This file is indexed.

/usr/share/perl5/Heap/Fibonacci.pm is in libheap-perl 0.80-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
package Heap::Fibonacci;

use strict;
use vars qw($VERSION);

$VERSION = '0.80';

# common names
#	h	- heap head
#	el	- linkable element, contains user-provided value
#	v	- user-provided value

################################################# debugging control

my $debug = 0;
my $validate = 0;

# enable/disable debugging output
sub debug {
    @_ ? ($debug = shift) : $debug;
}

# enable/disable validation checks on values
sub validate {
    @_ ? ($validate = shift) : $validate;
}

my $width = 3;
my $bar = ' | ';
my $corner = ' +-';
my $vfmt = "%3d";

sub set_width {
    $width = shift;
    $width = 2 if $width < 2;

    $vfmt = "%${width}d";
    $bar = $corner = ' ' x $width;
    substr($bar,-2,1) = '|';
    substr($corner,-2,2) = '+-';
}

sub hdump;

sub hdump {
    my $el = shift;
    my $l1 = shift;
    my $b = shift;

    my $ch;
    my $ch1;

    unless( $el ) {
	print $l1, "\n";
	return;
    }

    hdump $ch1 = $el->{child},
	$l1 . sprintf( $vfmt, $el->{val}->val),
	$b . $bar;

    if( $ch1 ) {
	for( $ch = $ch1->{right}; $ch != $ch1; $ch = $ch->{right} ) {
	    hdump $ch, $b . $corner, $b . $bar;
	}
    }
}

sub heapdump {
    my $h;

    while( $h = shift ) {
	my $top = $$h or last;
	my $el = $top;

	do {
	    hdump $el, sprintf( "%02d: ", $el->{degree}), '    ';
	    $el = $el->{right};
	} until $el == $top;
	print "\n";
    }
}

sub bhcheck;

sub bhcheck {
    my $el = shift;
    my $p = shift;

    my $cur = $el;
    my $prev;
    my $ch;
    do {
	$prev = $cur;
	$cur = $cur->{right};
	die "bad back link" unless $cur->{left} == $prev;
	die "bad parent link"
	    unless (defined $p && defined $cur->{p} && $cur->{p} == $p)
		|| (!defined $p && !defined $cur->{p});
	die "bad degree( $cur->{degree} > $p->{degree} )"
	    if $p && $p->{degree} <= $cur->{degree};
	die "not heap ordered"
	    if $p && $p->{val}->cmp($cur->{val}) > 0;
	$ch = $cur->{child} and bhcheck $ch, $cur;
    } until $cur == $el;
}


sub heapcheck {
    my $h;
    my $el;
    while( $h = shift ) {
	heapdump $h if $validate >= 2;
	$el = $$h and bhcheck $el, undef;
    }
}


################################################# forward declarations

sub ascending_cut;
sub elem;
sub elem_DESTROY;
sub link_to_left_of;

################################################# heap methods

# Cormen et al. use two values for the heap, a pointer to an element in the
# list at the top, and a count of the number of elements.  The count is only
# used to determine the size of array required to hold log(count) pointers,
# but perl can set array sizes as needed and doesn't need to know their size
# when they are created, so we're not maintaining that field.
sub new {
    my $self = shift;
    my $class = ref($self) || $self;
    my $h = undef;
    bless \$h, $class;
}

sub DESTROY {
    my $h = shift;

    elem_DESTROY $$h;
}

sub add {
    my $h = shift;
    my $v = shift;
    $validate && do {
	die "Method 'heap' required for element on heap"
	    unless $v->can('heap');
	die "Method 'cmp' required for element on heap"
	    unless $v->can('cmp');
    };
    my $el = elem $v;
    my $top;
    if( !($top = $$h) ) {
	$$h = $el;
    } else {
	link_to_left_of $top->{left}, $el ;
	link_to_left_of $el,$top;
	$$h = $el if $v->cmp($top->{val}) < 0;
    }
}

sub top {
    my $h = shift;
    $$h && $$h->{val};
}

*minimum = \&top;

sub extract_top {
    my $h = shift;
    my $el = $$h or return undef;
    my $ltop = $el->{left};
    my $cur;
    my $next;

    # $el is the heap with the lowest value on it
    # move all of $el's children (if any) to the top list (between
    # $ltop and $el)
    if( $cur = $el->{child} ) {
	# remember the beginning of the list of children
	my $first = $cur;
	do {
	    # the children are moving to the top, clear the p
	    # pointer for all of them
	    $cur->{p} = undef;
	} until ($cur = $cur->{right}) == $first;

	# remember the end of the list
	$cur = $cur->{left};
	link_to_left_of $ltop, $first;
	link_to_left_of $cur, $el;
    }

    if( $el->{right} == $el ) {
	# $el had no siblings or children, the top only contains $el
	# and $el is being removed
	$$h = undef;
    } else {
	link_to_left_of $el->{left}, $$h = $el->{right};
	# now all those loose ends have to be merged together as we
	# search for the
	# new smallest element
	$h->consolidate;
    }

    # extract the actual value and return that, $el is no longer used
    # but break all of its links so that it won't be pointed to...
    my $top = $el->{val};
    $top->heap(undef);
    $el->{left} = $el->{right} = $el->{p} = $el->{child} = $el->{val} =
	undef;
    $top;
}

*extract_minimum = \&extract_top;

sub absorb {
    my $h = shift;
    my $h2 = shift;

    my $el = $$h;
    unless( $el ) {
	$$h = $$h2;
	$$h2 = undef;
	return $h;
    }

    my $el2 = $$h2 or return $h;

    # add $el2 and its siblings to the head list for $h
    # at start, $ell -> $el -> ... -> $ell is on $h (where $ell is
    #				$el->{left})
    #           $el2l -> $el2 -> ... -> $el2l are on $h2
    # at end, $ell -> $el2l -> ... -> $el2 -> $el -> ... -> $ell are
    #				all on $h
    my $el2l = $el2->{left};
    link_to_left_of $el->{left}, $el2;
    link_to_left_of $el2l, $el;

    # change the top link if needed
    $$h = $el2 if $el->{val}->cmp( $el2->{val} ) > 0;

    # clean out $h2
    $$h2 = undef;

    # return the heap
    $h;
}

# a key has been decreased, it may have to percolate up in its heap
sub decrease_key {
    my $h = shift;
    my $top = $$h;
    my $v = shift;
    my $el = $v->heap or return undef;
    my $p;

    # first, link $h to $el if it is now the smallest (we will
    # soon link $el to $top to properly put it up to the top list,
    # if it isn't already there)
    $$h = $el if $top->{val}->cmp( $v ) > 0;

    if( $p = $el->{p} and $v->cmp($p->{val}) < 0 ) {
	# remove $el from its parent's list - it is now smaller

	ascending_cut $top, $p, $el;
    }

    $v;
}


# to delete an item, we bubble it to the top of its heap (as if its key
# had been decreased to -infinity), and then remove it (as in extract_top)
sub delete {
    my $h = shift;
    my $v = shift;
    my $el = $v->heap or return undef;

    # if there is a parent, cut $el to the top (as if it had just had its
    # key decreased to a smaller value than $p's value
    my $p;
    $p = $el->{p} and ascending_cut $$h, $p, $el;

    # $el is in the top list now, make it look like the smallest and
    # remove it
    $$h = $el;
    $h->extract_top;
}


################################################# internal utility functions

sub elem {
    my $v = shift;
    my $el = undef;
    $el = {
	p	=>	undef,
	degree	=>	0,
	mark	=>	0,
	child	=>	undef,
	val	=>	$v,
	left	=>	undef,
	right	=>	undef,
    };
    $el->{left} = $el->{right} = $el;
    $v->heap($el);
    $el;
}

sub elem_DESTROY {
    my $el = shift;
    my $ch;
    my $next;
    $el->{left}->{right} = undef;

    while( $el ) {
	$ch = $el->{child} and elem_DESTROY $ch;
	$next = $el->{right};

	defined $el->{val} and $el->{val}->heap(undef);
	$el->{child} = $el->{right} = $el->{left} = $el->{p} = $el->{val}
	    = undef;
	$el = $next;
    }
}

sub link_to_left_of {
    my $l = shift;
    my $r = shift;

    $l->{right} = $r;
    $r->{left} = $l;
}

sub link_as_parent_of {
    my $p = shift;
    my $c = shift;

    my $pc;

    if( $pc = $p->{child} ) {
	link_to_left_of $pc->{left}, $c;
	link_to_left_of $c, $pc;
    } else {
	link_to_left_of $c, $c;
    }
    $p->{child} = $c;
    $c->{p} = $p;
    $p->{degree}++;
    $c->{mark} = 0;
    $p;
}

sub consolidate {
    my $h = shift;

    my $cur;
    my $this;
    my $next = $$h;
    my $last = $next->{left};
    my @a;
    do {
	# examine next item on top list
	$this = $cur = $next;
	$next = $cur->{right};
	my $d = $cur->{degree};
	my $alt;
	while( $alt = $a[$d] ) {
	    # we already saw another item of the same degree,
	    # put the larger valued one under the smaller valued
	    # one - switch $cur and $alt if necessary so that $cur
	    # is the smaller
	    ($cur,$alt) = ($alt,$cur)
		if $cur->{val}->cmp( $alt->{val} ) > 0;
	    # remove $alt from the top list
	    link_to_left_of $alt->{left}, $alt->{right};
	    # and put it under $cur
	    link_as_parent_of $cur, $alt;
	    # make sure that $h still points to a node at the top
	    $$h = $cur;
	    # we've removed the old $d degree entry
	    $a[$d] = undef;
	    # and we now have a $d+1 degree entry to try to insert
	    # into @a
	    ++$d;
	}
	# found a previously unused degree
	$a[$d] = $cur;
    } until $this == $last;
    $cur = $$h;
    for $cur (grep defined, @a) {
	$$h = $cur if $$h->{val}->cmp( $cur->{val} ) > 0;
    }
}

sub ascending_cut {
    my $top = shift;
    my $p = shift;
    my $el = shift;

    while( 1 ) {
	if( --$p->{degree} ) {
	    # there are still other children below $p
	    my $l = $el->{left};
	    $p->{child} = $l;
	    link_to_left_of $l, $el->{right};
	} else {
	    # $el was the only child of $p
	    $p->{child} = undef;
	}
	link_to_left_of $top->{left}, $el;
	link_to_left_of $el, $top;
	$el->{p} = undef;
	$el->{mark} = 0;

	# propagate up the list
	$el = $p;

	# quit at the top
	last unless $p = $el->{p};

	# quit if we can mark $el
	$el->{mark} = 1, last unless $el->{mark};
    }
}


1;

__END__

=head1 NAME

Heap::Fibonacci - a fibonacci heap to keep data partially sorted

=head1 SYNOPSIS

  use Heap::Fibonacci;

  $heap = Heap::Fibonacci->new;
  # see Heap(3) for usage

=head1 DESCRIPTION

Keeps elements in heap order using a linked list of Fibonacci trees.
The I<heap> method of an element is used to store a reference to
the node in the list that refers to the element.

See L<Heap> for details on using this module.

=head1 AUTHOR

John Macdonald, john@perlwolf.com

=head1 COPYRIGHT

Copyright 1998-2007, O'Reilly & Associates.

This code is distributed under the same copyright terms as perl itself.

=head1 SEE ALSO

Heap(3), Heap::Elem(3).

=cut