This file is indexed.

/usr/include/htslib/cram/rANS_byte.h is in libhts-private-dev 1.7-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/* rans_byte.h originally from https://github.com/rygorous/ryg_rans
 *
 * This is a public-domain implementation of several rANS variants. rANS is an
 * entropy coder from the ANS family, as described in Jarek Duda's paper
 * "Asymmetric numeral systems" (http://arxiv.org/abs/1311.2540).
 */

/*-------------------------------------------------------------------------- */

// Simple byte-aligned rANS encoder/decoder - public domain - Fabian 'ryg' Giesen 2014
//
// Not intended to be "industrial strength"; just meant to illustrate the general
// idea.

#ifndef RANS_BYTE_HEADER
#define RANS_BYTE_HEADER

#include <stdint.h>

#ifdef assert
#define RansAssert assert
#else
#define RansAssert(x)
#endif

// READ ME FIRST:
//
// This is designed like a typical arithmetic coder API, but there's three
// twists you absolutely should be aware of before you start hacking:
//
// 1. You need to encode data in *reverse* - last symbol first. rANS works
//    like a stack: last in, first out.
// 2. Likewise, the encoder outputs bytes *in reverse* - that is, you give
//    it a pointer to the *end* of your buffer (exclusive), and it will
//    slowly move towards the beginning as more bytes are emitted.
// 3. Unlike basically any other entropy coder implementation you might
//    have used, you can interleave data from multiple independent rANS
//    encoders into the same bytestream without any extra signaling;
//    you can also just write some bytes by yourself in the middle if
//    you want to. This is in addition to the usual arithmetic encoder
//    property of being able to switch models on the fly. Writing raw
//    bytes can be useful when you have some data that you know is
//    incompressible, and is cheaper than going through the rANS encode
//    function. Using multiple rANS coders on the same byte stream wastes
//    a few bytes compared to using just one, but execution of two
//    independent encoders can happen in parallel on superscalar and
//    Out-of-Order CPUs, so this can be *much* faster in tight decoding
//    loops.
//
//    This is why all the rANS functions take the write pointer as an
//    argument instead of just storing it in some context struct.

// --------------------------------------------------------------------------

// L ('l' in the paper) is the lower bound of our normalization interval.
// Between this and our byte-aligned emission, we use 31 (not 32!) bits.
// This is done intentionally because exact reciprocals for 31-bit uints
// fit in 32-bit uints: this permits some optimizations during encoding.
#define RANS_BYTE_L (1u << 23)  // lower bound of our normalization interval

// State for a rANS encoder. Yep, that's all there is to it.
typedef uint32_t RansState;

// Initialize a rANS encoder.
static inline void RansEncInit(RansState* r)
{
    *r = RANS_BYTE_L;
}

// Renormalize the encoder. Internal function.
static inline RansState RansEncRenorm(RansState x, uint8_t** pptr, uint32_t freq, uint32_t scale_bits)
{
    uint32_t x_max = ((RANS_BYTE_L >> scale_bits) << 8) * freq; // this turns into a shift.
    if (x >= x_max) {
        uint8_t* ptr = *pptr;
        do {
            *--ptr = (uint8_t) (x & 0xff);
            x >>= 8;
        } while (x >= x_max);
        *pptr = ptr;
    }
    return x;
}

// Encodes a single symbol with range start "start" and frequency "freq".
// All frequencies are assumed to sum to "1 << scale_bits", and the
// resulting bytes get written to ptr (which is updated).
//
// NOTE: With rANS, you need to encode symbols in *reverse order*, i.e. from
// beginning to end! Likewise, the output bytestream is written *backwards*:
// ptr starts pointing at the end of the output buffer and keeps decrementing.
static inline void RansEncPut(RansState* r, uint8_t** pptr, uint32_t start, uint32_t freq, uint32_t scale_bits)
{
    // renormalize
    RansState x = RansEncRenorm(*r, pptr, freq, scale_bits);

    // x = C(s,x)
    *r = ((x / freq) << scale_bits) + (x % freq) + start;
}

// Flushes the rANS encoder.
static inline void RansEncFlush(RansState* r, uint8_t** pptr)
{
    uint32_t x = *r;
    uint8_t* ptr = *pptr;

    ptr -= 4;
    ptr[0] = (uint8_t) (x >> 0);
    ptr[1] = (uint8_t) (x >> 8);
    ptr[2] = (uint8_t) (x >> 16);
    ptr[3] = (uint8_t) (x >> 24);

    *pptr = ptr;
}

// Initializes a rANS decoder.
// Unlike the encoder, the decoder works forwards as you'd expect.
static inline void RansDecInit(RansState* r, uint8_t** pptr)
{
    uint32_t x;
    uint8_t* ptr = *pptr;

    x  = ptr[0] << 0;
    x |= ptr[1] << 8;
    x |= ptr[2] << 16;
    x |= ptr[3] << 24;
    ptr += 4;

    *pptr = ptr;
    *r = x;
}

// Returns the current cumulative frequency (map it to a symbol yourself!)
static inline uint32_t RansDecGet(RansState* r, uint32_t scale_bits)
{
    return *r & ((1u << scale_bits) - 1);
}

// Advances in the bit stream by "popping" a single symbol with range start
// "start" and frequency "freq". All frequencies are assumed to sum to "1 << scale_bits",
// and the resulting bytes get written to ptr (which is updated).
static inline void RansDecAdvance(RansState* r, uint8_t** pptr, uint32_t start, uint32_t freq, uint32_t scale_bits)
{
    uint32_t mask = (1u << scale_bits) - 1;

    // s, x = D(x)
    uint32_t x = *r;
    x = freq * (x >> scale_bits) + (x & mask) - start;

    // renormalize
    if (x < RANS_BYTE_L) {
        uint8_t* ptr = *pptr;
        do x = (x << 8) | *ptr++; while (x < RANS_BYTE_L);
        *pptr = ptr;
    }

    *r = x;
}

// --------------------------------------------------------------------------

// That's all you need for a full encoder; below here are some utility
// functions with extra convenience or optimizations.

// Encoder symbol description
// This (admittedly odd) selection of parameters was chosen to make
// RansEncPutSymbol as cheap as possible.
typedef struct {
    uint32_t x_max;     // (Exclusive) upper bound of pre-normalization interval
    uint32_t rcp_freq;  // Fixed-point reciprocal frequency
    uint32_t bias;      // Bias
    uint16_t cmpl_freq; // Complement of frequency: (1 << scale_bits) - freq
    uint16_t rcp_shift; // Reciprocal shift
} RansEncSymbol;

// Decoder symbols are straightforward.
typedef struct {
    uint16_t start;     // Start of range.
    uint16_t freq;      // Symbol frequency.
} RansDecSymbol;

// Initializes an encoder symbol to start "start" and frequency "freq"
static inline void RansEncSymbolInit(RansEncSymbol* s, uint32_t start, uint32_t freq, uint32_t scale_bits)
{
    RansAssert(scale_bits <= 16);
    RansAssert(start <= (1u << scale_bits));
    RansAssert(freq <= (1u << scale_bits) - start);

    // Say M := 1 << scale_bits.
    //
    // The original encoder does:
    //   x_new = (x/freq)*M + start + (x%freq)
    //
    // The fast encoder does (schematically):
    //   q     = mul_hi(x, rcp_freq) >> rcp_shift   (division)
    //   r     = x - q*freq                         (remainder)
    //   x_new = q*M + bias + r                     (new x)
    // plugging in r into x_new yields:
    //   x_new = bias + x + q*(M - freq)
    //        =: bias + x + q*cmpl_freq             (*)
    //
    // and we can just precompute cmpl_freq. Now we just need to
    // set up our parameters such that the original encoder and
    // the fast encoder agree.

    s->x_max = ((RANS_BYTE_L >> scale_bits) << 8) * freq;
    s->cmpl_freq = (uint16_t) ((1 << scale_bits) - freq);
    if (freq < 2) {
        // freq=0 symbols are never valid to encode, so it doesn't matter what
        // we set our values to.
        //
        // freq=1 is tricky, since the reciprocal of 1 is 1; unfortunately,
        // our fixed-point reciprocal approximation can only multiply by values
        // smaller than 1.
        //
        // So we use the "next best thing": rcp_freq=0xffffffff, rcp_shift=0.
        // This gives:
        //   q = mul_hi(x, rcp_freq) >> rcp_shift
        //     = mul_hi(x, (1<<32) - 1)) >> 0
        //     = floor(x - x/(2^32))
        //     = x - 1 if 1 <= x < 2^32
        // and we know that x>0 (x=0 is never in a valid normalization interval).
        //
        // So we now need to choose the other parameters such that
        //   x_new = x*M + start
        // plug it in:
        //     x*M + start                   (desired result)
        //   = bias + x + q*cmpl_freq        (*)
        //   = bias + x + (x - 1)*(M - 1)    (plug in q=x-1, cmpl_freq)
        //   = bias + 1 + (x - 1)*M
        //   = x*M + (bias + 1 - M)
        //
        // so we have start = bias + 1 - M, or equivalently
        //   bias = start + M - 1.
        s->rcp_freq = ~0u;
        s->rcp_shift = 0;
        s->bias = start + (1 << scale_bits) - 1;
    } else {
        // Alverson, "Integer Division using reciprocals"
        // shift=ceil(log2(freq))
        uint32_t shift = 0;
        while (freq > (1u << shift))
            shift++;

        s->rcp_freq = (uint32_t) (((1ull << (shift + 31)) + freq-1) / freq);
        s->rcp_shift = shift - 1;

        // With these values, 'q' is the correct quotient, so we
        // have bias=start.
        s->bias = start;
    }

    s->rcp_shift += 32; // Avoid the extra >>32 in RansEncPutSymbol
}

// Initialize a decoder symbol to start "start" and frequency "freq"
static inline void RansDecSymbolInit(RansDecSymbol* s, uint32_t start, uint32_t freq)
{
    RansAssert(start <= (1 << 16));
    RansAssert(freq <= (1 << 16) - start);
    s->start = (uint16_t) start;
    s->freq = (uint16_t) freq;
}

// Encodes a given symbol. This is faster than straight RansEnc since we can do
// multiplications instead of a divide.
//
// See RansEncSymbolInit for a description of how this works.
static inline void RansEncPutSymbol(RansState* r, uint8_t** pptr, RansEncSymbol const* sym)
{
    RansAssert(sym->x_max != 0); // can't encode symbol with freq=0

    // renormalize
    uint32_t x = *r;
    uint32_t x_max = sym->x_max;

    if (x >= x_max) {
	uint8_t* ptr = *pptr;
	do {
	    *--ptr = (uint8_t) (x & 0xff);
	    x >>= 8;
	} while (x >= x_max);
	*pptr = ptr;
    }

    // x = C(s,x)
    // NOTE: written this way so we get a 32-bit "multiply high" when
    // available. If you're on a 64-bit platform with cheap multiplies
    // (e.g. x64), just bake the +32 into rcp_shift.
    //uint32_t q = (uint32_t) (((uint64_t)x * sym->rcp_freq) >> 32) >> sym->rcp_shift;

    // The extra >>32 has already been added to RansEncSymbolInit
    uint32_t q = (uint32_t) (((uint64_t)x * sym->rcp_freq) >> sym->rcp_shift);
    *r = x + sym->bias + q * sym->cmpl_freq;
}

// Equivalent to RansDecAdvance that takes a symbol.
static inline void RansDecAdvanceSymbol(RansState* r, uint8_t** pptr, RansDecSymbol const* sym, uint32_t scale_bits)
{
    RansDecAdvance(r, pptr, sym->start, sym->freq, scale_bits);
}

// Advances in the bit stream by "popping" a single symbol with range start
// "start" and frequency "freq". All frequencies are assumed to sum to "1 << scale_bits".
// No renormalization or output happens.
static inline void RansDecAdvanceStep(RansState* r, uint32_t start, uint32_t freq, uint32_t scale_bits)
{
    uint32_t mask = (1u << scale_bits) - 1;

    // s, x = D(x)
    uint32_t x = *r;
    *r = freq * (x >> scale_bits) + (x & mask) - start;
}

// Equivalent to RansDecAdvanceStep that takes a symbol.
static inline void RansDecAdvanceSymbolStep(RansState* r, RansDecSymbol const* sym, uint32_t scale_bits)
{
    RansDecAdvanceStep(r, sym->start, sym->freq, scale_bits);
}

// Renormalize.
static inline void RansDecRenorm(RansState* r, uint8_t** pptr)
{
    // renormalize
    uint32_t x = *r;

    if (x < RANS_BYTE_L) {
        uint8_t* ptr = *pptr;
        x = (x << 8) | *ptr++;
        if (x < RANS_BYTE_L)
            x = (x << 8) | *ptr++;
        *pptr = ptr;
    }

    *r = x;
}

// Renormalize, with extra checks for falling off the end of the input.
static inline void RansDecRenormSafe(RansState* r, uint8_t** pptr, uint8_t *ptr_end)
{
    uint32_t x = *r;
    uint8_t* ptr = *pptr;
    if (x >= RANS_BYTE_L || ptr >= ptr_end) return;
    x = (x << 8) | *ptr++;
    if (x < RANS_BYTE_L && ptr < ptr_end)
        x = (x << 8) | *ptr++;
    *pptr = ptr;
    *r = x;
}


#endif // RANS_BYTE_HEADER