigInt->new(1);
print $x->bsin(100), "\n";
Calculate the sine of $x, modifying $x in place.
In Math::BigInt, unless upgrading is in effect, the result is truncated to an
integer.
This method was added in v1.87 of Math::BigInt (June 2007).
=item bcos()
my $x = Math::BigInt->new(1);
print $x->bcos(100), "\n";
Calculate the cosine of $x, modifying $x in place.
In Math::BigInt, unless upgrading is in effect, the result is truncated to an
integer.
This method was added in v1.87 of Math::BigInt (June 2007).
=item batan()
my $x = Math::BigFloat->new(0.5);
print $x->batan(100), "\n";
Calculate the arcus tangens of $x, modifying $x in place.
In Math::BigInt, unless upgrading is in effect, the result is truncated to an
integer.
This method was added in v1.87 of Math::BigInt (June 2007).
=item batan2()
my $x = Math::BigInt->new(1);
my $y = Math::BigInt->new(1);
print $y->batan2($x), "\n";
Calculate the arcus tangens of C<$y> divided by C<$x>, modifying $y in place.
In Math::BigInt, unless upgrading is in effect, the result is truncated to an
integer.
This method was added in v1.87 of Math::BigInt (June 2007).
=item bsqrt()
$x->bsqrt(); # calculate square-root
C<bsqrt()> returns the square root truncated to an integer.
If you want a better approximation of the square root, then use:
$x = Math::BigFloat->new(12);
Math::BigFloat->precision(0);
Math::BigFloat->round_mode('even');
print $x->copy->bsqrt(),"\n"; # 4
Math::BigFloat->precision(2);
print $x->bsqrt(),"\n"; # 3.46
print $x->bsqrt(3),"\n"; # 3.464
=item broot()
$x->broot($N);
Calculates the N'th root of C<$x>.
=item bfac()
$x->bfac(); # factorial of $x (1*2*3*4*..*$x)
Returns the factorial of C<$x>, i.e., the product of all positive integers up
to and including C<$x>.
=item bdfac()
$x->bdfac(); # double factorial of $x (1*2*3*4*..*$x)
Returns the double factorial of C<$x>. If C<$x> is an even integer, returns the
product of all positive, even integers up to and including C<$x>, i.e.,
2*4*6*...*$x. If C<$x> is an odd integer, returns the product of all positive,
odd integers, i.e., 1*3*5*...*$x.
=item bfib()
$F = $n->bfib(); # a single Fibonacci number
@F = $n->bfib(); # a list of Fibonacci numbers
In scalar context, returns a single Fibonacci number. In list context, returns
a list of Fibonacci numbers. The invocand is the last element in the output.
The Fibonacci sequence is defined by
F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2)
In list context, F(0) and F(n) is the first and last number in the output,
respectively. For example, if $n is 12, then C<< @F = $n->bfib() >> returns the
following values, F(0) to F(12):
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144
The sequence can also be extended to negative index n using the re-arranged
recurrence relation
F(n-2) = F(n) - F(n-1)
giving the bidirectional sequence
n -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
F(n) 13 -8 5 -3 2 -1 1 0 1 1 2 3 5 8 13
If $n is -12, the following values, F(0) to F(12), are returned:
0, 1, -1, 2, -3, 5, -8, 13, -21, 34, -55, 89, -144
=item blucas()
$F = $n->blucas(); # a single Lucas number
@F = $n->blucas(); # a list of Lucas numbers
In scalar context, returns a single Lucas number. In list context, returns a
list of Lucas numbers. The invocand is the last element in the output.
The Lucas sequence is defined by
L(0) = 2
L(1) = 1
L(n) = L(n-1) + L(n-2)
In list context, L(0) and L(n) is the first and last number in the output,
respectively. For example, if $n is 12, then C<< @L = $n->blucas() >> returns
the following values, L(0) to L(12):
2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322
The sequence can also be extended to negative index n using the re-arranged
recurrence relation
L(n-2) = L(n) - L(n-1)
giving the bidirectional sequence
n -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
L(n) 29 -18 11 -7 4 -3 1 2 1 3 4 7 11 18 29
If $n is -12, the following values, L(0) to L(-12), are returned:
2, 1, -3, 4, -7, 11, -18, 29, -47, 76, -123, 199, -322
=item brsft()
$x->brsft($n); # right shift $n places in base 2
$x->brsft($n, $b); # right shift $n places in base $b
The latter is equivalent to
$x -> bdiv($b -> copy() -> bpow($n))
=item blsft()
$x->blsft($n); # left shift $n places in base 2
$x->blsft($n, $b); # left shift $n places in base $b
The latter is equivalent to
$x -> bmul($b -> copy() -> bpow($n))
=back
=head2 Bitwise methods
=over
=item band()
$x->band($y); # bitwise and
=item bior()
$x->bior($y); # bitwise inclusive or
=item bxor()
$x->bxor($y); # bitwise exclusive or
=item bnot()
$x->bnot(); # bitwise not (two's complement)
Two's complement (bitwise not). This is equivalent to, but faster than,
$x->binc()->bneg();
=back
=head2 Rounding methods
=over
=item round()
$x->round($A,$P,$round_mode);
Round $x to accuracy C<$A> or precision C<$P> using the round mode
C<$round_mode>.
=item bround()
$x->bround($N); # accuracy: preserve $N digits
Rounds $x to an accuracy of $N digits.
=item bfround()
$x->bfround($N);
Rounds to a multiple of 10**$N. Examples:
Input N Result
123456.123456 3 123500
123456.123456 2 123450
123456.123456 -2 123456.12
123456.123456 -3 123456.123
=item bfloor()
$x->bfloor();
Round $x towards minus infinity, i.e., set $x to the largest integer less than
or equal to $x.
=item bceil()
$x->bceil();
Round $x towards plus infinity, i.e., set $x to the smallest integer greater
than or equal to $x).
=item bint()
$x->bint();
Round $x towards zero.
=back
=head2 Other mathematical methods
=over
=item bgcd()
$x -> bgcd($y); # GCD of $x and $y
$x -> bgcd($y, $z, ...); # GCD of $x, $y, $z, ...
Returns the greatest common divisor (GCD).
=item blcm()
$x -> blcm($y); # LCM of $x and $y
$x -> blcm($y, $z, ...); # LCM of $x, $y, $z, ...
Returns the least common multiple (LCM).
=back
=head2 Object property methods
=over
=item sign()
$x->sign();
Return the sign, of $x, meaning either C<+>, C<->, C<-inf>, C<+inf> or NaN.
If you want $x to have a certain sign, use one of the following methods:
$x->babs(); # '+'
$x->babs()->bneg(); # '-'
$x->bnan(); # 'NaN'
$x->binf(); # '+inf'
$x->binf('-'); # '-inf'
=item digit()
$x->digit($n); # return the nth digit, counting from right
If C<$n> is negative, returns the digit counting from left.
=item length()
$x->length();
($xl, $fl) = $x->length();
Returns the number of digits in the decimal representation of the number. In
list context, returns the length of the integer and fraction part. For
Math::BigInt objects, the length of the fraction part is always 0.
The following probably doesn't do what you expect:
$c = Math::BigInt->new(123);
print $c->length(),"\n"; # prints 30
It prints both the number of digits in the number and in the fraction part
since print calls C<length()> in list context. Use something like:
print scalar $c->length(),"\n"; # prints 3
=item mantissa()
$x->mantissa();
Return the signed mantissa of $x as a Math::BigInt.
=item exponent()
$x->exponent();
Return the exponent of $x as a Math::BigInt.
=item parts()
$x->parts();
Returns the significand (mantissa) and the exponent as integers. In
Math::BigFloat, both are returned as Math::BigInt objects.
=item sparts()
Returns the significand (mantissa) and the exponent as integers. In scalar
context, only the significand is returned. The significand is the integer with
the smallest absolute value. The output of C<sparts()> corresponds to the
output from C<bsstr()>.
In Math::BigInt, this method is identical to C<parts()>.
=item nparts()
Returns the significand (mantissa) and exponent corresponding to normalized
notation. In scalar context, only the significand is returned. For finite
non-zero numbers, the significand's absolute value is greater than or equal to
1 and less than 10. The output of C<nparts()> corresponds to the output from
C<bnstr()>. In Math::BigInt, if the significand can not be represented as an
integer, upgrading is performed or NaN is returned.
=item eparts()
Returns the significand (mantissa) and exponent corresponding to engineering
notation. In scalar context, only the significand is returned. For finite
non-zero numbers, the significand's absolute value is greater than or equal to
1 and less than 1000, and the exponent is a multiple of 3. The output of
C<eparts()> corresponds to the output from C<bestr()>. In Math::BigInt, if the
significand can not be represented as an integer, upgrading is performed or NaN
is returned.
=item dparts()
Returns the integer part and the fraction part. If the fraction part can not be
represented as an integer, upgrading is performed or NaN is returned. The
output of C<dparts()> corresponds to the output from C<bdstr()>.
=back
=head2 String conversion methods
=over
=item bstr()
Returns a string representing the number using decimal notation. In
Math::BigFloat, the output is zero padded according to the current accuracy or
precision, if any of those are defined.
=item bsstr()
Returns a string representing the number using scientific notation where both
the significand (mantissa) and the exponent are integers. The output
corresponds to the output from C<sparts()>.
123 is returned as "123e+0"
1230 is returned as "123e+1"
12300 is returned as "123e+2"
12000 is returned as "12e+3"
10000 is returned as "1e+4"
=item bnstr()
Returns a string representing the number using normalized notation, the most
common variant of scientific notation. For finite non-zero numbers, the
absolute value of the significand is less than or equal to 1 and less than 10.
The output corresponds to the output from C<nparts()>.
123 is returned as "1.23e+2"
1230 is returned as "1.23e+3"
12300 is returned as "1.23e+4"
12000 is returned as "1.2e+4"
10000 is returned as "1e+4"
=item bestr()
Returns a string representing the number using engineering notation. For finite
non-zero numbers, the absolute value of the significand is less than or equal
to 1 and less than 1000, and the exponent is a multiple of 3. The output
corresponds to the output from C<eparts()>.
123 is returned as "123e+0"
1230 is returned as "1.23e+3"
12300 is returned as "12.3e+3"
12000 is returned as "12e+3"
10000 is returned as "10e+3"
=item bdstr()
Returns a string representing the number using decimal notation. The output
corresponds to the output from C<dparts()>.
123 is returned as "123"
1230 is returned as "1230"
12300 is returned as "12300"
12000 is returned as "12000"
10000 is returned as "10000"
=item to_hex()
$x->to_hex();
Returns a hexadecimal string representation of the number.
=item to_bin()
$x->to_bin();
Returns a binary string representation of the number.
=item to_oct()
$x->to_oct();
Returns an octal string representation of the number.
=item to_bytes()
$x = Math::BigInt->new("1667327589");
$s = $x->to_bytes(); # $s = "cafe"
Returns a byte string representation of the number using big endian byte
order. The invocand must be a non-negative, finite integer.
=item as_hex()
$x->as_hex();
As, C<to_hex()>, but with a "0x" prefix.
=item as_bin()
$x->as_bin();
As, C<to_bin()>, but with a "0b" prefix.
=item as_oct()
$x->as_oct();
As, C<to_oct()>, but with a "0" prefix.
=item as_bytes()
This is just an alias for C<to_bytes()>.
=back
=head2 Other conversion methods
=over
=item numify()
print $x->numify();
Returns a Perl scalar from $x. It is used automatically whenever a scalar is
needed, for instance in array index operations.
=back
=head1 ACCURACY and PRECISION
Math::BigInt and Math::BigFloat have full support for accuracy and precision
based rounding, both automatically after every operation, as well as manually.
This section describes the accuracy/precision handling in Math::BigInt and
Math::BigFloat as it used to be and as it is now, complete with an explanation
of all terms and abbreviations.
Not yet implemented things (but with correct description) are marked with '!',
things that need to be answered are marked with '?'.
In the next paragraph follows a short description of terms used here (because
these may differ from terms used by others people or documentation).
During the rest of this document, the shortcuts A (for accuracy), P (for
precision), F (fallback) and R (rounding mode) are be used.
=head2 Precision P
Precision is a fixed number of digits before (positive) or after (negative) the
decimal point. For example, 123.45 has a precision of -2. 0 means an integer
like 123 (or 120). A precision of 2 means at least two digits to the left of
the decimal point are zero, so 123 with P = 1 becomes 120. Note that numbers
with zeros before the decimal point may have different precisions, because 1200
can have P = 0, 1 or 2 (depending on what the initial value was). It could also
have p < 0, when the digits after the decimal point are zero.
The string output (of floating point numbers) is padded with zeros:
Initial value P A Result String
------------------------------------------------------------
1234.01 -3 1000 1000
1234 -2 1200 1200
1234.5 -1 1230 1230
1234.001 1 1234 1234.0
1234.01 0 1234 1234
1234.01 2 1234.01 1234.01
1234.01 5 1234.01 1234.01000
For Math::BigInt objects, no padding occurs.
=head2 Accuracy A
Number of significant digits. Leading zeros are not counted. A number may have
an accuracy greater than the non-zero digits when there are zeros in it or
trailing zeros. For example, 123.456 has A of 6, 10203 has 5, 123.0506 has 7,
123.45000 has 8 and 0.000123 has 3.
The string output (of floating point numbers) is padded with zeros:
Initial value P A Result String
------------------------------------------------------------
1234.01 3 1230 1230
1234.01 6 1234.01 1234.01
1234.1 8 1234.1 1234.1000
For Math::BigInt objects, no padding occurs.
=head2 Fallback F
When both A and P are undefined, this is used as a fallback accuracy when
dividing numbers.
=head2 Rounding mode R
When rounding a number, different 'styles' or 'kinds' of rounding are possible.
(Note that random rounding, as in Math::Round, is not implemented.)
=over
=item 'trunc'
truncation invariably removes all digits following the rounding place,
replacing them with zeros. Thus, 987.65 rounded to tens (P = 1) becomes 980,
and rounded to the fourth sigdig becomes 987.6 (A = 4). 123.456 rounded to the
second place after the decimal point (P = -2) becomes 123.46.
All other implemented styles of rounding attempt to round to the "nearest
digit." If the digit D immediately to the right of the rounding place (skipping
the decimal point) is greater than 5, the number is incremented at the rounding
place (possibly causing a cascade of incrementation): e.g. when rounding to
units, 0.9 rounds to 1, and -19.9 rounds to -20. If D < 5, the number is
similarly truncated at the rounding place: e.g. when rounding to units, 0.4
rounds to 0, and -19.4 rounds to -19.
However the results of other styles of rounding differ if the digit immediately
to the right of the rounding place (skipping the decimal point) is 5 and if
there are no digits, or no digits other than 0, after that 5. In such cases:
=item 'even'
rounds the digit at the rounding place to 0, 2, 4, 6, or 8 if it is not
already. E.g., when rounding to the first sigdig, 0.45 becomes 0.4, -0.55
becomes -0.6, but 0.4501 becomes 0.5.
=item 'odd'
rounds the digit at the rounding place to 1, 3, 5, 7, or 9 if it is not
already. E.g., when rounding to the first sigdig, 0.45 becomes 0.5, -0.55
becomes -0.5, but 0.5501 becomes 0.6.
=item '+inf'
round to plus infinity, i.e. always round up. E.g., when rounding to the first
sigdig, 0.45 becomes 0.5, -0.55 becomes -0.5, and 0.4501 also becomes 0.5.
=item '-inf'
round to minus infinity, i.e. always round down. E.g., when rounding to the
first sigdig, 0.45 becomes 0.4, -0.55 becomes -0.6, but 0.4501 becomes 0.5.
=item 'zero'
round to zero, i.e. positive numbers down, negative ones up. E.g., when
rounding to the first sigdig, 0.45 becomes 0.4, -0.55 becomes -0.5, but 0.4501
becomes 0.5.
=item 'common'
round up if the digit immediately to the right of the rounding place is 5 or
greater, otherwise round down. E.g., 0.15 becomes 0.2 and 0.149 becomes 0.1.
=back
The handling of A & P in MBI/MBF (the old core code shipped with Perl versions
<= 5.7.2) is like this:
=over
=item Precision
* bfround($p) is able to round to $p number of digits after the decimal
point
* otherwise P is unused
=item Accuracy (significant digits)
* bround($a) rounds to $a significant digits
* only bdiv() and bsqrt() take A as (optional) parameter
+ other operations simply create the same number (bneg etc), or
more (bmul) of digits
+ rounding/truncating is only done when explicitly calling one
of bround or bfround, and never for Math::BigInt (not implemented)
* bsqrt() simply hands its accuracy argument over to bdiv.
* the documentation and the comment in the code indicate two
different ways on how bdiv() determines the maximum number
of digits it should calculate, and the actual code does yet
another thing
POD:
max($Math::BigFloat::div_scale,length(dividend)+length(divisor))
Comment:
result has at most max(scale, length(dividend), length(divisor)) digits
Actual code:
scale = max(scale, length(dividend)-1,length(divisor)-1);
scale += length(divisor) - length(dividend);
So for lx = 3, ly = 9, scale = 10, scale will actually be 16 (10
So for lx = 3, ly = 9, scale = 10, scale will actually be 16
(10+9-3). Actually, the 'difference' added to the scale is cal-
culated from the number of "significant digits" in dividend and
divisor, which is derived by looking at the length of the man-
tissa. Which is wrong, since it includes the + sign (oops) and
actually gets 2 for '+100' and 4 for '+101'. Oops again. Thus
124/3 with div_scale=1 will get you '41.3' based on the strange
assumption that 124 has 3 significant digits, while 120/7 will
get you '17', not '17.1' since 120 is thought to have 2 signif-
icant digits. The rounding after the division then uses the
remainder and $y to determine whether it must round up or down.
? I have no idea which is the right way. That's why I used a slightly more
? simple scheme and tweaked the few failing testcases to match it.
=back
This is how it works now:
=over
=item Setting/Accessing
* You can set the A global via Math::BigInt->accuracy() or
Math::BigFloat->accuracy() or whatever class you are using.
* You can also set P globally by using Math::SomeClass->precision()
likewise.
* Globals are classwide, and not inherited by subclasses.
* to undefine A, use Math::SomeCLass->accuracy(undef);
* to undefine P, use Math::SomeClass->precision(undef);
* Setting Math::SomeClass->accuracy() clears automatically
Math::SomeClass->precision(), and vice versa.
* To be valid, A must be > 0, P can have any value.
* If P is negative, this means round to the P'th place to the right of the
decimal point; positive values mean to the left of the decimal point.
P of 0 means round to integer.
* to find out the current global A, use Math::SomeClass->accuracy()
* to find out the current global P, use Math::SomeClass->precision()
* use $x->accuracy() respective $x->precision() for the local
setting of $x.
* Please note that $x->accuracy() respective $x->precision()
return eventually defined global A or P, when $x's A or P is not
set.
=item Creating numbers
* When you create a number, you can give the desired A or P via:
$x = Math::BigInt->new($number,$A,$P);
* Only one of A or P can be defined, otherwise the result is NaN
* If no A or P is give ($x = Math::BigInt->new($number) form), then the
globals (if set) will be used. Thus changing the global defaults later on
will not change the A or P of previously created numbers (i.e., A and P of
$x will be what was in effect when $x was created)
* If given undef for A and P, NO rounding will occur, and the globals will
NOT be used. This is used by subclasses to create numbers without
suffering rounding in the parent. Thus a subclass is able to have its own
globals enforced upon creation of a number by using
$x = Math::BigInt->new($number,undef,undef):
use Math::BigInt::SomeSubclass;
use Math::BigInt;
Math::BigInt->accuracy(2);
Math::BigInt::SomeSubClass->accuracy(3);
$x = Math::BigInt::SomeSubClass->new(1234);
$x is now 1230, and not 1200. A subclass might choose to implement
this otherwise, e.g. falling back to the parent's A and P.
=item Usage
* If A or P are enabled/defined, they are used to round the result of each
operation according to the rules below
* Negative P is ignored in Math::BigInt, since Math::BigInt objects never
have digits after the decimal point
* Math::BigFloat uses Math::BigInt internally, but setting A or P inside
Math::BigInt as globals does not tamper with the parts of a Math::BigFloat.
A flag is used to mark all Math::BigFloat numbers as 'never round'.
=item Precedence
* It only makes sense that a number has only one of A or P at a time.
If you set either A or P on one object, or globally, the other one will
be automatically cleared.
* If two objects are involved in an operation, and one of them has A in
effect, and the other P, this results in an error (NaN).
* A takes precedence over P (Hint: A comes before P).
If neither of them is defined, nothing is used, i.e. the result will have
as many digits as it can (with an exception for bdiv/bsqrt) and will not
be rounded.
* There is another setting for bdiv() (and thus for bsqrt()). If neither of
A or P is defined, bdiv() will use a fallback (F) of $div_scale digits.
If either the dividend's or the divisor's mantissa has more digits than
the value of F, the higher value will be used instead of F.
This is to limit the digits (A) of the result (just consider what would
happen with unlimited A and P in the case of 1/3 :-)
* bdiv will calculate (at least) 4 more digits than required (determined by
A, P or F), and, if F is not used, round the result
(this will still fail in the case of a result like 0.12345000000001 with A
or P of 5, but this can not be helped - or can it?)
* Thus you can have the math done by on Math::Big* class in two modi:
+ never round (this is the default):
This is done by setting A and P to undef. No math operation
will round the result, with bdiv() and bsqrt() as exceptions to guard
against overflows. You must explicitly call bround(), bfround() or
round() (the latter with parameters).
Note: Once you have rounded a number, the settings will 'stick' on it
and 'infect' all other numbers engaged in math operations with it, since
local settings have the highest precedence. So, to get SaferRound[tm],
use a copy() before rounding like this:
$x = Math::BigFloat->new(12.34);
$y = Math::BigFloat->new(98.76);
$z = $x * $y; # 1218.6984
print $x->copy()->bround(3); # 12.3 (but A is now 3!)
$z = $x * $y; # still 1218.6984, without
# copy would have been 1210!
+ round after each op:
After each single operation (except for testing like is_zero()), the
method round() is called and the result is rounded appropriately. By
setting proper values for A and P, you can have all-the-same-A or
all-the-same-P modes. For example, Math::Currency might set A to undef,
and P to -2, globally.
?Maybe an extra option that forbids local A & P settings would be in order,
?so that intermediate rounding does not 'poison' further math?
=item Overriding globals
* you will be able to give A, P and R as an argument to all the calculation
routines; the second parameter is A, the third one is P, and the fourth is
R (shift right by one for binary operations like badd). P is used only if
the first parameter (A) is undefined. These three parameters override the
globals in the order detailed as follows, i.e. the first defined value
wins:
(local: per object, global: global default, parameter: argument to sub)
+ parameter A
+ parameter P
+ local A (if defined on both of the operands: smaller one is taken)
+ local P (if defined on both of the operands: bigger one is taken)
+ global A
+ global P
+ global F
* bsqrt() will hand its arguments to bdiv(), as it used to, only now for two
arguments (A and P) instead of one
=item Local settings
* You can set A or P locally by using $x->accuracy() or
$x->precision()
and thus force different A and P for different objects/numbers.
* Setting A or P this way immediately rounds $x to the new value.
* $x->accuracy() clears $x->precision(), and vice versa.
=item Rounding
* the rounding routines will use the respective global or local settings.
bround() is for accuracy rounding, while bfround() is for precision
* the two rounding functions take as the second parameter one of the
following rounding modes (R):
'even', 'odd', '+inf', '-inf', 'zero', 'trunc', 'common'
* you can set/get the global R by using Math::SomeClass->round_mode()
or by setting $Math::SomeClass::round_mode
* after each operation, $result->round() is called, and the result may
eventually be rounded (that is, if A or P were set either locally,
globally or as parameter to the operation)
* to manually round a number, call $x->round($A,$P,$round_mode);
this will round the number by using the appropriate rounding function
and then normalize it.
* rounding modifies the local settings of the number:
$x = Math::BigFloat->new(123.456);
$x->accuracy(5);
$x->bround(4);
Here 4 takes precedence over 5, so 123.5 is the result and $x->accuracy()
will be 4 from now on.
=item Default values
* R: 'even'
* F: 40
* A: undef
* P: undef
=item Remarks
* The defaults are set up so that the new code gives the same results as
the old code (except in a few cases on bdiv):
+ Both A and P are undefined and thus will not be used for rounding
after each operation.
+ round() is thus a no-op, unless given extra parameters A and P
=back
=head1 Infinity and Not a Number
While Math::BigInt has extensive handling of inf and NaN, certain quirks
remain.
=over
=item oct()/hex()
These perl routines currently (as of Perl v.5.8.6) cannot handle passed inf.
te@linux:~> perl -wle 'print 2 ** 3333'
Inf
te@linux:~> perl -wle 'print 2 ** 3333 == 2 ** 3333'
1
te@linux:~> perl -wle 'print oct(2 ** 3333)'
0
te@linux:~> perl -wle 'print hex(2 ** 3333)'
Illegal hexadecimal digit 'I' ignored at -e line 1.
0
The same problems occur if you pass them Math::BigInt->binf() objects. Since
overloading these routines is not possible, this cannot be fixed from
Math::BigInt.
=back
=head1 INTERNALS
You should neither care about nor depend on the internal representation; it
might change without notice. Use B<ONLY> method calls like C<< $x->sign(); >>
instead relying on the internal representation.
=head2 MATH LIBRARY
Math with the numbers is done (by default) by a module called
C<Math::BigInt::Calc>. This is equivalent to saying:
use Math::BigInt try => 'Calc';
You can change this backend library by using:
use Math::BigInt try => 'GMP';
B<Note>: General purpose packages should not be explicit about the library to
use; let the script author decide which is best.
If your script works with huge numbers and Calc is too slow for them, you can
also for the loading of one of these libraries and if none of them can be used,
the code dies:
use Math::BigInt only => 'GMP,Pari';
The following would first try to find Math::BigInt::Foo, then
Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
use Math::BigInt try => 'Foo,Math::BigInt::Bar';
The library that is loaded last is used. Note that this can be overwritten at
any time by loading a different library, and numbers constructed with different
libraries cannot be used in math operations together.
=head3 What library to use?
B<Note>: General purpose packages should not be explicit about the library to
use; let the script author decide which is best.
L<Math::BigInt::GMP> and L<Math::BigInt::Pari> are in cases involving big
numbers much faster than Calc, however it is slower when dealing with very
small numbers (less than about 20 digits) and when converting very large
numbers to decimal (for instance for printing, rounding, calculating their
length in decimal etc).
So please select carefully what library you want to use.
Different low-level libraries use different formats to store the numbers.
However, you should B<NOT> depend on the number having a specific format
internally.
See the respective math library module documentation for further details.
=head2 SIGN
The sign is either '+', '-', 'NaN', '+inf' or '-inf'.
A sign of 'NaN' is used to represent the result when input arguments are not
numbers or as a result of 0/0. '+inf' and '-inf' represent plus respectively
minus infinity. You get '+inf' when dividing a positive number by 0, and '-inf'
when dividing any negative number by 0.
=head1 EXAMPLES
use Math::BigInt;
sub bigint { Math::BigInt->new(shift); }
$x = Math::BigInt->bstr("1234") # string "1234"
$x = "$x"; # same as bstr()
$x = Math::BigInt->bneg("1234"); # Math::BigInt "-1234"
$x = Math::BigInt->babs("-12345"); # Math::BigInt "12345"
$x = Math::BigInt->bnorm("-0.00"); # Math::BigInt "0"
$x = bigint(1) + bigint(2); # Math::BigInt "3"
$x = bigint(1) + "2"; # ditto (auto-Math::BigIntify of "2")
$x = bigint(1); # Math::BigInt "1"
$x = $x + 5 / 2; # Math::BigInt "3"
$x = $x ** 3; # Math::BigInt "27"
$x *= 2; # Math::BigInt "54"
$x = Math::BigInt->new(0); # Math::BigInt "0"
$x--; # Math::BigInt "-1"
$x = Math::BigInt->badd(4,5) # Math::BigInt "9"
print $x->bsstr(); # 9e+0
Examples for rounding:
use Math::BigFloat;
use Test::More;
$x = Math::BigFloat->new(123.4567);
$y = Math::BigFloat->new(123.456789);
Math::BigFloat->accuracy(4); # no more A than 4
is ($x->copy()->bround(),123.4); # even rounding
print $x->copy()->bround(),"\n"; # 123.4
Math::BigFloat->round_mode('odd'); # round to odd
print $x->copy()->bround(),"\n"; # 123.5
Math::BigFloat->accuracy(5); # no more A than 5
Math::BigFloat->round_mode('odd'); # round to odd
print $x->copy()->bround(),"\n"; # 123.46
$y = $x->copy()->bround(4),"\n"; # A = 4: 123.4
print "$y, ",$y->accuracy(),"\n"; # 123.4, 4
Math::BigFloat->accuracy(undef); # A not important now
Math::BigFloat->precision(2); # P important
print $x->copy()->bnorm(),"\n"; # 123.46
print $x->copy()->bround(),"\n"; # 123.46
Examples for converting:
my $x = Math::BigInt->new('0b1'.'01' x 123);
print "bin: ",$x->as_bin()," hex:",$x->as_hex()," dec: ",$x,"\n";
=head1 Autocreating constants
After C<use Math::BigInt ':constant'> all the B<integer> decimal, hexadecimal
and binary constants in the given scope are converted to C<Math::BigInt>. This
conversion happens at compile time.
In particular,
perl -MMath::BigInt=:constant -e 'print 2**100,"\n"'
prints the integer value of C<2**100>. Note that without conversion of
constants the expression 2**100 is calculated using Perl scalars.
Please note that strings and floating point constants are not affected, so that
use Math::BigInt qw/:constant/;
$x = 1234567890123456789012345678901234567890
+ 123456789123456789;
$y = '1234567890123456789012345678901234567890'
+ '123456789123456789';
does not give you what you expect. You need an explicit Math::BigInt->new()
around one of the operands. You should also quote large constants to protect
loss of precision:
use Math::BigInt;
$x = Math::BigInt->new('1234567889123456789123456789123456789');
Without the quotes Perl would convert the large number to a floating point
constant at compile time and then hand the result to Math::BigInt, which
results in an truncated result or a NaN.
This also applies to integers that look like floating point constants:
use Math::BigInt ':constant';
print ref(123e2),"\n";
print ref(123.2e2),"\n";
prints nothing but newlines. Use either L<bignum> or L<Math::BigFloat> to get
this to work.
=head1 PERFORMANCE
Using the form $x += $y; etc over $x = $x + $y is faster, since a copy of $x
must be made in the second case. For long numbers, the copy can eat up to 20%
of the work (in the case of addition/subtraction, less for
multiplication/division). If $y is very small compared to $x, the form $x += $y
is MUCH faster than $x = $x + $y since making the copy of $x takes more time
then the actual addition.
With a technique called copy-on-write, the cost of copying with overload could
be minimized or even completely avoided. A test implementation of COW did show
performance gains for overloaded math, but introduced a performance loss due to
a constant overhead for all other operations. So Math::BigInt does currently
not COW.
The rewritten version of this module (vs. v0.01) is slower on certain
operations, like C<new()>, C<bstr()> and C<numify()>. The reason are that it
does now more work and handles much more cases. The time spent in these
operations is usually gained in the other math operations so that code on the
average should get (much) faster. If they don't, please contact the author.
Some operations may be slower for small numbers, but are significantly faster
for big numbers. Other operations are now constant (O(1), like C<bneg()>,
C<babs()> etc), instead of O(N) and thus nearly always take much less time.
These optimizations were done on purpose.
If you find the Calc module to slow, try to install any of the replacement
modules and see if they help you.
=head2 Alternative math libraries
You can use an alternative library to drive Math::BigInt. See the section
L</MATH LIBRARY> for more information.
For more benchmark results see L<http://bloodgate.com/perl/benchmarks.html>.
=head1 SUBCLASSING
=head2 Subclassing Math::BigInt
The basic design of Math::BigInt allows simple subclasses with very little
work, as long as a few simple rules are followed:
=over
=item *
The public API must remain consistent, i.e. if a sub-class is overloading
addition, the sub-class must use the same name, in this case badd(). The reason
for this is that Math::BigInt is optimized to call the object methods directly.
=item *
The private object hash keys like C<< $x->{sign} >> may not be changed, but
additional keys can be added, like C<< $x->{_custom} >>.
=item *
Accessor functions are available for all existing object hash keys and should
be used instead of directly accessing the internal hash keys. The reason for
this is that Math::BigInt itself has a pluggable interface which permits it to
support different storage methods.
=back
More complex sub-classes may have to replicate more of the logic internal of
Math::BigInt if they need to change more basic behaviors. A subclass that needs
to merely change the output only needs to overload C<bstr()>.
All other object methods and overloaded functions can be directly inherited
from the parent class.
At the very minimum, any subclass needs to provide its own C<new()> and can
store additional hash keys in the object. There are also some package globals
that must be defined, e.g.:
# Globals
$accuracy = undef;
$precision = -2; # round to 2 decimal places
$round_mode = 'even';
$div_scale = 40;
Additionally, you might want to provide the following two globals to allow
auto-upgrading and auto-downgrading to work correctly:
$upgrade = undef;
$downgrade = undef;
This allows Math::BigInt to correctly retrieve package globals from the
subclass, like C<$SubClass::precision>. See t/Math/BigInt/Subclass.pm or
t/Math/BigFloat/SubClass.pm completely functional subclass examples.
Don't forget to
use overload;
in your subclass to automatically inherit the overloading from the parent. If
you like, you can change part of the overloading, look at Math::String for an
example.
=head1 UPGRADING
When used like this:
use Math::BigInt upgrade => 'Foo::Bar';
certain operations 'upgrade' their calculation and thus the result to the class
Foo::Bar. Usually this is used in conjunction with Math::BigFloat:
use Math::BigInt upgrade => 'Math::BigFloat';
As a shortcut, you can use the module L<bignum>:
use bignum;
Also good for one-liners:
perl -Mbignum -le 'print 2 ** 255'
This makes it possible to mix arguments of different classes (as in 2.5 + 2) as
well es preserve accuracy (as in sqrt(3)).
Beware: This feature is not fully implemented yet.
=head2 Auto-upgrade
The following methods upgrade themselves unconditionally; that is if upgrade is
in effect, they always hands up their work:
div bsqrt blog bexp bpi bsin bcos batan batan2
All other methods upgrade themselves only when one (or all) of their arguments
are of the class mentioned in $upgrade.
=head1 EXPORTS
C<Math::BigInt> exports nothing by default, but can export the following
methods:
bgcd
blcm
=head1 CAVEATS
Some things might not work as you expect them. Below is documented what is
known to be troublesome:
=over
=item Comparing numbers as strings
Both C<bstr()> and C<bsstr()> as well as stringify via overload drop the
leading '+'. This is to be consistent with Perl and to make C<cmp> (especially
with overloading) to work as you expect. It also solves problems with
C<Test.pm> and L<Test::More>, which stringify arguments before comparing them.
Mark Biggar said, when asked about to drop the '+' altogether, or make only
C<cmp> work:
I agree (with the first alternative), don't add the '+' on positive
numbers. It's not as important anymore with the new internal form
for numbers. It made doing things like abs and neg easier, but
those have to be done differently now anyway.
So, the following examples now works as expected:
use Test::More tests => 1;
use Math::BigInt;
my $x = Math::BigInt -> new(3*3);
my $y = Math::BigInt -> new(3*3);
is($x,3*3, 'multiplication');
print "$x eq 9" if $x eq $y;
print "$x eq 9" if $x eq '9';
print "$x eq 9" if $x eq 3*3;
Additionally, the following still works:
print "$x == 9" if $x == $y;
print "$x == 9" if $x == 9;
print "$x == 9" if $x == 3*3;
There is now a C<bsstr()> method to get the string in scientific notation aka
C<1e+2> instead of C<100>. Be advised that overloaded 'eq' always uses bstr()
for comparison, but Perl represents some numbers as 100 and others as 1e+308.
If in doubt, convert both arguments to Math::BigInt before comparing them as
strings:
use Test::More tests => 3;
use Math::BigInt;
$x = Math::BigInt->new('1e56'); $y = 1e56;
is($x,$y); # fails
is($x->bsstr(),$y); # okay
$y = Math::BigInt->new($y);
is($x,$y); # okay
Alternatively, simply use C<< <=> >> for comparisons, this always gets it
right. There is not yet a way to get a number automatically represented as a
string that matches exactly the way Perl represents it.
See also the section about L<Infinity and Not a Number> for problems in
comparing NaNs.
=item int()
C<int()> returns (at least for Perl v5.7.1 and up) another Math::BigInt, not a
Perl scalar:
$x = Math::BigInt->new(123);
$y = int($x); # 123 as a Math::BigInt
$x = Math::BigFloat->new(123.45);
$y = int($x); # 123 as a Math::BigFloat
If you want a real Perl scalar, use C<numify()>:
$y = $x->numify(); # 123 as a scalar
This is seldom necessary, though, because this is done automatically, like when
you access an array:
$z = $array[$x]; # does work automatically
=item Modifying and =
Beware of:
$x = Math::BigFloat->new(5);
$y = $x;
This makes a second reference to the B<same> object and stores it in $y. Thus
anything that modifies $x (except overloaded operators) also modifies $y, and
vice versa. Or in other words, C<=> is only safe if you modify your
Math::BigInt objects only via overloaded math. As soon as you use a method call
it breaks:
$x->bmul(2);
print "$x, $y\n"; # prints '10, 10'
If you want a true copy of $x, use:
$y = $x->copy();
You can also chain the calls like this, this first makes a copy and then
multiply it by 2:
$y = $x->copy()->bmul(2);
See also the documentation for overload.pm regarding C<=>.
=item Overloading -$x
The following:
$x = -$x;
is slower than
$x->bneg();
since overload calls C<sub($x,0,1);> instead of C<neg($x)>. The first variant
needs to preserve $x since it does not know that it later gets overwritten.
This makes a copy of $x and takes O(N), but $x->bneg() is O(1).
=item Mixing different object types
With overloaded operators, it is the first (dominating) operand that determines
which method is called. Here are some examples showing what actually gets
called in various cases.
use Math::BigInt;
use Math::BigFloat;
$mbf = Math::BigFloat->new(5);
$mbi2 = Math::BigInt->new(5);
$mbi = Math::BigInt->new(2);
# what actually gets called:
$float = $mbf + $mbi; # $mbf->badd($mbi)
$float = $mbf / $mbi; # $mbf->bdiv($mbi)
$integer = $mbi + $mbf; # $mbi->badd($mbf)
$integer = $mbi2 / $mbi; # $mbi2->bdiv($mbi)
$integer = $mbi2 / $mbf; # $mbi2->bdiv($mbf)
For instance, Math::BigInt->bdiv() always returns a Math::BigInt, regardless of
whether the second operant is a Math::BigFloat. To get a Math::BigFloat you
either need to call the operation manually, make sure each operand already is a
Math::BigFloat, or cast to that type via Math::BigFloat->new():
$float = Math::BigFloat->new($mbi2) / $mbi; # = 2.5
Beware of casting the entire expression, as this would cast the
result, at which point it is too late:
$float = Math::BigFloat->new($mbi2 / $mbi); # = 2
Beware also of the order of more complicated expressions like:
$integer = ($mbi2 + $mbi) / $mbf; # int / float => int
$integer = $mbi2 / Math::BigFloat->new($mbi); # ditto
If in doubt, break the expression into simpler terms, or cast all operands
to the desired resulting type.
Scalar values are a bit different, since:
$float = 2 + $mbf;
$float = $mbf + 2;
both result in the proper type due to the way the overloaded math works.
This section also applies to other overloaded math packages, like Math::String.
One solution to you problem might be autoupgrading|upgrading. See the
pragmas L<bignum>, L<bigint> and L<bigrat> for an easy way to do this.
=back
=head1 BUGS
Please report any bugs or feature requests to
C<bug-math-bigint at rt.cpan.org>, or through the web interface at
L<https://rt.cpan.org/Ticket/Create.html?Queue=Math-BigInt> (requires login).
We will be notified, and then you'll automatically be notified of progress on
your bug as I make changes.
=head1 SUPPORT
You can find documentation for this module with the perldoc command.
perldoc Math::BigInt
You can also look for information at:
=over 4
=item * RT: CPAN's request tracker
L<https://rt.cpan.org/Public/Dist/Display.html?Name=Math-BigInt>
=item * AnnoCPAN: Annotated CPAN documentation
L<http://annocpan.org/dist/Math-BigInt>
=item * CPAN Ratings
L<http://cpanratings.perl.org/dist/Math-BigInt>
=item * Search CPAN
L<http://search.cpan.org/dist/Math-BigInt/>
=item * CPAN Testers Matrix
L<http://matrix.cpantesters.org/?dist=Math-BigInt>
=item * The Bignum mailing list
=over 4
=item * Post to mailing list
C<bignum at lists.scsys.co.uk>
=item * View mailing list
L<http://lists.scsys.co.uk/pipermail/bignum/>
=item * Subscribe/Unsubscribe
L<http://lists.scsys.co.uk/cgi-bin/mailman/listinfo/bignum>
=back
=back
=head1 LICENSE
This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.
=head1 SEE ALSO
L<Math::BigFloat> and L<Math::BigRat> as well as the backends
L<Math::BigInt::FastCalc>, L<Math::BigInt::GMP>, and L<Math::BigInt::Pari>.
The pragmas L<bignum>, L<bigint> and L<bigrat> also might be of interest
because they solve the autoupgrading/downgrading issue, at least partly.
=head1 AUTHORS
=over 4
=item *
Mark Biggar, overloaded interface by Ilya Zakharevich, 1996-2001.
=item *
Completely rewritten by Tels L<http://bloodgate.com>, 2001-2008.
=item *
Florian Ragwitz E<lt>flora@cpan.orgE<gt>, 2010.
=item *
Peter John Acklam E<lt>pjacklam@online.noE<gt>, 2011-.
=back
Many people contributed in one or more ways to the final beast, see the file
CREDITS for an (incomplete) list. If you miss your name, please drop me a
mail. Thank you!
=cut
|