This file is indexed.

/usr/share/javascript/leaflet/leaflet.geometryutil.js is in libjs-leaflet-geometryutil 0.4.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
// Packaging/modules magic dance.
(function (factory) {
    var L;
    if (typeof define === 'function' && define.amd) {
        // AMD
        define(['leaflet'], factory);
    } else if (typeof module !== 'undefined') {
        // Node/CommonJS
        L = require('leaflet');
        module.exports = factory(L);
    } else {
        // Browser globals
        if (typeof window.L === 'undefined')
            throw 'Leaflet must be loaded first';
        factory(window.L);
    }
}(function (L) {
"use strict";

/**
 * @fileOverview Leaflet Geometry utilities for distances and linear referencing.
 * @name L.GeometryUtil
 */

L.GeometryUtil = L.extend(L.GeometryUtil || {}, {

    /**
        Shortcut function for planar distance between two {L.LatLng} at current zoom.
        @param {L.Map} map
        @param {L.LatLng} latlngA
        @param {L.LatLng} latlngB
        @returns {Number} in pixels
     */
    distance: function (map, latlngA, latlngB) {
        return map.latLngToLayerPoint(latlngA).distanceTo(map.latLngToLayerPoint(latlngB));
    },

    /**
        Shortcut function for planar distance between a {L.LatLng} and a segment (A-B).
        @param {L.Map} map
        @param {L.LatLng} latlng
        @param {L.LatLng} latlngA
        @param {L.LatLng} latlngB
        @returns {Number} in pixels
    */
    distanceSegment: function (map, latlng, latlngA, latlngB) {
        var p = map.latLngToLayerPoint(latlng),
           p1 = map.latLngToLayerPoint(latlngA),
           p2 = map.latLngToLayerPoint(latlngB);
        return L.LineUtil.pointToSegmentDistance(p, p1, p2);
    },

    /**
        Shortcut function for converting distance to readable distance.
        @param {Number} distance
        @param {String} unit ('metric' or 'imperial')
        @returns {Number} in yard or miles
    */
    readableDistance: function (distance, unit) {
        var isMetric = (unit !== 'imperial'),
            distanceStr;
        if (isMetric) {
            // show metres when distance is < 1km, then show km
            if (distance > 1000) {
                distanceStr = (distance  / 1000).toFixed(2) + ' km';
            }
            else {
                distanceStr = Math.ceil(distance) + ' m';
            }
        }
        else {
            distance *= 1.09361;
            if (distance > 1760) {
                distanceStr = (distance / 1760).toFixed(2) + ' miles';
            }
            else {
                distanceStr = Math.ceil(distance) + ' yd';
            }
        }
        return distanceStr;
    },

    /**
        Returns true if the latlng belongs to segment.
        param {L.LatLng} latlng
        @param {L.LatLng} latlngA
        @param {L.LatLng} latlngB
        @param {?Number} [tolerance=0.2]
        @returns {boolean}
     */
    belongsSegment: function(latlng, latlngA, latlngB, tolerance) {
        tolerance = tolerance === undefined ? 0.2 : tolerance;
        var hypotenuse = latlngA.distanceTo(latlngB),
            delta = latlngA.distanceTo(latlng) + latlng.distanceTo(latlngB) - hypotenuse;
        return delta/hypotenuse < tolerance;
    },

    /**
     * Returns total length of line
     * @param {L.Polyline|Array<L.Point>|Array<L.LatLng>}
     * @returns {Number} in meters
     */
    length: function (coords) {
        var accumulated = L.GeometryUtil.accumulatedLengths(coords);
        return accumulated.length > 0 ? accumulated[accumulated.length-1] : 0;
    },

    /**
     * Returns a list of accumulated length along a line.
     * @param {L.Polyline|Array<L.Point>|Array<L.LatLng>}
     * @returns {Number} in meters
     */
    accumulatedLengths: function (coords) {
        if (typeof coords.getLatLngs == 'function') {
            coords = coords.getLatLngs();
        }
        if (coords.length === 0)
            return [];
        var total = 0,
            lengths = [0];
        for (var i = 0, n = coords.length - 1; i< n; i++) {
            total += coords[i].distanceTo(coords[i+1]);
            lengths.push(total);
        }
        return lengths;
    },

    /**
        Returns the closest point of a {L.LatLng} on the segment (A-B)
        @param {L.Map} map
        @param {L.LatLng} latlng
        @param {L.LatLng} latlngA
        @param {L.LatLng} latlngB
        @returns {L.LatLng}
    */
    closestOnSegment: function (map, latlng, latlngA, latlngB) {
        var maxzoom = map.getMaxZoom();
        if (maxzoom === Infinity)
            maxzoom = map.getZoom();
        var p = map.project(latlng, maxzoom),
           p1 = map.project(latlngA, maxzoom),
           p2 = map.project(latlngB, maxzoom),
           closest = L.LineUtil.closestPointOnSegment(p, p1, p2);
        return map.unproject(closest, maxzoom);
    },

    /**
        Returns the closest latlng on layer.
        @param {L.Map} map
        @param {Array<L.LatLng>|L.PolyLine} layer - Layer that contains the result.
        @param {L.LatLng} latlng
        @param {?boolean} [vertices=false] - Whether to restrict to path vertices.
        @returns {L.LatLng}
    */
    closest: function (map, layer, latlng, vertices) {
        if (typeof layer.getLatLngs != 'function')
            layer = L.polyline(layer);

        var latlngs = layer.getLatLngs().slice(0),
            mindist = Infinity,
            result = null,
            i, n, distance;

        // Lookup vertices
        if (vertices) {
            for(i = 0, n = latlngs.length; i < n; i++) {
                var ll = latlngs[i];
                distance = L.GeometryUtil.distance(map, latlng, ll);
                if (distance < mindist) {
                    mindist = distance;
                    result = ll;
                    result.distance = distance;
                }
            }
            return result;
        }

        if (layer instanceof L.Polygon) {
            latlngs.push(latlngs[0]);
        }

        // Keep the closest point of all segments
        for (i = 0, n = latlngs.length; i < n-1; i++) {
            var latlngA = latlngs[i],
                latlngB = latlngs[i+1];
            distance = L.GeometryUtil.distanceSegment(map, latlng, latlngA, latlngB);
            if (distance <= mindist) {
                mindist = distance;
                result = L.GeometryUtil.closestOnSegment(map, latlng, latlngA, latlngB);
                result.distance = distance;
            }
        }
        return result;
    },

    /**
        Returns the closest layer to latlng among a list of layers.
        @param {L.Map} map
        @param {Array<L.ILayer>} layers
        @param {L.LatLng} latlng
        @returns {object} with layer, latlng and distance or {null} if list is empty;
    */
    closestLayer: function (map, layers, latlng) {
        var mindist = Infinity,
            result = null,
            ll = null,
            distance = Infinity;

        for (var i = 0, n = layers.length; i < n; i++) {
            var layer = layers[i];
            // Single dimension, snap on points, else snap on closest
            if (typeof layer.getLatLng == 'function') {
                ll = layer.getLatLng();
                distance = L.GeometryUtil.distance(map, latlng, ll);
            }
            else {
                ll = L.GeometryUtil.closest(map, layer, latlng);
                if (ll) distance = ll.distance;  // Can return null if layer has no points.
            }
            if (distance < mindist) {
                mindist = distance;
                result = {layer: layer, latlng: ll, distance: distance};
            }
        }
        return result;
    },

    /**
        Returns the closest position from specified {LatLng} among specified layers,
        with a maximum tolerance in pixels, providing snapping behaviour.
        @param {L.Map} map
        @param {Array<ILayer>} layers - A list of layers to snap on.
        @param {L.LatLng} latlng - The position to snap.
        @param {?Number} [tolerance=Infinity] - Maximum number of pixels.
        @param {?boolean} [withVertices=true] - Snap to layers vertices.
        @returns {object} with snapped {LatLng} and snapped {Layer} or null if tolerance exceeded.
    */
    closestLayerSnap: function (map, layers, latlng, tolerance, withVertices) {
        tolerance = typeof tolerance == 'number' ? tolerance : Infinity;
        withVertices = typeof withVertices == 'boolean' ? withVertices : true;

        var result = L.GeometryUtil.closestLayer(map, layers, latlng);
        if (!result || result.distance > tolerance)
            return null;

        // If snapped layer is linear, try to snap on vertices (extremities and middle points)
        if (withVertices && typeof result.layer.getLatLngs == 'function') {
            var closest = L.GeometryUtil.closest(map, result.layer, result.latlng, true);
            if (closest.distance < tolerance) {
                result.latlng = closest;
                result.distance = L.GeometryUtil.distance(map, closest, latlng);
            }
        }
        return result;
    },

    /**
        Returns the Point located on a segment at the specified ratio of the segment length.
        @param {L.Point} pA
        @param {L.Point} pB
        @param {Number} the length ratio, expressed as a decimal between 0 and 1, inclusive.
        @returns {L.Point} the interpolated point.
    */
    interpolateOnPointSegment: function (pA, pB, ratio) {
        return L.point(
            (pA.x * (1 - ratio)) + (ratio * pB.x),
            (pA.y * (1 - ratio)) + (ratio * pB.y)
        );
    },

    /**
        Returns the coordinate of the point located on a line at the specified ratio of the line length.
        @param {L.Map} map
        @param {Array<L.LatLng>|L.PolyLine} latlngs
        @param {Number} the length ratio, expressed as a decimal between 0 and 1, inclusive
        @returns {Object} an object with latLng ({LatLng}) and predecessor ({Number}), the index of the preceding vertex in the Polyline
        (-1 if the interpolated point is the first vertex)
    */
    interpolateOnLine: function (map, latLngs, ratio) {
        latLngs = (latLngs instanceof L.Polyline) ? latLngs.getLatLngs() : latLngs;
        var n = latLngs.length;
        if (n < 2) {
            return null;
        }

        if (ratio === 0) {
            return {
                latLng: latLngs[0] instanceof L.LatLng ? latLngs[0] : L.latLng(latLngs[0]),
                predecessor: -1
            };
        }
        if (ratio == 1) {
            return {
                latLng: latLngs[latLngs.length -1] instanceof L.LatLng ? latLngs[latLngs.length -1] : L.latLng(latLngs[latLngs.length -1]),
                predecessor: latLngs.length - 2
            };
        }

        // ensure the ratio is between 0 and 1;
        ratio = Math.max(Math.min(ratio, 1), 0);

        // project the LatLngs as Points,
        // and compute total planar length of the line at max precision
        var maxzoom = map.getMaxZoom();
        if (maxzoom === Infinity)
            maxzoom = map.getZoom();
        var pts = [];
        var lineLength = 0;
        for(var i = 0; i < n; i++) {
            pts[i] = map.project(latLngs[i], maxzoom);
            if(i > 0)
              lineLength += pts[i-1].distanceTo(pts[i]);
        }

        var ratioDist = lineLength * ratio;
        var a = pts[0],
            b = pts[1],
            distA = 0,
            distB = a.distanceTo(b);
        // follow the line segments [ab], adding lengths,
        // until we find the segment where the points should lie on
        var index = 1;
        for (; index < n && distB < ratioDist; index++) {
            a = b;
            distA = distB;
            b = pts[index];
            distB += a.distanceTo(b);
        }
        // compute the ratio relative to the segment [ab]
        var segmentRatio = ((distB - distA) !== 0) ? ((ratioDist - distA) / (distB - distA)) : 0;
        var interpolatedPoint = L.GeometryUtil.interpolateOnPointSegment(a, b, segmentRatio);
        return {
            latLng: map.unproject(interpolatedPoint, maxzoom),
            predecessor: index-2
        };
    },

    /**
        Returns a float between 0 and 1 representing the location of the
        closest point on polyline to the given latlng, as a fraction of total 2d line length.
        (opposite of L.GeometryUtil.interpolateOnLine())
        @param {L.Map} map
        @param {L.PolyLine} polyline
        @param {L.LatLng} latlng
        @returns {Number}
    */
    locateOnLine: function (map, polyline, latlng) {
        var latlngs = polyline.getLatLngs();
        if (latlng.equals(latlngs[0]))
            return 0.0;
        if (latlng.equals(latlngs[latlngs.length-1]))
            return 1.0;

        var point = L.GeometryUtil.closest(map, polyline, latlng, false),
            lengths = L.GeometryUtil.accumulatedLengths(latlngs),
            total_length = lengths[lengths.length-1],
            portion = 0,
            found = false;
        for (var i=0, n = latlngs.length-1; i < n; i++) {
            var l1 = latlngs[i],
                l2 = latlngs[i+1];
            portion = lengths[i];
            if (L.GeometryUtil.belongsSegment(point, l1, l2)) {
                portion += l1.distanceTo(point);
                found = true;
                break;
            }
        }
        if (!found) {
            throw "Could not interpolate " + latlng.toString() + " within " + polyline.toString();
        }
        return portion / total_length;
    },

    /**
        Returns a clone with reversed coordinates.
        @param {L.PolyLine} polyline
        @returns {L.PolyLine}
    */
    reverse: function (polyline) {
        return L.polyline(polyline.getLatLngs().slice(0).reverse());
    },

    /**
        Returns a sub-part of the polyline, from start to end.
        If start is superior to end, returns extraction from inverted line.
        @param {L.Map} map
        @param {L.PolyLine} latlngs
        @param {Number} start ratio, expressed as a decimal between 0 and 1, inclusive
        @param {Number} end ratio, expressed as a decimal between 0 and 1, inclusive
        @returns {Array<L.LatLng>}
     */
    extract: function (map, polyline, start, end) {
        if (start > end) {
            return L.GeometryUtil.extract(map, L.GeometryUtil.reverse(polyline), 1.0-start, 1.0-end);
        }

        // Bound start and end to [0-1]
        start = Math.max(Math.min(start, 1), 0);
        end = Math.max(Math.min(end, 1), 0);

        var latlngs = polyline.getLatLngs(),
            startpoint = L.GeometryUtil.interpolateOnLine(map, polyline, start),
            endpoint = L.GeometryUtil.interpolateOnLine(map, polyline, end);
        // Return single point if start == end
        if (start == end) {
            var point = L.GeometryUtil.interpolateOnLine(map, polyline, end);
            return [point.latLng];
        }
        // Array.slice() works indexes at 0
        if (startpoint.predecessor == -1)
            startpoint.predecessor = 0;
        if (endpoint.predecessor == -1)
            endpoint.predecessor = 0;
        var result = latlngs.slice(startpoint.predecessor+1, endpoint.predecessor+1);
        result.unshift(startpoint.latLng);
        result.push(endpoint.latLng);
        return result;
    },

    /**
        Returns true if first polyline ends where other second starts.
        @param {L.PolyLine} polyline
        @param {L.PolyLine} other
        @returns {bool}
    */
    isBefore: function (polyline, other) {
        if (!other) return false;
        var lla = polyline.getLatLngs(),
            llb = other.getLatLngs();
        return (lla[lla.length-1]).equals(llb[0]);
    },

    /**
        Returns true if first polyline starts where second ends.
        @param {L.PolyLine} polyline
        @param {L.PolyLine} other
        @returns {bool}
    */
    isAfter: function (polyline, other) {
        if (!other) return false;
        var lla = polyline.getLatLngs(),
            llb = other.getLatLngs();
        return (lla[0]).equals(llb[llb.length-1]);
    },

    /**
        Returns true if first polyline starts where second ends or start.
        @param {L.PolyLine} polyline
        @param {L.PolyLine} other
        @returns {bool}
    */
    startsAtExtremity: function (polyline, other) {
        if (!other) return false;
        var lla = polyline.getLatLngs(),
            llb = other.getLatLngs(),
            start = lla[0];
        return start.equals(llb[0]) || start.equals(llb[llb.length-1]);
    },

    /**
        Returns horizontal angle in degres between two points.
        @param {L.Point} a
        @param {L.Point} b
        @returns {float}
     */
    computeAngle: function(a, b) {
        return (Math.atan2(b.y - a.y, b.x - a.x) * 180 / Math.PI);
    },

    /**
       Returns slope (Ax+B) between two points.
        @param {L.Point} a
        @param {L.Point} b
        @returns {Object} with ``a`` and ``b`` properties.
     */
    computeSlope: function(a, b) {
        var s = (b.y - a.y) / (b.x - a.x),
            o = a.y - (s * a.x);
        return {'a': s, 'b': o};
    },

    /**
       Returns LatLng of rotated point around specified LatLng center.
        @param {L.LatLng} latlngPoint: point to rotate
        @param {double} angleDeg: angle to rotate in degrees
        @param {L.LatLng} latlngCenter: center of rotation
        @returns {L.LatLng} rotated point
     */
    rotatePoint: function(map, latlngPoint, angleDeg, latlngCenter) {
        var maxzoom = map.getMaxZoom();
        if (maxzoom === Infinity)
            maxzoom = map.getZoom();
        var angleRad = angleDeg*Math.PI/180,
            pPoint = map.project(latlngPoint, maxzoom),
            pCenter = map.project(latlngCenter, maxzoom),
            x2 = Math.cos(angleRad)*(pPoint.x-pCenter.x) - Math.sin(angleRad)*(pPoint.y-pCenter.y) + pCenter.x,
            y2 = Math.sin(angleRad)*(pPoint.x-pCenter.x) + Math.cos(angleRad)*(pPoint.y-pCenter.y) + pCenter.y;
        return map.unproject(new L.Point(x2,y2), maxzoom);
    },

    /**
       Returns the bearing in degrees clockwise from north (0 degrees)
       from the first L.LatLng to the second, at the first LatLng 
       @param {L.LatLng} latlng1: origin point of the bearing
       @param {L.LatLng} latlng2: destination point of the bearing
       @returns {float} degrees clockwise from north.
    */
    bearing: function(latlng1, latlng2) {
        var rad = Math.PI / 180,
            lat1 = latlng1.lat * rad,
            lat2 = latlng2.lat * rad,
            lon1 = latlng1.lng * rad,
            lon2 = latlng2.lng * rad,
            y = Math.sin(lon2 - lon1) * Math.cos(lat2),
            x = Math.cos(lat1) * Math.sin(lat2) -
                Math.sin(lat1) * Math.cos(lat2) * Math.cos(lon2 - lon1);

        var bearing = ((Math.atan2(y, x) * 180 / Math.PI) + 360) % 360;
        return bearing >= 180 ? bearing-360 : bearing;
    },

    /**
       Returns the point that is a distance and heading away from
       the given origin point.
       @param {L.LatLng} latlng: origin point
       @param {float}: heading in degrees, clockwise from 0 degrees north.
       @param {float}: distance in meters
       @returns {L.latLng} the destination point.
       Many thanks to Chris Veness at http://www.movable-type.co.uk/scripts/latlong.html
       for a great reference and examples.
    */
    destination: function(latlng, heading, distance) {
        heading = (heading + 360) % 360;
        var rad = Math.PI / 180,
            radInv = 180 / Math.PI,
            R = 6378137, // approximation of Earth's radius
            lon1 = latlng.lng * rad,
            lat1 = latlng.lat * rad,
            rheading = heading * rad,
            sinLat1 = Math.sin(lat1),
            cosLat1 = Math.cos(lat1),
            cosDistR = Math.cos(distance / R),
            sinDistR = Math.sin(distance / R),
            lat2 = Math.asin(sinLat1 * cosDistR + cosLat1 *
                sinDistR * Math.cos(rheading)),
            lon2 = lon1 + Math.atan2(Math.sin(rheading) * sinDistR *
                cosLat1, cosDistR - sinLat1 * Math.sin(lat2));
        lon2 = lon2 * radInv;
        lon2 = lon2 > 180 ? lon2 - 360 : lon2 < -180 ? lon2 + 360 : lon2;
        return L.latLng([lat2 * radInv, lon2]);
    }
});

return L.GeometryUtil;

}));