/usr/share/doc/libjas-java/design.html is in libjas-java 2.5.4408-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 | <?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<link rel="stylesheet" type="text/css" href="html.css" />
<title>JAS - API Design</title>
</head>
<body class="main">
<h1>API usage and design overview</h1>
<p>
In ths document we give an overview on the structure
of the interfaces, classes and packages of JAS.
In the first section we show how to compute Legendre polynomials
with the JAS API.
In the next three sections we focus on the structure
of the required types and the creation of the corresponding objects.
In the following three sections we focus on the functional aspects of
the types, i.e. their constructors and methods.
For a discussion of other design alternatives see
the <a href="problems.html">problems</a> document.
Further programming issues and bugs are listed in the
<a href="doc/findbugs.html" target="fb">Findbugs report</a>.
</p>
<h2>1. Getting started</h2>
<h3>1.1. Computation of the Legendre polynomials</h3>
At first we present an example for the usage of the JAS API
with the computation of the Legendre polynomials.
The Legendre polynomials can be defined by the following recursion
<ul>
<li>P[0](x) = 1
</li>
<li>P[1](x) = x
</li>
<li>P[n](x) = 1/n ( (2n-1) x P[n-1] - (n-1) P[n-2] ).
</li>
</ul>
The first 10 Legendre polynomials are:
<pre style="background-color: #FFFFF5;">
P[0] = 1
P[1] = x
P[2] = 3/2 x^2 - 1/2
P[3] = 5/2 x^3 - 3/2 x
P[4] = 35/8 x^4 - 15/4 x^2 + 3/8
P[5] = 63/8 x^5 - 35/4 x^3 + 15/8 x
P[6] = 231/16 x^6 - 315/16 x^4 + 105/16 x^2 - 5/16
P[7] = 429/16 x^7 - 693/16 x^5 + 315/16 x^3 - 35/16 x
P[8] = 6435/128 x^8 - 3003/32 x^6 + 3465/64 x^4 - 315/32 x^2 + 35/128
P[9] = 12155/128 x^9 - 6435/32 x^7 + 9009/64 x^5 - 1155/32 x^3 + 315/128 x
</pre>
<p>
The polynomials have been computed with the following Java program.
First we need a polynomial ring <code>ring</code> over the rational numbers,
in one variable <code>"x"</code> and a list <code>P</code> to store the
computed polynomials.
The polynomial factory object itself needs at least a factory for
the creation of coefficients and the number of variables.
Additionally the term order and names for the variables can be
specified. With this information the polynomial ring factory
can be created by
<code>new GenPolynomialRing <BigRational>(fac,1,var)</code>,
where <code>fac</code> is the coefficient factory,
<code>1</code> is the number of variables, and
<!--<code>to</code> is the term order object and-->
<code>var</code> is an <code>String</code> array of names.
</p>
<pre>
BigRational fac = new BigRational();
String[] var = new String[]{ "x" };
GenPolynomialRing<BigRational> ring
= new GenPolynomialRing<BigRational>(fac,1,var);
int n = 10;
List<GenPolynomial<BigRational>> P
= new ArrayList<GenPolynomial<BigRational>>(n);
GenPolynomial<BigRational> t, one, x, xc;
BigRational n21, nn;
one = ring.getONE();
x = ring.univariate(0);
P.add( one );
P.add( x );
for ( int i = 2; i < n; i++ ) {
n21 = new BigRational( 2*i-1 );
xc = x.multiply( n21 );
t = xc.multiply( P.get(i-1) ); // (2n-1) x P[n-1]
nn = new BigRational( i-1 );
xc = P.get(i-2).multiply( nn ); // (n-1) P[n-2]
t = t.subtract( xc );
nn = new BigRational(1,i);
t = t.multiply( nn ); // 1/n t
P.add( t );
}
for ( int i = 0; i < n; i++ ) {
System.out.println("P["+i+"] = " + P.get(i).toString(var) );
System.out.println();
}
</pre>
<p>
The polynomials for the recursion base are <code>one</code> and <code>x</code>.
Both are generated from the polynomial ring factory
with method <code>ring.getONE()</code> and <code>ring.univariate(0)</code>,
respectively.
The polynomial <code>(2n-1)x</code> is produced in the for-loop by
<code>n21 = new BigRational( 2*i-1 );</code> and
<code>xc = x.multiply( n21 );</code>.
The polynomial <code>(n-1) P[n-2]</code> is computed by
<code>nn = new BigRational( i-1 );</code> and
<code>xc = P.get(i-2).multiply( nn )</code>.
Finally we have to multiply the difference of the
intermediate polynomials by <code>1/i</code> as
<code>nn = new BigRational( 1, i );</code> and
<code>t = t.multiply( nn )</code>.
Then, in the for-loop, the polynomials <code>P[i]</code> are computed
using the definition, and stored in the list <code>P</code> for further use.
In the last for-loop, the polynomials are printed, producing the
output shown above.
The string representation of the polynomial object can be created,
as expected, by <code>toString()</code>,
or by using names for the variables with <code>toString(var)</code>.
The imports required are
</p>
<pre>
import java.util.ArrayList;
import java.util.List;
import edu.jas.arith.BigRational;
import edu.jas.poly.GenPolynomial;
import edu.jas.poly.GenPolynomialRing;
</pre>
<p>
To use other coefficient rings, one simply changes the
generic type parameter, say, from <code>BigRational</code> to
<code>BigComplex</code> and adjusts the coefficient factory.
The factory would then be created as
<code>c = new BigComplex()</code>, followed by
<code>new GenPolynomialRing<BigComplex> (c,1,var)</code>.
This small example shows that this library can easily be used,
just as any other Java package or library.
</p>
<!--
The string argument of method <code>parse()</code> can be the
TeX-representation of the polynomial,
except that no subscripts may appear.
-->
<p>
In the following sections we describe the
central classes and interfaces for the polynomial API.
</p>
<h3>1.2. Algebraic structures overview</h3>
<p>
To get an idea of the scope of JAS we summarize
the implemented algebraic structures and
of the implemented algebraic algorithms.
</p>
<table border="1" cellpadding="3" summary="JAS AS summary" >
<tr>
<td>class</td>
<td>factory</td>
<td>structure</td>
<td>methods</td>
</tr>
<tr>
<td><code>BigInteger</code></td>
<td>self</td>
<td>ring of arbitrary precision integers,
a facade for <code>java.math.BigInteger</code>
</td>
<td>arithmetic, gcd, primality test</td>
</tr>
<tr>
<td><code>BigRational</code></td>
<td>self</td>
<td>ring of arbitrary precision rational numbers,
i.e. fractions of integers,
with Henrici optimizations for gcds
</td>
<td>arithmetic</td>
</tr>
<tr>
<td><code>ModInteger</code></td>
<td><code>ModIntegerRing</code></td>
<td>ring of integers modulo some fixed (arbitrary precision) integer <code>n</code>,
if <code>n</code> is a prime number, the ring is a field
</td>
<td>arithmetic, chinese remainder</td>
</tr>
<tr>
<td><code>BigDecimal</code></td>
<td>self</td>
<td>ring of arbitrary precision floating point numbers,
a facade for <code>java.math.BigDecimal</code>
</td>
<td>arithmetic, <code>compareTo()</code> with given precision</td>
</tr>
<tr>
<td><code>BigComplex</code></td>
<td>self</td>
<td>ring of arbitrary precision complex numbers,
i.e. pairs of rational numbers
</td>
<td>arithmetic</td>
</tr>
<tr>
<td><code>BigQuaternion</code></td>
<td>self</td>
<td>ring of arbitrary precision quaternion numbers,
i.e. quadruples of rational numbers
</td>
<td>arithmetic</td>
</tr>
<tr>
<td><code>BigOctonion</code></td>
<td>self</td>
<td>ring of arbitrary precision octonion numbers,
i.e. implemented as pairs of quaternion numbers
</td>
<td>arithmetic</td>
</tr>
<tr>
<td><code>GenPolynomial</code></td>
<td><code>GenPolynomialRing</code></td>
<td>ring of polynomials in <code>r</code> variables
over any implemented coefficient ring
with respect to any implemented term ordering
</td>
<td>arithmetic, univariate gcd, norms,
chinese remainders for coefficients, evaluation</td>
</tr>
<tr>
<td><code>AlgebraicNumber</code></td>
<td><code>AlgebraicNumber- Ring</code></td>
<td>ring of algebraic numbers, represented as
univariate polynomials
over any implemented coefficient field
</td>
<td>arithmetic
</td>
</tr>
<tr>
<td><code>Real- AlgebraicNumber</code></td>
<td><code>RealAlgebraicRing</code></td>
<td>ring of real algebraic numbers, represented as
algebraic number and an isolating interval for a real root
over rational numbers or real algebraic numbers
</td>
<td>arithmetic, real sign, magnitude
</td>
</tr>
<tr>
<td><code>Complex- AlgebraicNumber</code></td>
<td><code>ComplexAlgebraicRing</code></td>
<td>ring of complex algebraic numbers, represented as
algebraic number and an isolating rectangle for a complex root
over rational numbers as base ring
</td>
<td>arithmetic, sign invariant rectangle, magnitude
</td>
</tr>
<tr>
<td><code>GenSolvable- Polynomial</code></td>
<td><code>GenSolvable- PolynomialRing</code></td>
<td>ring of non-commutative, solvable polynomials in <code>r</code> variables
over any implemented coefficient ring
with respect to any implemented term ordering
(compatible with the multiplication)
</td>
<td>arithmetic</td>
</tr>
<tr>
<td><code>GenWordPolynomial</code></td>
<td><code>GenWordPolynomialRing</code></td>
<td>ring of free non-commutative polynomials in <code>r</code> letters
over any implemented coefficient ring
with respect to a graded term ordering
</td>
<td>arithmetic</td>
</tr>
<tr>
<td><code>Quotient</code></td>
<td><code>QuotientRing</code></td>
<td>ring of rational functions,
i.e. fractions of multivariate polynomials
over any implemented commutative unique factorization coefficient domain
</td>
<td>arithmetic
</td>
</tr>
<tr>
<td><code>SolvableQuotient</code></td>
<td><code>SolvableQuotientRing</code></td>
<td>ring of rational functions,
i.e. fractions of multivariate solvable polynomials
(satisfying the left-, right-Ore condition)
over some implemented coefficient domains
</td>
<td>arithmetic
</td>
</tr>
<tr>
<td><code>Residue</code></td>
<td><code>ResidueRing</code></td>
<td>ring of polynomials modulo a given polynomial ideal,
over any implemented commutative coefficient ring
</td>
<td>arithmetic
</td>
</tr>
<tr>
<td><code>SolvableResidue</code></td>
<td><code>SolvableResidueRing</code></td>
<td>ring of polynomials modulo a given polynomial ideal,
over some implemented coefficient domains
</td>
<td>arithmetic
</td>
</tr>
<tr>
<td><code>Local</code></td>
<td><code>LocalRing</code></td>
<td>ring of polynomials fractions localized with respect to a given polynomial ideal,
over any implemented commutative coefficient ring
</td>
<td>arithmetic
</td>
</tr>
<tr>
<td><code>Product</code></td>
<td><code>ProductRing</code></td>
<td>(finite) direct product of fields and rings
over any implemented coefficient ring
</td>
<td>arithmetic, idempotent elements
</td>
</tr>
<tr>
<td><code>GenVector</code></td>
<td><code>GenVectorModule</code></td>
<td>tuples (vectors) of any implemented
ring elements
</td>
<td>arithmetic, scalar product
</td>
</tr>
<tr>
<td><code>GenMatrix</code></td>
<td><code>GenMatrixModule</code></td>
<td>matrices of any implemented ring elements
</td>
<td>arithmetic, scalar product
</td>
</tr>
<tr>
<td><code>UnivPowerSeries</code></td>
<td><code>UnivPowerSeriesRing</code></td>
<td>ring of univariate power series
over any implemented coefficient ring
</td>
<td>arithmetic, gcd, evaluation, integration, fixed points</td>
</tr>
<tr>
<td><code>MultiVarPowerSeries</code></td>
<td><code>MultiVarPowerSeriesRing</code></td>
<td>ring of multivatiate power series
over any implemented coefficient ring
</td>
<td>arithmetic, evaluation, integration, fixed points</td>
</tr>
<tr>
<td><code>Quotient</code></td>
<td><code>QuotientRing</code></td>
<td>ring of fractions
over any implemented (unique factorization domain) ring
</td>
<td>arithmetic
</td>
</tr>
<tr>
<td><code>Residue</code></td>
<td><code>ResidueRing</code></td>
<td>ring of elements modulo a given (main) ideal,
over any implemented ring
</td>
<td>arithmetic
</td>
</tr>
<tr>
<td><code>Local</code></td>
<td><code>LocalRing</code></td>
<td>ring of fractions localized with respect to a given (main) ideal,
over any implemented ring
</td>
<td>arithmetic
</td>
</tr>
<tr>
<td><code>Complex</code></td>
<td><code>ComplexRing</code></td>
<td>ring of complex numbers over any implemented ring (with gcd)
</td>
<td>arithmetic
</td>
</tr>
</table>
<p>
"Arithmetic" means implementation of the methods
defined in the interface <code>RingElem</code>.
As of 2013-04 there are 25 rings implemented. To be continued.
</p>
<h3>1.3. Algebraic algorithms overview</h3>
<p>
The following table contains an overview of
implemented algebraic algorithms.
</p>
<table border="1" cellpadding="3" summary="JAS AA summary" >
<tr>
<td>class / interface</td>
<td>algorithm </td>
<td>methods</td>
</tr>
<tr>
<td><code>Reduction</code>,
<code>Reduction- Abstract</code>,
<code>ReductionSeq</code>,
<code>ReductionPar</code>,
<code>PseudoReduction</code>
</td>
<td>Iterated subtraction of polynomials to eliminate terms from a given polynomial,
i.e. reduction of polynomial(s) wrt. a set of polynomials.
Coefficients of polynomials must be from a field and for the
Pseudo* version from a ring with gcd.
For *Par the list of polynomials can concurrently be modified.
</td>
<td>normalform,
S-polynomial,
criterions,
extended normalform
</td>
</tr>
<tr>
<td><code>DReduction</code>
<code>EReduction</code>
<code>DReductionSeq</code>
<code>EReductionSeq</code>
</td>
<td>Reduction of polynomial(s) wrt. a set of polynomials.
Coefficients of polynomials must be from a
principial ideal domain (PID) or from an Euclidean domain.
</td>
<td>normalform,
S-polynomial,
G-polynomial,
criterions,
extended normalform
</td>
</tr>
<tr>
<td><code>SolvableReduction</code>
<code>SolvableReduction- Abstract</code>
<code>Solvable- ReductionSeq</code>
<code>Solvable- ReductionPar</code>
</td>
<td>Left and right reduction of solvable polynomial(s) wrt. a
set of solvable polynomials.
Coefficients of polynomials must be from a field.
</td>
<td>left/right normalform,
left/right S-polynomial,
criterions,
extended left normalform
</td>
</tr>
<tr>
<td><code>RReduction</code>,
<code>RPseudoReduction</code>,
<code>RReductionSeq</code>,
<code>RPseudoReductionSeq</code>
</td>
<td>Iterated subtraction of polynomials to eliminate terms from a given polynomial,
i.e. reduction of polynomial(s) wrt. a set of polynomials.
Coefficients of polynomials must be from a regular ring and for the
Pseudo* version from a regular ring with gcd.
Boolean closure and boolean remainder of polynomials.
</td>
<td>normalform,
S-polynomial,
<!--extended normalform,-->
boolean closure
</td>
</tr>
<tr>
<td><code>CReductionSeq</code>,
<code>Condition</code>,
<code>ColorPolynomial</code>
</td>
<td>Iterated subtraction of polynomials to eliminate terms from a given polynomial,
i.e. reduction of polynomial(s) wrt. a set of polynomials.
Coefficients of polynomials must be from a polynomial ring.
Case distinction and determination of polynomaials with respect to conditions
leading to colored polynomials.
</td>
<td>normalform,
S-polynomial,
<!--extended normalform,-->
color, determine
</td>
</tr>
<tr>
<td><code>GroebnerBase</code>,
<code>GroebnerBase- Abstract</code>,
<code>GroebnerBaseSeq</code>,
<code>GroebnerBase- Parallel</code>,
<code>GroebnerBase- Distributed</code>,
<code>GroebnerBase- PseudoSeq</code>,
etc.
</td>
<td>Buchberger algorithm to compute Groebner bases
of sets of polynomials.
Coefficients of polynomials must be from a field.
<code>*Parallel</code> is a multi-threaded and
<code>*Distributed</code> is a message passing implementation.
The <code>*Pseudo</code> version is for non-field coefficients.
</td>
<td>GB, isGB, extended GB, minimal GB
</td>
</tr>
<tr>
<td><code>DGroebnerBaseSeq</code>,
<code>EGroebnerBaseSeq</code>
</td>
<td>Algorithm to compute D- and E- Groebner bases
of sets of polynomials.
Coefficients of polynomials must be from a
principial ideal domain (PID) or from an Euclidean domain.
</td>
<td>GB, isGB, minimal GB
</td>
</tr>
<tr>
<td><code>SolvableGroebnerBase</code>,
<code>SolvableGroebnerBase- Abstract</code>,
<code>SolvableGroebnerBaseSeq</code>,
<code>SolvableGroebnerBase- Parallel</code>
</td>
<td>Algorithm to compute left, right and two-sided Groebner bases
of sets of solvable polynomials.
Coefficients of polynomials must be from a field.
Parallel is a multi-threaded implementation.
</td>
<td>left, right, two-sided versions of GB, isGB, extended GB, minimal GB
</td>
</tr>
<tr>
<td><code>WordGroebnerBase</code>,
<code>WordGroebnerBase- Abstract</code>,
<code>WordGroebnerBaseSeq</code>
</td>
<td>Algorithm to compute two-sided Groebner bases
of sets of free non-commutative polynomials.
Coefficients of polynomials must be from a field.
</td>
<td>two-sided versions of GB, isGB, minimal GB
</td>
</tr>
<tr>
<td><code>RGroebnerBaseSeq</code>,
<code>RGroebnerBasePseudoSeq</code>
</td>
<td>Algorithm to compute Groebner bases in polynomial rings over regular rings.
Coefficients of polynomials must be from a
product of fields or Euclidean domains.
</td>
<td>GB, isGB, minimal GB
</td>
</tr>
<tr>
<td><code>ComprehensiveGroebnerBaseSeq</code>,
<code>GroebnerSystem</code>,
<code>ColoredSystem</code>
</td>
<td>Algorithm to compute comprehensive Groebner bases in polynomial rings over
parameter rings.
Coefficients of polynomials must be from a polynomial ring.
Computation is done via Groebner systems (lists of colored systems).
</td>
<td>GBsys, isGBsys, GB, isGB, minimalGB
</td>
</tr>
<tr>
<td><code>Syzygy</code>,
<code>SyzygyAbstract</code>,
<code>ModGroebnerBase</code>,
<code>ModGroebnerBaseAbstract</code>,
</td>
<td>Algorithm to compute syzygies of lists of polynomials
or Groebner Bases, free resolutions.
Groebner Bases for modules over polynomial rings.
Coefficients of polynomials must be from a field.
</td>
<td>zeroRelations, isZeroRelation,
resolution, zeroRelationsArbitrary,
GB, isGB
</td>
</tr>
<tr>
<td><code>SolvableSyzygy</code>,
<code>Solvable- SyzygyAbstract</code>,
<code>ModSolvable- GroebnerBase</code>,
<code>ModSolvable- GroebnerBaseAbstract</code>,
</td>
<td>Algorithm to compute left and right syzygies of lists
of solvable polynomials or Groebner Bases, free left resolutions.
Left, right and two-sided Groebner Bases for modules over solvable polynomial rings.
Coefficients of polynomials must be from a field.
</td>
<td>leftZeroRelations, rightZeroRelations,
isLeftZeroRelation, isRightZeroRelation,
(left) resolution, zeroRelationsArbitrary,
leftOreCond, rightOreCont(ition),
left, right, two-sided GB, isGB
</td>
</tr>
<tr>
<td><code>ReductionSeq</code>,
<code>StandardBaseSeq</code>,
etc.
</td>
<td>Mora's tangent cone reduction algorithm and computation of standard bases
of sets of multivariate power series.
Coefficients of polynomials must be from a field.
</td>
<td>STD, isSTD, minimalSTD, normalForm, SPolynomial
</td>
</tr>
<tr>
<td><code>Ideal</code>
</td>
<td>Algorithms to compute sums, products, intersections, containment
and (infinite) quotients of polynomial ideals.
Coefficients of polynomials must be from a field.
Prime, primary, irreducible and radical decomposition of zero dimensional ideals.
Prime, primary, irreducible and radical decomposition of non-zero dimensional ideals.
Univariate polynomials of minimal degree in ideal as well as
elimination, extension and contraction ideals.
</td>
<td>sum, product, intersect, contains,
quotient, infiniteQuotient, inverse modulo ideal,
zeroDimRadicalDecomposition, zeroDimPrimeDecomposition,
zeroDimPrimaryDecomposition, zeroDimDecomposition,
zeroDimRootDecomposition,
radicalDecomposition, primeDecomposition, decomposition,
primaryDecomposition
</td>
</tr>
<tr>
<td><code>SolvableIdeal</code>
</td>
<td>Algorithms to compute sums, products, intersections, containment
and (infinite) quotients of solvable polynomial ideals.
Coefficients of solvable polynomials must be from a field.
</td>
<td>sum, product, intersect, contains,
quotient, infiniteQuotient, inverse modulo ideal,
univariate polynomials of minimal degree in ideal
</td>
</tr>
<tr>
<td><code>GreatestCommonDivisor</code>,
<code>GCDFactory</code>,
<code>GreatestCommonDivisorAbstract</code>,
<code>GreatestCommonDivisorSimple</code>,
<code>GreatestCommonDivisorPrimitive</code>,
<code>GreatestCommonDivisorSubres</code>,
<code>GreatestCommonDivisorModular</code>,
<code>GreatestCommonDivisorModEval</code>,
<code>GCDProxy</code>
</td>
<td>Algorithms to compute greatest common divisors of polynomials
via different polynomial remainder sequences (PRS) and modular methods.
Coefficients of polynomials must be from a unique factorization domain (UFD).
<code>GCDFactory</code> helps with the optimal selection of an algorithm
and <code>GCDProxy</code> uses multi-threading to compute with
several implementations in parallel.
</td>
<td>gcd, lcm, content, primitivePart, resultant, coPrime
</td>
</tr>
<tr>
<td><code>Squarefree</code>,
<code>SquarefreeFactory</code>,
<code>SquarefreeAbstract</code>,
<code>SquarefreeFieldChar0</code>,
<code>SquarefreeFieldCharP</code>,
<code>SquarefreeFiniteFieldCharP</code>,
<code>SquarefreeInfiniteFieldCharP</code>,
<code>SquarefreeInfiniteAlgebraicFieldCharP</code>,
<code>SquarefreeRingChar0</code>
</td>
<td>Algorithms to compute squarefree decomposition of polynomials
over fields of characteristic zero, finite and infinite fields of characteristic p
and other coefficients from unique factorization domains (UFD).
<code>SquarefreeFactory</code> helps with the optimal selection of an algorithm.
</td>
<td>squarefreePart, squarefreeFactors,
isFactorization, isSquarefree, coPrimeSquarefree
</td>
</tr>
<tr>
<td><code>Factorization</code>,
<code>FactorFactory</code>,
<code>FactorAbstract</code>,
<code>FactorAbsolute</code>,
<code>FactorModular</code>,
<code>FactorInteger</code>,
<code>FactorRational</code>,
<code>FactorAlgebraic</code>
</td>
<td>Algorithms to compute factorizations of polynomials as products of irreducible polynomials
over different ground rings.
<code>FactorFactory</code> helps with the correct selection of an algorithm.
Reduction of the multivariate factorization to an univariate factorization is done
with Kronecker's algorithm in the general case and with Wang's algorithm over the integers.
</td>
<td>squarefreeFactors, factors, baseFactors,
isIrreducible, isReducible, isSquarefree, isFactorization,
isAbsoluteIrreducible, factorsAbsolute
</td>
</tr>
<tr>
<td><code>RealRoots</code>,
<code>RealRootsAbstract</code>,
<code>RealRootsSturm</code>
</td>
<td>Algorithms to compute isolating intervals for real roots
and for refinement of isolating intervals to any prescribed precision.
Algorithms to compute the sign of a real algebraic numer and
the magnitude of a real algebraic number to a given precision.
Coefficients of polynomials must be from a real field,
for example from <code>BigRational</code> or <code>RealAlgebricNumber</code>.
</td>
<td>realRoots, refineInterval, algebraicSign, algebraicMagnitude
</td>
</tr>
<tr>
<td><code>ComplexRoots</code>,
<code>ComplexRootsAbstract</code>,
<code>ComplexRootsSturm</code>
</td>
<td>Algorithms to compute isolating rectangles for complex roots
and for refinement of isolating rectangles to any prescribed precision.
Coefficients of polynomials must be of type <code>Complex</code> field.
</td>
<td>complexRoots, complexRootCount, complexRootRefinement
</td>
</tr>
<tr>
<td><code>ElementaryIntegration</code>
</td>
<td>Algorithms to compute elementary integrals of univariate rational functions.
</td>
<td>integrate, integrateHermite, integrateLogPart, isIntegral
</td>
</tr>
<tr>
<td><code>CharacteristicSet</code>,
<code>CharacteristicSetSimple</code>,
<code>CharacteristicSetWu</code>
</td>
<td>Algorithms to compute simple or Wu-Ritt characteristic sets.
</td>
<td>characteristicSet, isCharacteristicSet, characteristicSetReduction
</td>
</tr>
</table>
<p>
</p>
<h3>1.4. Packages overview</h3>
<p align="center">
<img src="images/PackageOverview.png" alt="Static package structure overview" />
</p>
<p>
More details can be found in the <a href="http://www.clarkware.com/software/JDepend.html"
target="new">JDepend</a> <a href="doc/jdepend-report.txt" target="new">report.txt</a>.
</p>
<h2>2. Recursive ring element design</h2>
<p>
The next figure gives an overview of the central interfaces and classes.
The interface <code>RingElem</code> defines a <strong>recursive type</strong>
which defines the functionality (see next section) of the
polynomial coefficients and is also implemented by the
polynomials itself. So polynomials can be taken as coefficients
for other polynomials, thus defining a recursive polynomial ring structure.
</p>
<p>
Since the construction of constant ring elements has been difficult
in previuos designs, we separated the creational aspects of ring elements
into <strong>ring factories</strong> with sufficient context information.
The minimal factory functionality is defined by the interface
<code>RingFactory</code>.
Constructors for polynomial rings will then require factories for
the coefficients so that the construction of polynomials over these
coefficient rings poses no problem.
The ring factories are additionaly required because of the
Java generic type design. I.e. if <code>C</code> is a generic type name
it is not possible to construct an new object with <code>new C()</code>.
Even if this would be possible, one can not specify constructor signatures
in Java interfaces, e.g. to construct a one or zero constant ring element.
Recursion is again achieved by using polynomial factories as
coefficient factories in recursive polynomial rings.
Constructors for polynomials will always require
a polynomial factory parameter which knows
all details about the polynomial ring under consideration.
</p>
<p class="center" >
<a href="images/overview-recursive.png"
target="diagram"
><img src="images/overview-recursive.png" alt="JAS type overview" /></a>
<br />
UML diagram of JAS types
</p>
<h2>3. Coefficients and polynomials</h2>
<p>
We continue the discussion of the next layer of classes in the
the above figure.
</p>
<p>
Elementary <strong>coefficient classes</strong>, such as
<code>BigRational</code> or <code>BigInteger</code>, implement both
the <code>RingElem</code> and <code>RingFactory</code> interfaces.
This is convenient, since these factories do not need further context
information.
In the implementation of the interfaces the type parameter
<code>C extends RingElem<C></code> is simultaneously bound
to the respective class, e.g. <code>BigRational</code>.
<strong>Coefficient objects</strong> can in most cases created directly
via the respective class constructors, but also via the factory methods.
E.g. the object representing the rational number 2 can be created by
<code>new BigRational(2)</code> or by
<code>fac = new BigRational()</code>, <code>fac.fromInteger(2)</code> and
the object representing the rational number 1/2 can be created by
<code>new BigRational(1,2)</code> or by
<code>fac.parse("1/2")</code>.
</p>
<p>
<strong>Generic polynomials</strong> are implemented in the
<code>GenPolynomial</code> class, which has a type parameter
<code>C extends RingElem<C></code>
for the coefficient type. So all operations on coefficients required
in polynomial arithmetic and manipulation are guaranteed to exist by the
<code>RingElem</code> interface. The constructors of the polynomials
always require a matching polynomial factory.
The <strong>generic polynomial factory</strong> is implemented in the class
<code>GenPolynomialRing</code>, again with type parameter
<code>C extends RingElem<C></code> (not <code>RingFactory</code>).
The polynomial factory however implements the interface
<code>RingFactory<C extends RingElem<C>></code> so that
it can also be used recursively.
The constructors for <code>GenPolynomialRing</code> require at least
parameters for a coefficient factory and the number of variables
of the polynomial ring.
</p>
<p>
Having generic polynomial and elementary coefficient implementations
one can attempt to construct <strong>polynomial objects</strong>.
The type is first created by binding the type parameter
<code>C extends RingElem<C></code> to the desired coefficient type,
e.g. <code>BigRational</code>. So we arrive at the type
<code>GenPolynomial<BigRational></code>.
Polynomial objects are then created via the respective polynomial factory
of type <code>GenPolynomialRing<BigRational></code>,
which is created by binding the generic coefficient type of the
generic polynomial factory to the desired coefficient type,
e.g. <code>BigRational</code>.
A <strong>polynomial factory object</strong> is created from a
coefficient factory object and the number of variables in the
polynomial ring as usual with the <code>new</code> operator via one
of its constructors.
Given an object <code>coFac</code> of type <code>BigRational</code>,
e.g. created with <code>new BigRational()</code>, a polynomial factory
object <code>pfac</code> of the above described type could be created by
<code>new GenPolynomialRing<BigRational>(coFac,5)</code>.
I.e. we specified a polynomial ring with 5 variables over
the rational numbers.
A polynomial object <code>p</code> of the above described type can then
be created by any method defined in <code>RingFactory</code>,
e.g. by <code>pfac.getONE()</code>,
<code>pfac.fromInteger(1)</code>, <code>pfac.random(3)</code>
or <code>pfac.parse("(1)")</code>.
</p>
<p>
Since <code>GenPolynomial</code> itself implements the
<code>RingElem</code> interface, they can also be used recursively
as coefficients.
We continue the polynomial example and are going to use polynomials over
the rational numbers as coefficients of a new polynomial.
The type is then
<code>GenPolynomial<GenPolynomial<BigRational>></code>
and the polynomial factory has type
<code>GenPolynomial<b>Ring</b><GenPolynomial<BigRational>></code>.
Using the polynomial coefficient factory <code>pfac</code> from above
a recursive polynomial factory <code>rfac</code> could be created by
<code>new GenPolynomialRing<GenPolynomial<BigRational>>(pfac,3)</code>.
The creation of a recursive polynomial object <code>r</code> of the
above described type is then as a easy as before
e.g. by <code>rfac.getONE()</code>,
<code>rfac.fromInteger(1)</code> or <code>rfac.random(3)</code>.
</p>
<h2>4. Solvable polynomials</h2>
<p>
We turn now to the last layer of classes in the the above figure.
</p>
<p>
The generic polynomials are intended as super class for further
types of polynomial rings. As one example we take so called
<strong>solvable polynomials</strong>, which are like normal polynomials
but are equipped with a new non-commutative multiplication.
They are implemented in the class <code>GenSolvablePolynomial</code>
which extends <code>GenPolynomial</code> and inherits all methods
except <code>clone()</code> and <code>multiply()</code>.
The class also has a type parameter <code>C extends RingElem<C></code>
for the coefficient type.
Note, that the inherited methods are in fact creating solvable polynomials
since they employ the solvable polynomial factory for the creation of any
new polynomial internally. Only the formal method return type is that
of <code>GenPolynomial</code>, the run-time type is
<code>GenSolvablePolynomial</code> to which they can be casted at any time.
The <strong>factory for solvable polynomials</strong> is implemented
by the class <code>GenSolvablePolynomialRing</code> which also
extends the generic polynomial factory. So this factory can also be used
in the constructors of <code>GenPolynomial</code> via <code>super()</code>
to produce in fact solvable polynomials internally. The data structure
is enhanced by a table of non-commutative relations defining the
new multiplication. The constructors delegate most things to the
corresponding super class constructors and additionally have a
parameter for the <code>RelationTable</code> to be used.
Also the methods delegate the work to the respective super class methods
where possible and then handle the non-commutative multiplication relations
separately.
</p>
<p>
The construction of <strong>solvable polynomial objects</strong>
follows directly that of polynomial objects.
The type is created by binding the type parameter
<code>C extends RingElem<C></code> to the desired coefficient type,
e.g. <code>BigRational</code>. So we have the type
<code>GenSolvablePolynomial<BigRational></code>.
Solvable polynomial objects are then created via the respective
solvable polynomial factory of type
<code>GenSolvablePolynomialRing<BigRational></code>,
which is created by binding the generic coefficient type of the
generic polynomial factory to the desired coefficient type,
e.g. <code>BigRational</code>.
A <strong>solvable polynomial factory object</strong> is created from a
coefficient factory object, the number of variables in the
polynomial ring and a table containing the defining non-commutative relations
as usual with the <code>new</code> operator via one of its constructors.
Given an object <code>coFac</code> of type <code>BigRational</code>
as before, a polynomial factory object <code>spfac</code>
of the above described type could be created by
<code>new GenSolvablePolynomialRing<BigRational>(coFac,5)</code>.
I.e. we specified a polynomial ring with 5 variables over
the rational numbers with no commutator relations.
A solvable polynomial object <code>p</code> of the above described type
can then be created by any method defined in <code>RingFactory</code>,
e.g. by <code>spfac.getONE()</code>,
<code>spfac.fromInteger(1)</code>, <code>spfac.random(3)</code>
or <code>spfac.parse("(1)")</code>.
Some care is needed to create <code>RelationTable</code> objects
since its constructor requires the solvable polynomial ring which
is under construction as parameter. It is most convenient to first
create a <code>GenSolvablePolynomialRing</code> with an
empty relation table and then to add the defining relations.
</p>
<h2>5. Ring element and factory functionality</h2>
<p>
The following sections and the next figure gives an overview
of the functionality of the main interfaces and polynomial classes.
</p>
<p>
The <code>RingElem</code> interface has a generic type parameter
<code>C</code> which is constrained to a type with the same functionality
<code>C extends RingElem<C></code>.
It defines the usual methods required for ring arithmetic such as
<code>C sum(C S); C subtract(C S); C negate(); C abs();
C multiply(C S); C divide(C S); C remainder(C S); C inverse();
</code>
Although the actual ring may not have inverses for every element
or some division algorithm we have included these methods in the definition.
In a case where there is no such function, the implementation may
deliberately throw a <code>RuntimeException</code> or choose some
other meaningful element to return.
The method <code>isUnit()</code> can be used to check if an element
is invertible.
</p>
<p>
Besides the arithmetic method there are following testing methods
<code>boolean isZERO(); boolean isONE(); boolean isUnit();
int signum();
boolean equals(Object b); int hashCode(); int compareTo(C b);
</code>
The first three test if the element is 0, 1 or a unit in the respective ring.
The <code>signum()</code> method defines the sign of the element (in case
of an ordered ring).
<code>equals()</code>, <code>hashCode()</code> and <code>compareTo()</code>
are required to keep Javas object machinery working in our sense.
They are used when an element is put into a Java collection class,
e.g. <code>Set</code>, <code>Map</code> or <code>SortedMap</code>.
The last method <code>C clone()</code> can be used to obtain a copy of the
actual element. As creational method one should better use the
method <code>C copy(C a)</code> from the ring factory, but in Java
it is more convenient to use the <code>clone()</code> method.
</p>
<p>
As mentioned before, the creational aspects of rings are separated
into a ring factory. A ring factory is intended to store all context
information known or required for a specific ring.
Every ring element should also know its ring factory, so all
constructors of ring element implementations require a parameter
for the corresponding ring factory. Unfortunately constructors
and their signature can not be specified in a Java interface.
The <code>RingFactory</code> interface also has a generic type parameter
<code>C</code> which is constrained to a type with the ring element
functionality <code>C extends RingElem<C></code>.
The defined methods are
<code>C getZERO(); C getONE();
C fromInteger(long a); C fromInteger(java.math.BigInteger a);
C random(int n); C copy(C c);
C parse(String s); C parse(Reader r);
</code>
The first two create 0 and 1 of the ring.
The second two are used to embed a natural number into the ring
and create the corresponding ring element.
The <code>copy()</code> method was intended as the main means to
obtain a copy of a ring element, but it is now no more used in our
implmentation. Instead the <code>clone()</code> method is used from
the ring element interface.
The <code>random(int n)</code> method creates a random element of the
respective ring. The parameter <code>n</code> specifies an appropriate
maximal size for the created element. In case of coefficients it
usually means the maximal bit-length of the element, in case of
polynomials it influences the coefficient size and the degrees.
For polynomials there are <code>random()</code> methods with more
parameters.
The two methods
<code>C parse(String s)</code> and <code>C parse(Reader r)</code>
create a ring element from some external string representation.
For coefficients this is mostly implemented directly and for
polynomials the class <code>GenPolynomialTokenizer</code> is
employed internally.
In the current implementation the external representation of
coefficients may never contain white space and must always start
with a digit.
In the future the ring factory will be enhanced by methods that
test if the ring is commutative, associative or has some
other important property or the value of a property,
e.g. is an euclidean ring, is a field, an integal domain,
a uniqe factorization domain, its characteristic or if it is noetherian.
</p>
<p class="center" >
<a href="images/overview-methods.png"
target="diagram"
><img src="images/overview-methods.png" alt="JAS type functionality" /></a>
<br />
UML diagram of JAS type functionality
</p>
<h2>6. Polynomial and polynomial factory functionality</h2>
<p>
We continue the discussion of the above figure
with the generic polynomial and factory classes.
</p>
<p>
The <code>GenPolynomial</code> class has a generic type parameter
<code>C</code> which is constrained to a type with the functionality
of ring elements <code>C extends RingElem<C></code>.
Further the class implements a <code>RingElem</code> over itself
<code>RingElem<GenPolynomial<C>></code>
so that it can be used for the coefficients of an other polynomial ring.
The functionality of the ring element methods has already been explained
in the previous section.
There are two public and one protected constructors, each requires
at least a ring factory parameter <code>GenPolynomialRing<C> r</code>.
The first creates a zero polynomial
<code>GenPolynomial(. r)</code>,
the second creates a polynomial of one monomial with given coefficient
and exponent tuple
<code>GenPolynomial(. r, C c, ExpVector e)</code>,
the third creates a polynomial from the internal sorted map of an
other polynomial
<code>GenPolynomial(. r, SortedMap<ExpVector,C> v)</code>.
Further there are methods to access parts of the polynomial
like leading term, leading coefficient
(still called leading base coefficient from the Aldes/SAC-2 tradition)
and leading monomial.
The <code>toString()</code> method creates as usual a string representation
of the polynomials consisting of exponent tuples and coefficients.
One variant of it takes an array of variable names and creates a string
consisting of coefficients and products of powers of variables.
The method <code>extend()</code> is used to embed the polynomial into the
'bigger' polynomial ring specified in the first parameter.
The embeded polynomial can also be multiplied by a power of a variable.
The <code>contract()</code> method returns a map of exponents and
coefficients. The coefficients are polynomials belonging to the
'smaller' polynomial ring specified in the first parameter.
If the polynomial actually belongs to the smaller polynomial ring
the map will contain only one pair, mapping the zero exponent vector
to the polynomial with variables removed.
A last group of methods computes (extended) greatest common divisors.
They work correct for univariate polynomials over a field but not
for arbitrary multivatiate polynomials. These methods will be moved
to a new separate class in the future.
</p>
<p>
The <code>GenPolynomialRing</code> class has a generic type parameter
<code>C</code> which is constrained to a type with the functionality
of ring elements <code>C extends RingElem<C></code>.
Further the class implements a <code>RingFactory</code> over
<code>GenPolynomial<C></code> so that it can be used as
coefficient factory of a different polynomial ring.
The constructors require at least a factory for the coefficents as
first parameter of type <code>RingFactory<C></code>
and the number of variables in the second parameter.
A third parameter can optionally specify a <code>TermOrder</code>
and a fourth parameter can specify the names for the variables
of the polynomial ring.
Besides the methods required by the <code>RingFactory</code>
interface there are additional <code>random()</code> methods
which provide more control over the creation of random polynomials.
They have the following parameters:
the bitsize of random coefficients to be used in the
<code>random()</code> method of the coefficient factory,
the number of terms (i.e. the length of the polynomial),
the maximal degree in each variable
and the density of nozero exponents, i.e. the ratio of nonzero to
zero exponents.
The <code>toString()</code> method creates a string representation
of the polynomial ring consisting of the coefficient factory string
representation, the tuple of variable names and the string representation
of the term order.
The <code>extend()</code> and <code>contract()</code> methods
create 'bigger' respectively 'smaller' polynomial rings.
Both methods take a parameter of how many variables are to be added
or removed form the actual polynomial ring.
<code>extend()</code> will setup an elimination term order consisting
of two times the actual term order when ever possible.
</p>
<h2>7. Solvable polynomial and solvable polynomial factory functionality</h2>
<p>
We continue the discussion of the above figure
with the generic solvable polynomial and factory classes.
</p>
<p>
The <code>GenSolvablePolynomial</code> class has a generic type parameter
<code>C</code> which is constrained to a type with the functionality
of ring elements <code>C extends RingElem<C></code>.
The class extends the <code>GenPolynomial</code> class. It inherits
all additive functionality and overwrites the multiplicative
functionality with a new non-commutative multiplication method.
Unfortunately it <em>cannot</em> implement a <code>RingElem</code>
over itself <code>RingElem<GenSolvablePolynomial<C>></code>
but can only inherit the implementation of
<code>RingElem<GenPolynomial<C>></code> from its super class.
By this limitation a solvable polynomial can still be used as
coefficent in another polynomial, but only with the type of its super
class. The limitation comes form the erasure of template parameters in
<code>RingElem<...></code> to <code>RingElem</code> for the
code generated. I.e. the generic interfaces become the same after
type erasure and it is not allowed to implement the same interface twice.
There are two public and one protected constructors as in the super class.
Each requires at least a ring factory parameter
<code>GenSolvablePolynomialRing<C> r</code>
which is stored in a variable of this type shadowing the variable
with the same name of the super factory type. The rest of the
initialization work is delegated to the super class constructor.
</p>
<p>
The <code>GenSolvablePolynomialRing</code> class has a generic type parameter
<code>C</code> which is constrained to a type with the functionality
of ring elements <code>C extends RingElem<C></code>.
The class extends the <code>GenPolynomialRing</code> class.
It overwrites most methods to implement the new non-commutative
methods.
Also this class cannot implement a <code>RingFactory</code> over
<code>GenSolvablePolynomial<C></code>. It only implements
<code>RingFactory</code> over <code>GenPolynomial<C></code>
by inheritance by the same reason of type erasure as above.
But it can be used as coefficient factory with the type of its super class
for a different polynomial ring.
One part of the constructors just restate the super class constructors
with the actual solvable type. A solvable polynomial ring however
must know how to perform the non-commutative multiplication.
To this end a data structure with the respective commutator relations
is required. It is implemented in the <code>RelationTable</code> class.
The other part of the constructors additionaly takes a parameter of type
<code>RelationTable</code> to set the initial commutator relation table.
Some care is needed to create relation tables and solvable polynomial
factories since the relation table requires a solvable polynomial
factory as parameter in the constructor. So it is most advisable to
create a solvable polynomial factory object with empty relation table
and to fill it with commutator relations after the constructor is
completed but before the factory will be used.
There is also a new method <code>isAssociative()</code> which tries
to check if the commutator relations indeed define an associative
algebra. This method should be extracted to the <code>RingFactory</code>
interface together with a method <code>isCommutative()</code>,
since both are of general importance and not always fulfilled
in our rings. E.g. <code>BigQuaternion</code> is not commutative
and so is a polynomial ring over these coefficents is not commutative.
The same applies to associativity and the (not jet existing) class
<code>BigOctonion</code>.
</p>
<p>
This concludes the discussion of the main interfaces and classes
of the Java algebra system.
</p>
<!--
<code></code>
<p>
</p>
<p>
</p>
<pre>
</pre>
-->
<p><!--a href="README" target="readme" >README</a-->
</p>
<hr />
<address><a href="mailto:kredel at rz.uni-mannheim.de">Heinz Kredel</a></address>
<p>
<!-- Created: Sat Mar 11 10:51:36 CET 2006 -->
<!-- hhmts start -->
Last modified: Mon Apr 29 20:39:43 CEST 2013
<!-- hhmts end -->
</p>
<!--p align="right" >
$Id: design.html 4401 2013-04-29 18:41:28Z kredel $
</p-->
</body>
</html>
|