This file is indexed.

/usr/include/mapbox/geometry/wagyu/local_minimum_util.hpp is in libmapbox-wagyu-dev 0.4.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#pragma once

#include <mapbox/geometry/wagyu/edge.hpp>
#include <mapbox/geometry/wagyu/local_minimum.hpp>

#include <algorithm>

#ifdef DEBUG
#include <stdexcept>
#endif

namespace mapbox {
namespace geometry {
namespace wagyu {

template <typename T>
inline void reverse_horizontal(edge<T>& e) {
    // swap horizontal edges' top and bottom x's so they follow the natural
    // progression of the bounds - ie so their xbots will align with the
    // adjoining lower edge. [Helpful in the process_horizontal() method.]
    std::swap(e.top.x, e.bot.x);
}

// Make a list start on a local maximum by
// shifting all the points not on a local maximum to the
template <typename T>
void start_list_on_local_maximum(edge_list<T>& edges) {
    if (edges.size() <= 2) {
        return;
    }
    // Find the first local maximum going forward in the list
    auto prev_edge = edges.end();
    --prev_edge;
    bool prev_edge_is_horizontal = is_horizontal(*prev_edge);
    auto edge = edges.begin();
    bool edge_is_horizontal;
    bool y_decreasing_before_last_horizontal = false; // assume false at start

    while (edge != edges.end()) {
        edge_is_horizontal = is_horizontal(*edge);
        if ((!prev_edge_is_horizontal && !edge_is_horizontal && edge->top == prev_edge->top)) {
            break;
        }
        if (!edge_is_horizontal && prev_edge_is_horizontal) {
            if (y_decreasing_before_last_horizontal &&
                (edge->top == prev_edge->bot || edge->top == prev_edge->top)) {
                break;
            }
        } else if (!y_decreasing_before_last_horizontal && !prev_edge_is_horizontal &&
                   edge_is_horizontal &&
                   (prev_edge->top == edge->top || prev_edge->top == edge->bot)) {
            y_decreasing_before_last_horizontal = true;
        }
        prev_edge_is_horizontal = edge_is_horizontal;
        prev_edge = edge;
        ++edge;
    }
    std::rotate(edges.begin(), edge, edges.end());
}

template <typename T>
bound<T> create_bound_towards_minimum(edge_list<T>& edges) {
    if (edges.size() == 1) {
        if (is_horizontal(edges.front())) {
            reverse_horizontal(edges.front());
        }
        bound<T> bnd;
        std::swap(bnd.edges, edges);
        return bnd;
    }
    auto next_edge = edges.begin();
    auto edge = next_edge;
    ++next_edge;
    bool edge_is_horizontal = is_horizontal(*edge);
    if (edge_is_horizontal) {
        reverse_horizontal(*edge);
    }
    bool next_edge_is_horizontal;
    bool y_increasing_before_last_horizontal = false; // assume false at start

    while (next_edge != edges.end()) {
        next_edge_is_horizontal = is_horizontal(*next_edge);
        if ((!next_edge_is_horizontal && !edge_is_horizontal && edge->bot == next_edge->bot)) {
            break;
        }
        if (!next_edge_is_horizontal && edge_is_horizontal) {
            if (y_increasing_before_last_horizontal &&
                (next_edge->bot == edge->bot || next_edge->bot == edge->top)) {
                break;
            }
        } else if (!y_increasing_before_last_horizontal && !edge_is_horizontal &&
                   next_edge_is_horizontal &&
                   (edge->bot == next_edge->top || edge->bot == next_edge->bot)) {
            y_increasing_before_last_horizontal = true;
        }
        edge_is_horizontal = next_edge_is_horizontal;
        edge = next_edge;
        if (edge_is_horizontal) {
            reverse_horizontal(*edge);
        }
        ++next_edge;
    }
    bound<T> bnd;
    if (next_edge == edges.end()) {
        std::swap(edges, bnd.edges);
    } else {
        bnd.edges.reserve(static_cast<std::size_t>(std::distance(edges.begin(), next_edge)));
        std::move(edges.begin(), next_edge, std::back_inserter(bnd.edges));
        edges.erase(edges.begin(), next_edge);
    }
    std::reverse(bnd.edges.begin(), bnd.edges.end());
    return bnd;
}

template <typename T>
bound<T> create_bound_towards_maximum(edge_list<T>& edges) {
    if (edges.size() == 1) {
        bound<T> bnd;
        std::swap(bnd.edges, edges);
        return bnd;
    }
    auto next_edge = edges.begin();
    auto edge = next_edge;
    ++next_edge;
    bool edge_is_horizontal = is_horizontal(*edge);
    bool next_edge_is_horizontal;
    bool y_decreasing_before_last_horizontal = false; // assume false at start

    while (next_edge != edges.end()) {
        next_edge_is_horizontal = is_horizontal(*next_edge);
        if ((!next_edge_is_horizontal && !edge_is_horizontal && edge->top == next_edge->top)) {
            break;
        }
        if (!next_edge_is_horizontal && edge_is_horizontal) {
            if (y_decreasing_before_last_horizontal &&
                (next_edge->top == edge->bot || next_edge->top == edge->top)) {
                break;
            }
        } else if (!y_decreasing_before_last_horizontal && !edge_is_horizontal &&
                   next_edge_is_horizontal &&
                   (edge->top == next_edge->top || edge->top == next_edge->bot)) {
            y_decreasing_before_last_horizontal = true;
        }
        edge_is_horizontal = next_edge_is_horizontal;
        edge = next_edge;
        ++next_edge;
    }
    bound<T> bnd;
    if (next_edge == edges.end()) {
        std::swap(bnd.edges, edges);
    } else {
        bnd.edges.reserve(static_cast<std::size_t>(std::distance(edges.begin(), next_edge)));
        std::move(edges.begin(), next_edge, std::back_inserter(bnd.edges));
        edges.erase(edges.begin(), next_edge);
    }
    return bnd;
}

template <typename T>
void fix_horizontals(bound<T>& bnd) {

    auto edge_itr = bnd.edges.begin();
    auto next_itr = std::next(edge_itr);
    if (next_itr == bnd.edges.end()) {
        return;
    }
    if (is_horizontal(*edge_itr) && next_itr->bot != edge_itr->top) {
        reverse_horizontal(*edge_itr);
    }
    auto prev_itr = edge_itr++;
    while (edge_itr != bnd.edges.end()) {
        if (is_horizontal(*edge_itr) && prev_itr->top != edge_itr->bot) {
            reverse_horizontal(*edge_itr);
        }
        prev_itr = edge_itr;
        ++edge_itr;
    }
}

template <typename T>
void move_horizontals_on_left_to_right(bound<T>& left_bound, bound<T>& right_bound) {
    // We want all the horizontal segments that are at the same Y as the minimum to be on the right
    // bound
    auto edge_itr = left_bound.edges.begin();
    while (edge_itr != left_bound.edges.end()) {
        if (!is_horizontal(*edge_itr)) {
            break;
        }
        reverse_horizontal(*edge_itr);
        ++edge_itr;
    }
    if (edge_itr == left_bound.edges.begin()) {
        return;
    }
    std::reverse(left_bound.edges.begin(), edge_itr);
    auto dist = std::distance(left_bound.edges.begin(), edge_itr);
    std::move(left_bound.edges.begin(), edge_itr, std::back_inserter(right_bound.edges));
    left_bound.edges.erase(left_bound.edges.begin(), edge_itr);
    std::rotate(right_bound.edges.begin(), std::prev(right_bound.edges.end(), dist),
                right_bound.edges.end());
}

template <typename T>
void add_ring_to_local_minima_list(edge_list<T>& edges,
                                   local_minimum_list<T>& minima_list,
                                   polygon_type poly_type) {

    if (edges.empty()) {
        return;
    }
    // Adjust the order of the ring so we start on a local maximum
    // therefore we start right away on a bound.
    start_list_on_local_maximum(edges);

    bound_ptr<T> first_minimum = nullptr;
    bound_ptr<T> last_maximum = nullptr;
    while (!edges.empty()) {
        bool lm_minimum_has_horizontal = false;
        auto to_minimum = create_bound_towards_minimum(edges);
        if (edges.empty()) {
            throw std::runtime_error("Edges is empty after only creating a single bound.");
        }
        auto to_maximum = create_bound_towards_maximum(edges);
        fix_horizontals(to_minimum);
        fix_horizontals(to_maximum);
        auto to_max_first_non_horizontal = to_maximum.edges.begin();
        auto to_min_first_non_horizontal = to_minimum.edges.begin();
        bool minimum_is_left = true;
        while (to_max_first_non_horizontal != to_maximum.edges.end() &&
               is_horizontal(*to_max_first_non_horizontal)) {
            lm_minimum_has_horizontal = true;
            ++to_max_first_non_horizontal;
        }
        while (to_min_first_non_horizontal != to_minimum.edges.end() &&
               is_horizontal(*to_min_first_non_horizontal)) {
            lm_minimum_has_horizontal = true;
            ++to_min_first_non_horizontal;
        }

        if (to_max_first_non_horizontal == to_maximum.edges.end() ||
            to_min_first_non_horizontal == to_minimum.edges.end()) {
            throw std::runtime_error("should not have a horizontal only bound for a ring");
        }

        if (lm_minimum_has_horizontal) {
            if (to_max_first_non_horizontal->bot.x > to_min_first_non_horizontal->bot.x) {
                minimum_is_left = true;
                move_horizontals_on_left_to_right(to_minimum, to_maximum);
            } else {
                minimum_is_left = false;
                move_horizontals_on_left_to_right(to_maximum, to_minimum);
            }
        } else {
            if (to_max_first_non_horizontal->dx > to_min_first_non_horizontal->dx) {
                minimum_is_left = false;
            } else {
                minimum_is_left = true;
            }
        }
        assert(!to_minimum.edges.empty());
        assert(!to_maximum.edges.empty());
        auto const& min_front = to_minimum.edges.front();
        if (last_maximum) {
            to_minimum.maximum_bound = last_maximum;
        }
        to_minimum.poly_type = poly_type;
        to_maximum.poly_type = poly_type;
        if (!minimum_is_left) {
            to_minimum.side = edge_right;
            to_maximum.side = edge_left;
            to_minimum.winding_delta = -1;
            to_maximum.winding_delta = 1;
            minima_list.emplace_back(std::move(to_maximum), std::move(to_minimum), min_front.bot.y,
                                     lm_minimum_has_horizontal);
            if (!last_maximum) {
                first_minimum = &(minima_list.back().right_bound);
            } else {
                last_maximum->maximum_bound = &(minima_list.back().right_bound);
            }
            last_maximum = &(minima_list.back().left_bound);
        } else {
            to_minimum.side = edge_left;
            to_maximum.side = edge_right;
            to_minimum.winding_delta = -1;
            to_maximum.winding_delta = 1;
            minima_list.emplace_back(std::move(to_minimum), std::move(to_maximum), min_front.bot.y,
                                     lm_minimum_has_horizontal);
            if (!last_maximum) {
                first_minimum = &(minima_list.back().left_bound);
            } else {
                last_maximum->maximum_bound = &(minima_list.back().left_bound);
            }
            last_maximum = &(minima_list.back().right_bound);
        }
    }
    last_maximum->maximum_bound = first_minimum;
    first_minimum->maximum_bound = last_maximum;
}

template <typename T>
void initialize_lm(local_minimum_ptr_list_itr<T>& lm) {
    if (!(*lm)->left_bound.edges.empty()) {
        (*lm)->left_bound.current_edge = (*lm)->left_bound.edges.begin();
        (*lm)->left_bound.next_edge = std::next((*lm)->left_bound.current_edge);
        (*lm)->left_bound.current_x = static_cast<double>((*lm)->left_bound.current_edge->bot.x);
        (*lm)->left_bound.winding_count = 0;
        (*lm)->left_bound.winding_count2 = 0;
        (*lm)->left_bound.side = edge_left;
        (*lm)->left_bound.ring = nullptr;
    }
    if (!(*lm)->right_bound.edges.empty()) {
        (*lm)->right_bound.current_edge = (*lm)->right_bound.edges.begin();
        (*lm)->right_bound.next_edge = std::next((*lm)->right_bound.current_edge);
        (*lm)->right_bound.current_x = static_cast<double>((*lm)->right_bound.current_edge->bot.x);
        (*lm)->right_bound.winding_count = 0;
        (*lm)->right_bound.winding_count2 = 0;
        (*lm)->right_bound.side = edge_right;
        (*lm)->right_bound.ring = nullptr;
    }
}
}
}
}