This file is indexed.

/usr/share/perl5/Graph/Easy/Layout/Scout.pm is in libgraph-easy-perl 0.76-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
#############################################################################
# Find paths from node to node in a Manhattan-style grid via A*.
#
# (c) by Tels - part of Graph::Easy
#############################################################################

package Graph::Easy::Layout::Scout;

$VERSION = '0.76';

#############################################################################
#############################################################################

package Graph::Easy;

use strict;
use warnings;
use Graph::Easy::Node::Cell;
use Graph::Easy::Edge::Cell qw/
  EDGE_SHORT_E EDGE_SHORT_W EDGE_SHORT_N EDGE_SHORT_S

  EDGE_SHORT_BD_EW EDGE_SHORT_BD_NS
  EDGE_SHORT_UN_EW EDGE_SHORT_UN_NS

  EDGE_START_E EDGE_START_W EDGE_START_N EDGE_START_S

  EDGE_END_E EDGE_END_W EDGE_END_N EDGE_END_S

  EDGE_N_E EDGE_N_W EDGE_S_E EDGE_S_W

  EDGE_N_W_S EDGE_S_W_N EDGE_E_S_W EDGE_W_S_E

  EDGE_LOOP_NORTH EDGE_LOOP_SOUTH EDGE_LOOP_WEST EDGE_LOOP_EAST

  EDGE_HOR EDGE_VER EDGE_HOLE

  EDGE_S_E_W EDGE_N_E_W EDGE_E_N_S EDGE_W_N_S

  EDGE_LABEL_CELL
  EDGE_TYPE_MASK
  EDGE_ARROW_MASK
  EDGE_FLAG_MASK
  EDGE_START_MASK
  EDGE_END_MASK
  EDGE_NO_M_MASK
 /;

#############################################################################

# mapping edge type (HOR, VER, NW etc) and dx/dy to startpoint flag
my $start_points = {
#               [ dx == 1, 	dx == -1,     dy == 1,      dy == -1 ,
#                 dx == 1, 	dx == -1,     dy == 1,      dy == -1 ]
  EDGE_HOR() => [ EDGE_START_W, EDGE_START_E, 0,	    0 			,
		  EDGE_END_E,   EDGE_END_W,   0,	    0,			],
  EDGE_VER() => [ 0,		0, 	      EDGE_START_N, EDGE_START_S 	,
		  0,		0,	      EDGE_END_S,   EDGE_END_N,		],
  EDGE_N_E() => [ 0,		EDGE_START_E, EDGE_START_N, 0		 	,
		  EDGE_END_E,	0,	      0, 	    EDGE_END_N, 	],
  EDGE_N_W() => [ EDGE_START_W,	0, 	      EDGE_START_N, 0			,
		  0,	        EDGE_END_W,   0,	    EDGE_END_N,		],
  EDGE_S_E() => [ 0,		EDGE_START_E, 0,	    EDGE_START_S 	,
		  EDGE_END_E,   0,            EDGE_END_S,   0,			],
  EDGE_S_W() => [ EDGE_START_W,	0, 	      0,	    EDGE_START_S	,
		  0,		EDGE_END_W,   EDGE_END_S,   0,			],
  };

my $start_to_end = {
  EDGE_START_W() => EDGE_END_W(),
  EDGE_START_E() => EDGE_END_E(),
  EDGE_START_S() => EDGE_END_S(),
  EDGE_START_N() => EDGE_END_N(),
  };

sub _end_points
  {
  # modify last field of path to be the correct endpoint; and the first field
  # to be the correct startpoint:
  my ($self, $edge, $coords, $dx, $dy) = @_;

  return $coords if $edge->undirected();

  # there are two cases (for each dx and dy)
  my $i = 0;					# index 0,1
  my $co = 2;
  my $case;

  for my $d ($dx,$dy,$dx,$dy)
    {
    next if $d == 0;

    my $type = $coords->[$co] & EDGE_TYPE_MASK;

    $case = 0; $case = 1 if $d == -1;

    # modify first/last cell
    my $t = $start_points->{ $type }->[ $case + $i ];
    # on bidirectional edges, turn START_X into END_X
    $t = $start_to_end->{$t} || $t if $edge->{bidirectional};

    $coords->[$co] += $t;

    } continue {
    $i += 2; 					# index 2,3, 4,5 etc
    $co = -1 if $i == 4;			# modify now last cell
    }
  $coords;
  }

sub _find_path
  {
  # Try to find a path between two nodes. $options contains direction
  # preferences. Returns a list of cells like:
  # [ $x,$y,$type, $x1,$y1,$type1, ...]
  my ($self, $src, $dst, $edge) = @_;

  # one node pointing back to itself?
  if ($src == $dst)
    {
    my $rc = $self->_find_path_loop($src,$edge);
    return $rc unless scalar @$rc == 0;
    }

  # If one of the two nodes is bigger than 1 cell, use _find_path_astar(),
  # because it automatically handles all the possibilities:
  return $self->_find_path_astar($edge)
    if ($src->is_multicelled() || $dst->is_multicelled() || $edge->has_ports());

  my ($x0, $y0) = ($src->{x}, $src->{y});
  my ($x1, $y1) = ($dst->{x}, $dst->{y});
  my $dx = ($x1 - $x0) <=> 0;
  my $dy = ($y1 - $y0) <=> 0;

  my $cells = $self->{cells};
  my @coords;
  my ($x,$y) = ($x0,$y0);			# starting pos

  ###########################################################################
  # below follow some shortcuts for easy things like straight paths:

  print STDERR "#  dx,dy: $dx,$dy\n" if $self->{debug};

  if ($dx == 0 || $dy == 0)
    {
    # try straight path to target:

    print STDERR "#  $src->{x},$src->{y} => $dst->{x},$dst->{y} - trying short path\n" if $self->{debug};

    # distance to node:
    my $dx1 = ($x1 - $x0);
    my $dy1 = ($y1 - $y0);
    ($x,$y) = ($x0+$dx,$y0+$dy);			# starting pos

    if ((abs($dx1) == 2) || (abs($dy1) == 2))
      {
      if (!exists ($cells->{"$x,$y"}))
        {
        # a single step for this edge:
        my $type = EDGE_LABEL_CELL;
        # short path
        if ($edge->bidirectional())
	  {
          $type += EDGE_SHORT_BD_EW if $dy == 0;
          $type += EDGE_SHORT_BD_NS if $dx == 0;
          }
        elsif ($edge->undirected())
          {
          $type += EDGE_SHORT_UN_EW if $dy == 0;
          $type += EDGE_SHORT_UN_NS if $dx == 0;
          }
        else
          {
          $type += EDGE_SHORT_E if ($dx ==  1 && $dy ==  0);
          $type += EDGE_SHORT_S if ($dx ==  0 && $dy ==  1);
          $type += EDGE_SHORT_W if ($dx == -1 && $dy ==  0);
          $type += EDGE_SHORT_N if ($dx ==  0 && $dy == -1);
          }
	# if one of the end points of the edge is of shape 'edge'
	# remove end/start flag
        if (($edge->{to}->attribute('shape') ||'') eq 'edge')
	  {
	  # we only need to remove one start point, namely the one at the "end"
	  if ($dx > 0)
	    {
	    $type &= ~EDGE_START_E;
	    }
	  elsif ($dx < 0)
	    {
	    $type &= ~EDGE_START_W;
	    }
	  }
        if (($edge->{from}->attribute('shape') ||'') eq 'edge')
	  {
	  $type &= ~EDGE_START_MASK;
	  }

        return [ $x, $y, $type ];			# return a short EDGE
        }
      }

    my $type = EDGE_HOR; $type = EDGE_VER if $dx == 0;	# - or |
    my $done = 0;
    my $label_done = 0;
    while (3 < 5)		# endless loop
      {
      # Since we do not handle crossings here, A* will be tried if we hit an
      # edge in this test.
      $done = 1, last if exists $cells->{"$x,$y"};	# cell already full

      # the first cell gets the label
      my $t = $type; $t += EDGE_LABEL_CELL if $label_done++ == 0;

      push @coords, $x, $y, $t;				# good one, is free
      $x += $dx; $y += $dy;				# next field
      last if ($x == $x1) && ($y == $y1);
      }

    if ($done == 0)
      {
      print STDERR "#  success for ", scalar @coords / 3, " steps in path\n" if $self->{debug};
      # return all fields of path
      return $self->_end_points($edge, \@coords, $dx, $dy);
      }

    } # end else straight path try

  ###########################################################################
  # Try paths with one bend:

  # ($dx != 0 && $dy != 0) => path with one bend
  # XXX TODO:
  # This could be handled by A*, too, but it would be probably a bit slower.
  else
    {
    # straight path not possible, since x0 != x1 AND y0 != y1

    #           "  |"                        "|   "
    # try first "--+" (aka hor => ver), then "+---" (aka ver => hor)
    my $done = 0;

    print STDERR "#  bend path from $x,$y\n" if $self->{debug};

    # try hor => ver
    my $type = EDGE_HOR;

    my $label = 0;						# attach label?
    $label = 1 if ref($edge) && ($edge->label()||'') eq '';	# no label?
    $x += $dx;
    while ($x != $x1)
      {
      $done++, last if exists $cells->{"$x,$y"};	# cell already full
      print STDERR "#  at $x,$y\n" if $self->{debug};
      my $t = $type; $t += EDGE_LABEL_CELL if $label++ == 0;
      push @coords, $x, $y, $t;				# good one, is free
      $x += $dx;					# next field
      };

    # check the bend itself
    $done++ if exists $cells->{"$x,$y"};	# cell already full

    if ($done == 0)
      {
      my $type_bend = _astar_edge_type ($x-$dx,$y, $x,$y, $x,$y+$dy);

      push @coords, $x, $y, $type_bend;			# put in bend
      print STDERR "# at $x,$y\n" if $self->{debug};
      $y += $dy;
      $type = EDGE_VER;
      while ($y != $y1)
        {
        $done++, last if exists $cells->{"$x,$y"};	# cell already full
	print STDERR "# at $x,$y\n" if $self->{debug};
        push @coords, $x, $y, $type;			# good one, is free
        $y += $dy;
        }
      }

    if ($done != 0)
      {
      $done = 0;
      # try ver => hor
      print STDERR "# hm, now trying first vertical, then horizontal\n" if $self->{debug};
      $type = EDGE_VER;

      @coords = ();					# drop old version
      ($x,$y) = ($x0, $y0 + $dy);			# starting pos
      while ($y != $y1)
        {
        $done++, last if exists $cells->{"$x,$y"};	# cell already full
        print STDERR "# at $x,$y\n" if $self->{debug};
        push @coords, $x, $y, $type;			# good one, is free
        $y += $dy;					# next field
        };

      # check the bend itself
      $done++ if exists $cells->{"$x,$y"};		# cell already full

      if ($done == 0)
        {
        my $type_bend = _astar_edge_type ($x,$y-$dy, $x,$y, $x+$dx,$y);

        push @coords, $x, $y, $type_bend;		# put in bend
        print STDERR "# at $x,$y\n" if $self->{debug};
        $x += $dx;
        my $label = 0;					# attach label?
        $label = 1 if $edge->label() eq '';		# no label?
        $type = EDGE_HOR;
        while ($x != $x1)
          {
          $done++, last if exists $cells->{"$x,$y"};	# cell already full
	  print STDERR "# at $x,$y\n" if $self->{debug};
          my $t = $type; $t += EDGE_LABEL_CELL if $label++ == 0;
          push @coords, $x, $y, $t;			# good one, is free
	  $x += $dx;
          }
        }
      }

    if ($done == 0)
      {
      print STDERR "# success for ", scalar @coords / 3, " steps in path\n" if $self->{debug};
      # return all fields of path
      return $self->_end_points($edge, \@coords, $dx, $dy);
      }

    print STDERR "# no success\n" if $self->{debug};

    } # end path with $dx and $dy

  $self->_find_path_astar($edge);		# try generic approach as last hope
  }

sub _find_path_loop
  {
  # find a path from one node back to itself
  my ($self, $src, $edge) = @_;

  print STDERR "# Finding looping path from $src->{name} to $src->{name}\n" if $self->{debug};

  my ($n, $cells, $d, $type, $loose) = @_;

  # get a list of all places

  my @places = $src->_near_places(
    $self->{cells}, 1, [
      EDGE_LOOP_EAST,
      EDGE_LOOP_SOUTH,
      EDGE_LOOP_WEST,
      EDGE_LOOP_NORTH,
    ], 0, 90);

  my $flow = $src->flow();

  # We cannot use _shuffle_dir() here, because self-loops
  # are tried in a different order:

  # the default (east)
  my $index = [
    EDGE_LOOP_NORTH,
    EDGE_LOOP_SOUTH,
    EDGE_LOOP_WEST,
    EDGE_LOOP_EAST,
   ];

  # west
  $index = [
    EDGE_LOOP_SOUTH,
    EDGE_LOOP_NORTH,
    EDGE_LOOP_EAST,
    EDGE_LOOP_WEST,
   ] if $flow == 270;

  # north
  $index = [
    EDGE_LOOP_WEST,
    EDGE_LOOP_EAST,
    EDGE_LOOP_SOUTH,
    EDGE_LOOP_NORTH,
   ] if $flow == 0;

  # south
  $index = [
    EDGE_LOOP_EAST,
    EDGE_LOOP_WEST,
    EDGE_LOOP_NORTH,
    EDGE_LOOP_SOUTH,
   ] if $flow == 180;

  for my $this_try (@$index)
    {
    my $idx = 0;
    while ($idx < @places)
      {
      print STDERR "# Trying $places[$idx+0],$places[$idx+1]\n" if $self->{debug};
      next unless $places[$idx+2] == $this_try;

      # build a path from the returned piece
      my @rc = ($places[$idx], $places[$idx+1], $places[$idx+2]);

      print STDERR "# Trying $rc[0],$rc[1]\n" if $self->{debug};

      next unless $self->_path_is_clear(\@rc);

      print STDERR "# Found looping path\n" if $self->{debug};
      return \@rc;
      } continue { $idx += 3; }
    }

  [];		# no path found
  }

#############################################################################
#############################################################################

# This package represents a simple/cheap/fast heap:
package Graph::Easy::Heap;

require Graph::Easy::Base;
our @ISA = qw/Graph::Easy::Base/;

use strict;

sub _init
  {
  my ($self,$args) = @_;

  $self->{_heap} = [ ];

  $self;
  }

sub add
  {
  # add one element to the heap
  my ($self,$elem) = @_;

  my $heap = $self->{_heap};

  # heap empty?
  if (@$heap == 0)
    {
    push @$heap, $elem;
    }
  # smaller than first elem?
  elsif ($elem->[0] < $heap->[0]->[0])
    {
    #print STDERR "# $elem->[0] is smaller then first elem $heap->[0]->[0] (with ", scalar @$heap," elems on heap)\n";
    unshift @$heap, $elem;
    }
  # bigger than or equal to last elem?
  elsif ($elem->[0] > $heap->[-1]->[0])
    {
    #print STDERR "# $elem->[0] is bigger then last elem $heap->[-1]->[0] (with ", scalar @$heap," elems on heap)\n";
    push @$heap, $elem;
    }
  else
    {
    # insert the elem at the right position

    # if we have less than X elements, use linear search
    my $el = $elem->[0];
    if (scalar @$heap < 10)
      {
      my $i = 0;
      for my $e (@$heap)
        {
        if ($e->[0] > $el)
          {
          splice (@$heap, $i, 0, $elem);		# insert $elem
          return undef;
          }
        $i++;
        }
      # else, append at the end
      push @$heap, $elem;
      }
    else
      {
      # use binary search
      my $l = 0; my $r = scalar @$heap;
      while (($r - $l) > 2)
        {
        my $m = int((($r - $l) / 2) + $l);
#        print "l=$l r=$r m=$m el=$el heap=$heap->[$m]->[0]\n";
        if ($heap->[$m]->[0] <= $el)
          {
          $l = $m;
          }
        else
          {
          $r = $m;
          }
        }
      while ($l < @$heap)
        {
        if ($heap->[$l]->[0] > $el)
          {
          splice (@$heap, $l, 0, $elem);		# insert $elem
          return undef;
          }
        $l++;
        }
      # else, append at the end
      push @$heap, $elem;
      }
    }
  undef;
  }

sub elements
  {
  scalar @{$_[0]->{_heap}};
  }

sub extract_top
  {
  # remove and return the top elemt
  shift @{$_[0]->{_heap}};
  }

sub delete
  {
  # Find an element by $x,$y and delete it
  my ($self, $x, $y) = @_;

  my $heap = $self->{_heap};

  my $i = 0;
  for my $e (@$heap)
    {
    if ($e->[1] == $x && $e->[2] == $y)
      {
      splice (@$heap, $i, 1);
      return;
      }
    $i++;
    }

  $self;
  }

sub sort_sub
  {
  my ($self) = shift;

  $self->{_sort} = shift;
  }

#############################################################################
#############################################################################

package Graph::Easy;

# Generic pathfinding via the A* algorithm:
# See http://bloodgate.com/perl/graph/astar.html for some background.

sub _astar_modifier
  {
  # calculate the cost for the path at cell x1,y1
  my ($x1,$y1,$x,$y,$px,$py, $cells) = @_;

  my $add = 1;

  if (defined $x1)
    {
    my $xy = "$x1,$y1";
    # add a harsh penalty for crossing an edge, meaning we can travel many
    # fields to go around.
    $add += 30 if ref($cells->{$xy}) && $cells->{$xy}->isa('Graph::Easy::Edge');
    }

  if (defined $px)
    {
    # see whether the new position $x1,$y1 is a continuation from $px,$py => $x,$y
    # e.g. if from we go down from $px,$py to $x,$y, then anything else then $x,$y+1 will
    # get a penalty
    my $dx1 = ($px-$x) <=> 0;
    my $dy1 = ($py-$y) <=> 0;
    my $dx2 = ($x-$x1) <=> 0;
    my $dy2 = ($y-$y1) <=> 0;
    $add += 6 unless $dx1 == $dx2 || $dy1 == $dy2;
    }
  $add;
  }

sub _astar_distance
  {
  # calculate the manhattan distance between x1,y1 and x2,y2
#  my ($x1,$y1,$x2,$y2) = @_;

  my $dx = abs($_[2] - $_[0]);
  my $dy = abs($_[3] - $_[1]);

  # plus 1 because we need to go around one corner if $dx != 0 && $dx != 0
  $dx++ if $dx != 0 && $dy != 0;

  $dx + $dy;
  }

my $edge_type = {
    '0,1,-1,0' => EDGE_N_W,
    '0,1,0,1' => EDGE_VER,
    '0,1,1,0' => EDGE_N_E,

    '-1,0,0,-1' => EDGE_N_E,
    '-1,0,-1,0' => EDGE_HOR,
    '-1,0,0,1' => EDGE_S_E,

    '0,-1,-1,0' => EDGE_S_W,
    '0,-1,0,-1' => EDGE_VER,
    '0,-1,1,0' => EDGE_S_E,

    '1,0,0,-1' => EDGE_N_W,
    '1,0,1,0' => EDGE_HOR,
    '1,0,0,1' => EDGE_S_W,

    # loops (left-right-left etc)
    '0,-1,0,1' => EDGE_N_W_S,
    '0,1,0,-1' => EDGE_S_W_N,
    '1,0,-1,0' => EDGE_E_S_W,
    '-1,0,1,0' => EDGE_W_S_E,
  };

sub _astar_edge_type
  {
  # from three consecutive positions calculate the edge type (VER, HOR, N_W etc)
  my ($x,$y, $x1,$y1, $x2, $y2) = @_;

  my $dx1 = ($x1 - $x) <=> 0;
  my $dy1 = ($y1 - $y) <=> 0;

  my $dx2 = ($x2 - $x1) <=> 0;
  my $dy2 = ($y2 - $y1) <=> 0;

  # in some cases we get (0,-1,0,0), so set the missing parts
  ($dx2,$dy2) = ($dx1,$dy1) if $dx2 == 0 && $dy2 == 0;
  # can this case happen?
  ($dx1,$dy1) = ($dx2,$dy2) if $dx1 == 0 && $dy1 == 0;

  # return correct type depending on differences
  $edge_type->{"$dx1,$dy1,$dx2,$dy2"} || EDGE_HOR;
  }

sub _astar_near_nodes
  {
  # return possible next nodes from $nx,$ny
  my ($self, $nx, $ny, $cells, $closed, $min_x, $min_y, $max_x, $max_y) = @_;

  my @places = ();

  my @tries  = (	# ordered E,S,W,N:
    $nx + 1, $ny, 	# right
    $nx, $ny + 1,	# down
    $nx - 1, $ny,	# left
    $nx, $ny - 1,	# up
    );

  # on crossings, only allow one direction (NS or EW)
  my $type = EDGE_CROSS;
  # including flags, because only flagless edges may be crossed
  $type = $cells->{"$nx,$ny"}->{type} if exists $cells->{"$nx,$ny"};
  if ($type == EDGE_HOR)
    {
    @tries  = (
      $nx, $ny + 1,	# down
      $nx, $ny - 1,	# up
    );
    }
  elsif ($type == EDGE_VER)
    {
    @tries  = (
      $nx + 1, $ny, 	# right
      $nx - 1, $ny,	# left
    );
    }

  # This loop does not check whether the position is already open or not,
  # the caller will later check if the already-open position needs to be
  # replaced by one with a lower cost.

  my $i = 0;
  while ($i < @tries)
    {
    my ($x,$y) = ($tries[$i], $tries[$i+1]);

    print STDERR "# $min_x,$min_y => $max_x,$max_y\n" if $self->{debug} > 2;

    # drop cells outside our working space:
    next if $x < $min_x || $x > $max_x || $y < $min_y || $y > $max_y;

    my $p = "$x,$y";
    print STDERR "# examining pos $p\n" if $self->{debug} > 2;

    next if exists $closed->{$p};

    if (exists $cells->{$p} && ref($cells->{$p}) && $cells->{$p}->isa('Graph::Easy::Edge'))
      {
      # If the existing cell is an VER/HOR edge, then we may cross it
      my $type = $cells->{$p}->{type};	# including flags, because only flagless edges
					# may be crossed

      push @places, $x, $y if ($type == EDGE_HOR) || ($type == EDGE_VER);
      next;
      }
    next if exists $cells->{$p};	# uncrossable cell

    push @places, $x, $y;

    } continue { $i += 2; }

  @places;
  }

sub _astar_boundaries
  {
  # Calculate boundaries for area that A* should not leave.
  my $self = shift;

  my $cache = $self->{cache};

  return ( $cache->{min_x}-1, $cache->{min_y}-1,
	   $cache->{max_x}+1, $cache->{max_y}+1 ) if defined $cache->{min_x};

  my ($min_x, $min_y, $max_x, $max_y);

  my $cells = $self->{cells};

  $min_x = 10000000;
  $min_y = 10000000;
  $max_x = -10000000;
  $max_y = -10000000;

  for my $c (sort keys %$cells)
    {
    my ($x,$y) = split /,/, $c;
    $min_x = $x if $x < $min_x;
    $min_y = $y if $y < $min_y;
    $max_x = $x if $x > $max_x;
    $max_y = $y if $y > $max_y;
    }

  print STDERR "# A* working space boundaries: $min_x, $min_y, $max_x, $max_y\n" if $self->{debug};

  ( $cache->{min_x}, $cache->{min_y}, $cache->{max_x}, $cache->{max_y} ) =
  ($min_x, $min_y, $max_x, $max_y);

  # make the area one bigger in each direction
  $min_x --; $min_y --; $max_x ++; $max_y ++;
  ($min_x, $min_y, $max_x, $max_y);
  }

# on edge pieces, select start fields (left/right of a VER, above/below of a HOR etc)
# contains also for each starting position the joint-type
my $next_fields =
  {
  EDGE_VER() => [ -1,0, EDGE_W_N_S, +1,0, EDGE_E_N_S ],
  EDGE_HOR() => [ 0,-1, EDGE_N_E_W, 0,+1, EDGE_S_E_W ],
  EDGE_N_E() => [ 0,+1, EDGE_E_N_S, -1,0, EDGE_N_E_W ],		# |_
  EDGE_N_W() => [ 0,+1, EDGE_W_N_S, +1,0, EDGE_N_E_W ],		# _|
  EDGE_S_E() => [ 0,-1, EDGE_E_N_S, -1,0, EDGE_S_E_W ],
  EDGE_S_W() => [ 0,-1, EDGE_W_N_S, +1,0, EDGE_S_E_W ],
  };

# on edge pieces, select end fields (left/right of a VER, above/below of a HOR etc)
# contains also for each end position the joint-type
my $prev_fields =
  {
  EDGE_VER() => [ -1,0, EDGE_W_N_S, +1,0, EDGE_E_N_S ],
  EDGE_HOR() => [ 0,-1, EDGE_N_E_W, 0,+1, EDGE_S_E_W ],
  EDGE_N_E() => [ 0,+1, EDGE_E_N_S, -1,0, EDGE_N_E_W ],		# |_
  EDGE_N_W() => [ 0,+1, EDGE_W_N_S, +1,0, EDGE_N_E_W ],		# _|
  EDGE_S_E() => [ 0,-1, EDGE_E_N_S, -1,0, EDGE_S_E_W ],
  EDGE_S_W() => [ 0,-1, EDGE_W_N_S, +1,0, EDGE_S_E_W ],
  };

use Graph::Easy::Util qw(ord_values);

sub _get_joints
  {
  # from a list of shared, already placed edges, get possible start/end fields
  my ($self, $shared, $mask, $types, $cells, $next_fields) = @_;

  # XXX TODO: do not do this for edges with no free places for joints

  # take each cell from all edges shared, already placed edges as start-point
  for my $e (@$shared)
    {
    for my $c (@{$e->{cells}})
      {
      my $type = $c->{type} & EDGE_TYPE_MASK;

      next unless exists $next_fields->{ $type };

      # don't consider end/start (depending on $mask) cells

      # do not join EDGE_HOR or EDGE_VER, but join corner pieces
      next if ( ($type == EDGE_HOR()) ||
		($type == EDGE_VER()) ) &&
		($c->{type} & $mask);

      my $fields = $next_fields->{$type};

      my ($px,$py) = ($c->{x},$c->{y});
      my $i = 0;
      while ($i < @$fields)
	{
	my ($sx,$sy, $jt) = ($fields->[$i], $fields->[$i+1], $fields->[$i+2]);
	$sx += $px; $sy += $py; $i += 3;
        my $sxsy = "$sx,$sy";
        # don't add the field twice
	next if exists $cells->{$sxsy};
	$cells->{$sxsy} = [ $sx, $sy, undef, $px, $py ];
	# keep eventually set start/end points on the original cell
	$types->{$sxsy} = $jt + ($c->{type} & EDGE_FLAG_MASK);
	}
      }
    }

  my @R;
  # convert hash to array
  for my $s (ord_values ( $cells ))
    {
    push @R, @$s;
    }
  @R;
  }

sub _join_edge
  {
  # Find out whether an edge sharing an ending point with the source edge
  # runs alongside the source node, if so, convert it to a joint:
  my ($self, $node, $edge, $shared, $end) = @_;

  # we check the sides B,C,D and E for HOR and VER edge pices:
  #   --D--
  # | +---+ |
  # E | A | B
  # | +---+ |
  #   --C--

  my $flags =
   [
      EDGE_W_N_S + EDGE_START_W,
      EDGE_N_E_W + EDGE_START_N,
      EDGE_E_N_S + EDGE_START_E,
      EDGE_S_E_W + EDGE_START_S,
   ];
  $flags =
   [
      EDGE_W_N_S + EDGE_END_W,
      EDGE_N_E_W + EDGE_END_N,
      EDGE_E_N_S + EDGE_END_E,
      EDGE_S_E_W + EDGE_END_S,
   ] if $end || $edge->{bidirectional};

  my $cells = $self->{cells};
  my @places = $node->_near_places($cells, 1, # distance 1
   $flags, 'loose');

  my $i = 0;
  while ($i < @places)
    {
    my ($x,$y) = ($places[$i], $places[$i+1]); $i += 3;

    next unless exists $cells->{"$x,$y"};		# empty space?
    # found some cell, check that it is a EDGE_HOR or EDGE_VER
    my $cell = $cells->{"$x,$y"};
    next unless $cell->isa('Graph::Easy::Edge::Cell');

    my $cell_type = $cell->{type} & EDGE_TYPE_MASK;

    next unless $cell_type == EDGE_HOR || $cell_type == EDGE_VER;

    # the cell must belong to one of the shared edges
    my $e = $cell->{edge}; local $_;
    next unless scalar grep { $e == $_ } @$shared;

    # make the cell at the current pos a joint
    $cell->_make_joint($edge,$places[$i-1]);

    # The layouter will check that each edge has a cell, so add a dummy one to
    # $edge to make it happy:
    Graph::Easy::Edge::Cell->new( type => EDGE_HOLE, edge => $edge, x => $x, y => $y );

    return [];					# path is empty
    }

  undef;		# did not find an edge cell that can be used as joint
  }

sub _find_path_astar
  {
  # Find a path with the A* algorithm for the given edge (from node A to B)
  my ($self,$edge) = @_;

  my $cells = $self->{cells};
  my $src = $edge->{from};
  my $dst = $edge->{to};

  print STDERR "# A* from $src->{x},$src->{y} to $dst->{x},$dst->{y}\n" if $self->{debug};

  my $start_flags = [
    EDGE_START_W,
    EDGE_START_N,
    EDGE_START_E,
    EDGE_START_S,
  ];

  my $end_flags = [
    EDGE_END_W,
    EDGE_END_N,
    EDGE_END_E,
    EDGE_END_S,
  ];

  # if the target/source node is of shape "edge", remove the endpoint
  if ( ($edge->{to}->attribute('shape')) eq 'edge')
    {
    $end_flags = [ 0,0,0,0 ];
    }
  if ( ($edge->{from}->attribute('shape')) eq 'edge')
    {
    $start_flags = [ 0,0,0,0 ];
    }

  my ($s_p,@ss_p) = $edge->port('start');
  my ($e_p,@ee_p) = $edge->port('end');
  my (@A, @B);					# Start/Stop positions
  my @shared_start;
  my @shared_end;

  my $joint_type = {};
  my $joint_type_end = {};

  my $start_cells = {};
  my $end_cells = {};

  ###########################################################################
  # end fields first (because maybe an edge runs alongside the node)

  # has a end point restriction
  @shared_end = $edge->{to}->edges_at_port('end', $e_p, $ee_p[0]) if defined $e_p && @ee_p == 1;

  my @shared = ();
  # filter out all non-placed edges (this will also filter out $edge)
  for my $s (@shared_end)
    {
    push @shared, $s if @{$s->{cells}} > 0;
    }

  my $per_field = 5;			# for shared: x,y,undef, px,py
  if (@shared > 0)
    {
    # more than one edge share the same end port, and one of the others was
    # already placed

    print STDERR "#  edge from '$edge->{from}->{name}' to '$edge->{to}->{name}' shares end port with ",
	scalar @shared, " other edge(s)\n" if $self->{debug};

    # if there is one of the already-placed edges running alongside the src
    # node, we can just convert the field to a joint and be done
    my $path = $self->_join_edge($src,$edge,\@shared);
    return $path if $path;				# already done?

    @B = $self->_get_joints(\@shared, EDGE_START_MASK, $joint_type_end, $end_cells, $prev_fields);
    }
  else
    {
    # potential stop positions
    @B = $dst->_near_places($cells, 1, $end_flags, 1);	# distance = 1: slots

    # the edge has a port description, limiting the end places
    @B = $dst->_allowed_places( \@B, $dst->_allow( $e_p, @ee_p ), 3)
      if defined $e_p;

    $per_field = 3;			# x,y,type
    }

  return unless scalar @B > 0;			# no free slots on target node?

  ###########################################################################
  # start fields

  # has a starting point restriction:
  @shared_start = $edge->{from}->edges_at_port('start', $s_p, $ss_p[0]) if defined $s_p && @ss_p == 1;

  @shared = ();
  # filter out all non-placed edges (this will also filter out $edge)
  for my $s (@shared_start)
    {
    push @shared, $s if @{$s->{cells}} > 0;
    }

  if (@shared > 0)
    {
    # More than one edge share the same start port, and one of the others was
    # already placed, so we just run along until we catch it up with a joint:

    print STDERR "#  edge from '$edge->{from}->{name}' to '$edge->{to}->{name}' shares start port with ",
	scalar @shared, " other edge(s)\n" if $self->{debug};

    # if there is one of the already-placed edges running alongside the src
    # node, we can just convert the field to a joint and be done
    my $path = $self->_join_edge($dst, $edge, \@shared, 'end');
    return $path if $path;				# already done?

    @A = $self->_get_joints(\@shared, EDGE_END_MASK, $joint_type, $start_cells, $next_fields);
    }
  else
    {
    # from SRC to DST

    # get all the starting positions
    # distance = 1: slots, generate starting types, the direction is shifted
    # by 90° counter-clockwise

    my $s = $start_flags; $s = $end_flags if $edge->{bidirectional};
    my @start = $src->_near_places($cells, 1, $s, 1, $src->_shift(-90) );

    # the edge has a port description, limiting the start places
    @start = $src->_allowed_places( \@start, $src->_allow( $s_p, @ss_p ), 3)
      if defined $s_p;

    return unless @start > 0;			# no free slots on start node?

    my $i = 0;
    while ($i < scalar @start)
      {
      my $sx = $start[$i]; my $sy = $start[$i+1]; my $type = $start[$i+2]; $i += 3;

      # compute the field inside the node from where $sx,$sy is reached:
      my $px = $sx; my $py = $sy;
      if ($sy < $src->{y} || $sy >= $src->{y} + $src->{cy})
        {
        $py = $sy + 1 if $sy < $src->{y};		# above
        $py = $sy - 1 if $sy > $src->{y};		# below
        }
      else
        {
        $px = $sx + 1 if $sx < $src->{x};		# right
        $px = $sx - 1 if $sx > $src->{x};		# left
        }

      push @A, ($sx, $sy, $type, $px, $py);
      }
    }

  ###########################################################################
  # use A* to finally find the path:

  my $path = $self->_astar(\@A,\@B,$edge, $per_field);

  if (@$path > 0 && keys %$start_cells > 0)
    {
    # convert the edge piece of the starting edge-cell to a joint
    my ($x, $y) = ($path->[0],$path->[1]);
    my $xy = "$x,$y";
    my ($sx,$sy,$t,$px,$py) = @{$start_cells->{$xy}};

    my $jt = $joint_type->{"$sx,$sy"};
    $cells->{"$px,$py"}->_make_joint($edge,$jt);
    }

  if (@$path > 0 && keys %$end_cells > 0)
    {
    # convert the edge piece of the starting edge-cell to a joint
    my ($x, $y) = ($path->[-3],$path->[-2]);
    my $xy = "$x,$y";
    my ($sx,$sy,$t,$px,$py) = @{$end_cells->{$xy}};

    my $jt = $joint_type_end->{"$sx,$sy"};
    $cells->{"$px,$py"}->_make_joint($edge,$jt);
    }

  $path;
  }

sub _astar
  {
  # The core A* algorithm, finds a path from a given list of start
  # positions @A to and of the given stop positions @B.
  my ($self, $A, $B, $edge, $per_field) = @_;

  my @start = @$A;
  my @stop = @$B;
  my $stop = scalar @stop;

  my $src = $edge->{from};
  my $dst = $edge->{to};
  my $cells = $self->{cells};

  my $open = Graph::Easy::Heap->new();	# to find smallest elem fast
  my $open_by_pos = {};			# to find open nodes by pos
  my $closed = {};			# to find closed nodes by pos

  my $elem;

  # The boundaries of objects in $cell, e.g. the area that the algorithm shall
  # never leave.
  my ($min_x, $min_y, $max_x, $max_y) = $self->_astar_boundaries();

  # Max. steps to prevent endless searching in case of bugs like endless loops.
  my $tries = 0; my $max_tries = 2000000;

  # count how many times we did A*
  $self->{stats}->{astar}++;

  ###########################################################################
  ###########################################################################
  # put the start positions into OPEN

  my $i = 0; my $bias = 0;
  while ($i < scalar @start)
    {
    my ($sx,$sy,$type,$px,$py) =
     ($start[$i],$start[$i+1],$start[$i+2],$start[$i+3],$start[$i+4]);
    $i += 5;

    my $cell = $cells->{"$sx,$sy"}; my $rcell = ref($cell);
    next if $rcell && $rcell !~ /::Edge/;

    my $t = 0; $t = $cell->{type} & EDGE_NO_M_MASK if $rcell =~ /::Edge/;
    next if $t != 0 && $t != EDGE_HOR && $t != EDGE_VER;

    # For each start point, calculate the distance to each stop point, then use
    # the smallest as value:
    my $lowest_x = $stop[0]; my $lowest_y = $stop[1];
    my $lowest = _astar_distance($sx,$sy, $stop[0], $stop[1]);
    for (my $u = $per_field; $u < $stop; $u += $per_field)
      {
      my $dist = _astar_distance($sx,$sy, $stop[$u], $stop[$u+1]);
      ($lowest_x, $lowest_y) = ($stop[$u],$stop[$u+1]) if $dist < $lowest;
      $lowest = $dist if $dist < $lowest;
      }


    # add a penalty for crossings
    my $malus = 0; $malus = 30 if $t != 0;
    $malus += _astar_modifier($px,$py, $sx, $sy, $sx, $sy);
    $open->add( [ $lowest, $sx, $sy, $px, $py, $type, 1 ] );

    my $o = $malus + $bias + $lowest;
    print STDERR "#   adding open pos $sx,$sy ($o = $malus + $bias + $lowest) at ($lowest_x,$lowest_y)\n"
	 if $self->{debug} > 1;

    # The cost to reach the starting node is obviously 0. That means that there is
    # a tie between going down/up if both possibilities are equal likely. We insert
    # a small bias here that makes the preferred order east/south/west/north. Instead
    # the algorithm exploring both way and terminating arbitrarily on the one that
    # first hits the target, it will explore only one.
    $open_by_pos->{"$sx,$sy"} = $o;

    $bias += $self->{_astar_bias} || 0;
    }

  ###########################################################################
  ###########################################################################
  # main A* loop

  my $stats = $self->{stats};

  STEP:
  while( defined( $elem = $open->extract_top() ) )
    {
    $stats->{astar_steps}++ if $self->{debug};

    # hard limit on number of steps todo
    if ($tries++ > $max_tries)
      {
      $self->warn("A* reached maximum number of tries ($max_tries), giving up.");
      return [];
      }

    print STDERR "#  Smallest elem from ", $open->elements(),
	" elems is: weight=", $elem->[0], " at $elem->[1],$elem->[2]\n" if $self->{debug} > 1;
    my ($val, $x,$y, $px,$py, $type, $do_stop) = @$elem;

    my $key = "$x,$y";
    # move node into CLOSE and remove from OPEN
    my $g = $open_by_pos->{$key} || 0;
    $closed->{$key} = [ $px, $py, $val - $g, $g, $type, $do_stop ];
    delete $open_by_pos->{$key};

    # we are done when we hit one of the potential stop positions
    for (my $i = 0; $i < $stop; $i += $per_field)
      {
      # reached one stop position?
      if ($x == $stop[$i] && $y == $stop[$i+1])
        {
        $closed->{$key}->[4] += $stop[$i+2] if defined $stop[$i+2];
	# store the reached stop position if it is known
	if ($per_field > 3)
	  {
	  $closed->{$key}->[6] = $stop[$i+3];
	  $closed->{$key}->[7] = $stop[$i+4];
          print STDERR "#  Reached stop position $x,$y (lx,ly $stop[$i+3], $stop[$i+4])\n" if $self->{debug} > 1;
	  }
        elsif ($self->{debug} > 1) {
          print STDERR "#  Reached stop position $x,$y\n";
          }
        last STEP;
        }
      } # end test for stop position(s)

    $self->_croak("On of '$x,$y' is not defined")
      unless defined $x && defined $y;

    # get list of potential positions we need to explore from the current one
    my @p = $self->_astar_near_nodes($x,$y, $cells, $closed, $min_x, $min_y, $max_x, $max_y);

    my $n = 0;
    while ($n < scalar @p)
      {
      my $nx = $p[$n]; my $ny = $p[$n+1]; $n += 2;

      if (!defined $nx || !defined $ny)
        {
        require Carp;
        Carp::confess("On of '$nx,$ny' is not defined");
        }
      my $lg = $g;
      $lg += _astar_modifier($px,$py,$x,$y,$nx,$ny,$cells) if defined $px && defined $py;

      my $n = "$nx,$ny";

      # was already open?
      next if (exists $open_by_pos->{$n});

#      print STDERR "#   Already open pos $nx,$ny with $open_by_pos->{$n} (would be $lg)\n"
#	 if $self->{debug} && exists $open_by_pos->{$n};
#
#      next if exists $open_by_pos->{$n} && $open_by_pos->{$n} <= $lg;
#
#      if (exists $open_by_pos->{$n})
#        {
#        $open->delete($nx, $ny);
#        }

      # calculate distance to each possible stop position, and
      # use the lowest one
      my $lowest_distance = _astar_distance($nx, $ny, $stop[0], $stop[1]);
      for (my $i = $per_field; $i < $stop; $i += $per_field)
        {
        my $d = _astar_distance($nx, $ny, $stop[$i], $stop[$i+1]);
        $lowest_distance = $d if $d < $lowest_distance;
        }

      print STDERR "#   Opening pos $nx,$ny ($lowest_distance + $lg)\n" if $self->{debug} > 1;

      # open new position into OPEN
      $open->add( [ $lowest_distance + $lg, $nx, $ny, $x, $y, undef ] );
      $open_by_pos->{$n} = $lg;
      }
    }

  ###########################################################################
  # A* is done, now build a path from the information we computed above:

  # count how many steps we did in A*
  $self->{stats}->{astar_steps} += $tries;

  # no more nodes to follow, so we couldn't find a path
  if (!defined $elem)
    {
    print STDERR "# A* couldn't find a path after $max_tries steps.\n" if $self->{debug};
    return [];
    }

  my $path = [];
  my ($cx,$cy) = ($elem->[1],$elem->[2]);
  # the "last" cell in the path. Since we follow it backwards, it
  # becomes actually the next cell
  my ($lx,$ly);
  my $type;

  my $label_cell = 0;		# found a cell to attach the label to?

  my @bends;			# record all bends in the path to straighten it out

  my $idx = 0;
  # follow $elem back to the source to find the path
  while (defined $cx)
    {
    last unless exists $closed->{"$cx,$cy"};
    my $xy = "$cx,$cy";

    $type = $closed->{$xy}->[ 4 ];

    my ($px,$py) = @{ $closed->{$xy} };		# get X,Y of parent cell

    my $edge_type = ($type||0) & EDGE_TYPE_MASK;
    if ($edge_type == 0)
      {
      my $edge_flags = ($type||0) & EDGE_FLAG_MASK;

      # either a start or a stop cell
      if (!defined $px)
	{
	# We can figure it out from the flag of the position of cx,cy
	#        ................
	#         : EDGE_START_S :
	# .......................................
	# START_E :    px,py     : EDGE_START_W :
	# .......................................
	#         : EDGE_START_N :
	#         ................
	($px,$py) = ($cx, $cy);		# start with same cell
	$py ++ if ($edge_flags & EDGE_START_S) != 0;
	$py -- if ($edge_flags & EDGE_START_N) != 0;

	$px ++ if ($edge_flags & EDGE_START_E) != 0;
	$px -- if ($edge_flags & EDGE_START_W) != 0;
	}

      # if lx, ly is undefined because px,py is a joint, get it via the stored
      # x,y pos of the very last cell in the path
      if (!defined $lx)
     	{
	$lx = $closed->{$xy}->[6];
	$ly = $closed->{$xy}->[7];
	}

      # still not known?
      if (!defined $lx)
	{

	# If lx,ly is undefined because we are at the end of the path,
   	# we can figure out from the flag of the position of cx,cy.
	#       ..............
	#       : EDGE_END_S :
	# .................................
	# END_E :    lx,ly   : EDGE_END_W :
	# .................................
	#       : EDGE_END_N :
	#       ..............
	($lx,$ly) = ($cx, $cy);		# start with same cell

	$ly ++ if ($edge_flags & EDGE_END_S) != 0;
	$ly -- if ($edge_flags & EDGE_END_N) != 0;

	$lx ++ if ($edge_flags & EDGE_END_E) != 0;
	$lx -- if ($edge_flags & EDGE_END_W) != 0;
	}

      # now figure out correct type for this cell from positions of
      # parent/following cell
      $type += _astar_edge_type($px, $py, $cx, $cy, $lx,$ly);
      }

    print STDERR "#  Following back from $lx,$ly over $cx,$cy to $px,$py\n" if $self->{debug} > 1;

    if ($px == $lx && $py == $ly && ($cx != $lx || $cy != $ly))
      {
      print STDERR
       "# Warning: A* detected loop in path-backtracking at $px,$py, $cx,$cy, $lx,$ly\n"
       if $self->{debug};
      last;
      }

    $type = EDGE_HOR if ($type & EDGE_TYPE_MASK) == 0;		# last resort

    # if this is the first hor edge, attach the label to it
    # XXX TODO: This clearly is not optimal. Look for left-most HOR CELL
    my $t = $type & EDGE_TYPE_MASK;

    # Do not put the label on crossings:
    if ($label_cell == 0 && (!exists $cells->{"$cx,$cy"}) && ($t == EDGE_HOR || $t == EDGE_VER))
      {
      $label_cell++;
      $type += EDGE_LABEL_CELL;
      }

    push @bends, [ $type, $cx, $cy, -$idx ]
	if ($type == EDGE_S_E || $t == EDGE_S_W || $t == EDGE_N_E || $t == EDGE_N_W);

    unshift @$path, $cx, $cy, $type;		# unshift to reverse the path

    last if $closed->{"$cx,$cy"}->[ 5 ];	# stop here?

    ($lx,$ly) = ($cx,$cy);
    ($cx,$cy) = @{ $closed->{"$cx,$cy"} };	# get X,Y of next cell

    $idx += 3;					# index into $path (for bends)
    }

  print STDERR "# Trying to straighten path\n" if @bends >= 3 && $self->{debug};

  # try to straighten unnec. inward bends
  $self->_straighten_path($path, \@bends, $edge) if @bends >= 3;

  return ($path,$closed,$open_by_pos) if wantarray;
  $path;
  }

  # 1:
  #           |             |
  #      +----+   =>        |
  #      |                  |
  #  ----+            ------+

  # 2:
  #      +---         +------
  #      |            |
  #  +---+        =>  |
  #  |                |

  # 3:
  #  ----+            ------+
  #      |        =>        |
  #      +----+             |
  #           |             |

  # 4:
  #  |                |
  #  +---+            |
  #      |        =>  |
  #      +----+       +------

my $bend_patterns = [

  # The patterns are duplicated to catch both directions of the path:

  # First five entries must match
  #				 dx, dy,
  #				        coordinates for new edge
  #				        (2 == y, 1 == x, first is
  #				        taken from A, second from B)
  # 						  these replace the first & last bend
  # 1:
  [ EDGE_N_W, EDGE_S_E, EDGE_N_W, 0, -1, 2, 1, EDGE_HOR, EDGE_VER, 1,0,  0,-1 ],	# 0
  [ EDGE_N_W, EDGE_S_E, EDGE_N_W, -1, 0, 1, 2, EDGE_VER, EDGE_HOR, 0,1,  -1,0 ],	# 1

  # 2:
  [ EDGE_S_E, EDGE_N_W, EDGE_S_E, 0, -1, 1, 2, EDGE_VER, EDGE_HOR, 0,-1, 1,0 ],		# 2
  [ EDGE_S_E, EDGE_N_W, EDGE_S_E, -1, 0, 2, 1, EDGE_HOR, EDGE_VER, -1,0, 0,1 ],		# 3

  # 3:
  [ EDGE_S_W, EDGE_N_E, EDGE_S_W, 0,  1, 2, 1, EDGE_HOR, EDGE_VER, 1,0, 0,1 ],		# 4
  [ EDGE_S_W, EDGE_N_E, EDGE_S_W, -1, 0, 1, 2, EDGE_VER, EDGE_HOR, 0,-1, -1,0 ],	# 5

  # 4:
  [ EDGE_N_E, EDGE_S_W, EDGE_N_E, 1,  0, 1, 2, EDGE_VER, EDGE_HOR, 0,1, 1,0 ],		# 6
  [ EDGE_N_E, EDGE_S_W, EDGE_N_E, 0, -1, 2, 1, EDGE_HOR, EDGE_VER, -1,0, 0,-1 ],	# 7

  ];

sub _straighten_path
  {
  my ($self, $path, $bends, $edge) = @_;

  # XXX TODO:
  # in case of multiple bends, removes only one of them due to overlap

  my $cells = $self->{cells};

  my $i = 0;
  BEND:
  while ($i < (scalar @$bends - 2))
    {
    # for each bend, check it and the next two bends

#   print STDERR "Checking bend $i at $bends->[$i], $bends->[$i+1], $bends->[$i+2]\n";

    my ($a,$b,$c) = ($bends->[$i],
		     $bends->[$i+1],
		     $bends->[$i+2]);

    my $dx = ($b->[1] - $a->[1]);
    my $dy = ($b->[2] - $a->[2]);

    my $p = 0;
    for my $pattern (@$bend_patterns)
      {
      $p++;
      next if ($a->[0] != $pattern->[0]) ||
	      ($b->[0] != $pattern->[1]) ||
	      ($c->[0] != $pattern->[2]) ||
	      ($dx != $pattern->[3]) ||
	      ($dy != $pattern->[4]);

      # pattern matched
#      print STDERR "# Got bends for pattern ", $p-1," (@$pattern):\n";
#      print STDERR "# type x,y,\n# @$a\n# @$b\n# @$c\n";

      # check that the alternative path is empty

      # new corner:
      my $cx = $a->[$pattern->[5]];
      my $cy = $c->[$pattern->[6]];
      ($cx,$cy) = ($cy,$cx) if $pattern->[5] == 2;	# need to swap?

      next BEND if exists $cells->{"$cx,$cy"};

#      print STDERR "# new corner at $cx,$cy (swap: $pattern->[5])\n";

      # check from A to new corner
      my $x = $a->[1];
      my $y = $a->[2];

      my @replace = ();
      push @replace, $cx, $cy, $pattern->[0] if ($x == $cx && $y == $cy);

      my $ddx = $pattern->[9];
      my $ddy = $pattern->[10];
#      print STDERR "# dx,dy: $ddx,$ddy\n";
      while ($x != $cx || $y != $cy)
	{
	next BEND if exists $cells->{"$x,$y"};
#        print STDERR "# at $x $y (go to $cx,$cy)\n"; sleep(1);
	push @replace, $x, $y, $pattern->[7];
	$x += $ddx;
	$y += $ddy;
	}

      $x = $cx; $y = $cy;

      # check from new corner to C
      $ddx = $pattern->[11];
      $ddy = $pattern->[12];
      while ($x != $c->[1] || $y != $c->[2])
	{
	next BEND if exists $cells->{"$x,$y"};
#        print STDERR "# at $x $y (go to $cx,$cy)\n"; sleep(1);
	push @replace, $x, $y, $pattern->[8];

	# set the correct type on the corner
	$replace[-1] = $pattern->[0] if ($x == $cx && $y == $cy);
	$x += $ddx;
	$y += $ddy;
        }
      # insert Corner
      push @replace, $x, $y, $pattern->[8];

#	use Data::Dumper; print STDERR Dumper(@replace);
#	print STDERR "# generated ", scalar @replace, " entries\n";
#	print STDERR "# idx A $a->[3] C $c->[3]\n";

      # the path is clear, so replace the inward bend with the new one
      my $diff = $a->[3] - $c->[3] ? -3 : 3;

      my $idx = 0; my $p_idx = $a->[3] + $diff;
      while ($idx < @replace)
	{
#	 print STDERR "# replace $p_idx .. $p_idx + 2\n";
#	 print STDERR "# replace $path->[$p_idx] with $replace[$idx]\n";
#	 print STDERR "# replace $path->[$p_idx+1] with $replace[$idx+1]\n";
#	 print STDERR "# replace $path->[$p_idx+2] with $replace[$idx+2]\n";

	$path->[$p_idx] = $replace[$idx];
	$path->[$p_idx+1] = $replace[$idx+1];
	$path->[$p_idx+2] = $replace[$idx+2];
	$p_idx += $diff;
	$idx += 3;
 	}
      } # end for this pattern

    } continue { $i++; };
  }

sub _map_as_html
  {
  my ($self, $cells, $p, $closed, $open, $w, $h) = @_;

  $w ||= 20;
  $h ||= 20;

  my $html = <<EOF
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <style type="text/css">
 <!--
 td {
   background: #a0a0a0;
   border: #606060 solid 1px;
   font-size: 0.75em;
 }
 td.b, td.b, td.c {
   background: #404040;
   border: #606060 solid 1px;
   }
 td.c {
   background: #ffffff;
   }
 table.map {
   border-collapse: collapse;
   border: black solid 1px;
 }
 -->
 </style>
</head>
<body>

<h1>A* Map</h1>

<p>
Nodes examined: <b>##closed##</b> <br>
Nodes still to do (open): <b>##open##</b> <br>
Nodes in path: <b>##path##</b>
</p>
EOF
;

  $html =~ s/##closed##/keys %$closed /eg;
  $html =~ s/##open##/keys %$open /eg;
  my $path = {};
  while (@$p)
    {
    my $x = shift @$p;
    my $y = shift @$p;
    my $t = shift @$p;
    $path->{"$x,$y"} = undef;
    }
  $html =~ s/##path##/keys %$path /eg;
  $html .= '<table class="map">' . "\n";

  for my $y (0..$h)
    {
    $html .= " <tr>\n";
    for my $x (0..$w)
      {
      my $xy = "$x,$y";
      my $c = '&nbsp;' x 4;
      $html .= "  <td class='c'>$c</td>\n" and next if
        exists $cells->{$xy} and ref($cells->{$xy}) =~ /Node/;
      $html .= "  <td class='b'>$c</td>\n" and next if
        exists $cells->{$xy} && !exists $path->{$xy};

      $html .= "  <td>$c</td>\n" and next unless
        exists $closed->{$xy} ||
        exists $open->{$xy};

      my $clr = '#a0a0a0';
      if (exists $closed->{$xy})
        {
        $c =  ($closed->{$xy}->[3] || '0') . '+' . ($closed->{$xy}->[2] || '0');
        my $color = 0x10 + 8 * (($closed->{$xy}->[2] || 0));
        my $color2 = 0x10 + 8 * (($closed->{$xy}->[3] || 0));
        $clr = sprintf("%02x%02x",$color,$color2) . 'a0';
        }
      elsif (exists $open->{$xy})
        {
        $c = '&nbsp;' . $open->{$xy} || '0';
        my $color = 0xff - 8 * ($open->{$xy} || 0);
        $clr = 'a0' . sprintf("%02x",$color) . '00';
        }
      my $b = '';
      $b = 'border: 2px white solid;' if exists $path->{$xy};
      $html .= "  <td style='background: #$clr;$b'>$c</td>\n";
      }
    $html .= " </tr>\n";
    }

  $html .= "\n</table>\n";

  $html;
  }

1;
__END__

=head1 NAME

Graph::Easy::Layout::Scout - Find paths in a Manhattan-style grid

=head1 SYNOPSIS

	use Graph::Easy;

	my $graph = Graph::Easy->new();

	my $bonn = Graph::Easy::Node->new(
		name => 'Bonn',
	);
	my $berlin = Graph::Easy::Node->new(
		name => 'Berlin',
	);

	$graph->add_edge ($bonn, $berlin);

	$graph->layout();

	print $graph->as_ascii( );

	# prints:

	# +------+     +--------+
	# | Bonn | --> | Berlin |
	# +------+     +--------+

=head1 DESCRIPTION

C<Graph::Easy::Layout::Scout> contains just the actual pathfinding code for
L<Graph::Easy|Graph::Easy>. It should not be used directly.

=head1 EXPORT

Exports nothing.

=head1 METHODS

This package inserts a few methods into C<Graph::Easy> and
C<Graph::Easy::Node> to enable path-finding for graphs. It should not
be used directly.

=head1 SEE ALSO

L<Graph::Easy>.

=head1 AUTHOR

Copyright (C) 2004 - 2007 by Tels L<http://bloodgate.com>.

See the LICENSE file for information.

=cut