This file is indexed.

/usr/share/doc/libghc-polynomial-doc/html/Math-Polynomial-Interpolation.html is in libghc-polynomial-doc 0.7.2-4build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>Math.Polynomial.Interpolation</title><link href="ocean.css" rel="stylesheet" type="text/css" title="Ocean" /><script src="haddock-util.js" type="text/javascript"></script><script src="file:///usr/share/javascript/mathjax/MathJax.js" type="text/javascript"></script><script type="text/javascript">//<![CDATA[
window.onload = function () {pageLoad();setSynopsis("mini_Math-Polynomial-Interpolation.html");};
//]]>
</script></head><body><div id="package-header"><ul class="links" id="page-menu"><li><a href="src/Math-Polynomial-Interpolation.html">Source</a></li><li><a href="index.html">Contents</a></li><li><a href="doc-index.html">Index</a></li></ul><p class="caption">polynomial-0.7.2: Polynomials</p></div><div id="content"><div id="module-header"><table class="info"><tr><th>Safe Haskell</th><td>None</td></tr><tr><th>Language</th><td>Haskell98</td></tr></table><p class="caption">Math.Polynomial.Interpolation</p></div><div id="synopsis"><p id="control.syn" class="caption expander" onclick="toggleSection('syn')">Synopsis</p><ul id="section.syn" class="hide" onclick="toggleSection('syn')"><li class="src short"><a href="#v:polyInterp">polyInterp</a> :: <a href="file:///usr/share/doc/ghc-doc/html/libraries/base-4.9.1.0/Prelude.html#t:Fractional">Fractional</a> a =&gt; [(a, a)] -&gt; a -&gt; a</li><li class="src short"><a href="#v:neville">neville</a> :: <a href="file:///usr/share/doc/ghc-doc/html/libraries/base-4.9.1.0/Prelude.html#t:Fractional">Fractional</a> a =&gt; [(a, a)] -&gt; a -&gt; [[a]]</li><li class="src short"><a href="#v:nevilleDiffs">nevilleDiffs</a> :: <a href="file:///usr/share/doc/ghc-doc/html/libraries/base-4.9.1.0/Prelude.html#t:Fractional">Fractional</a> a =&gt; [(a, a)] -&gt; a -&gt; [[(a, a)]]</li><li class="src short"><a href="#v:iterativePolyFit">iterativePolyFit</a> :: (<a href="file:///usr/share/doc/ghc-doc/html/libraries/base-4.9.1.0/Prelude.html#t:Fractional">Fractional</a> a, <a href="file:///usr/share/doc/ghc-doc/html/libraries/base-4.9.1.0/Data-Eq.html#t:Eq">Eq</a> a) =&gt; [(a, a)] -&gt; <a href="Math-Polynomial-Type.html#t:Poly">Poly</a> a</li><li class="src short"><a href="#v:lagrangePolyFit">lagrangePolyFit</a> :: (<a href="file:///usr/share/doc/ghc-doc/html/libraries/base-4.9.1.0/Prelude.html#t:Fractional">Fractional</a> a, <a href="file:///usr/share/doc/ghc-doc/html/libraries/base-4.9.1.0/Data-Eq.html#t:Eq">Eq</a> a) =&gt; [(a, a)] -&gt; <a href="Math-Polynomial-Type.html#t:Poly">Poly</a> a</li></ul></div><div id="interface"><h1>Documentation</h1><div class="top"><p class="src"><a id="v:polyInterp" class="def">polyInterp</a> :: <a href="file:///usr/share/doc/ghc-doc/html/libraries/base-4.9.1.0/Prelude.html#t:Fractional">Fractional</a> a =&gt; [(a, a)] -&gt; a -&gt; a <a href="src/Math-Polynomial-Interpolation.html#polyInterp" class="link">Source</a> <a href="#v:polyInterp" class="selflink">#</a></p><div class="doc"><p>Evaluate a polynomial passing through the specified set of points.  The
 order of the interpolating polynomial will (at most) be one less than 
 the number of points given.</p></div></div><div class="top"><p class="src"><a id="v:neville" class="def">neville</a> :: <a href="file:///usr/share/doc/ghc-doc/html/libraries/base-4.9.1.0/Prelude.html#t:Fractional">Fractional</a> a =&gt; [(a, a)] -&gt; a -&gt; [[a]] <a href="src/Math-Polynomial-Interpolation.html#neville" class="link">Source</a> <a href="#v:neville" class="selflink">#</a></p><div class="doc"><p>Computes the tableau generated by Neville's algorithm.  Each successive
 row of the table is a list of interpolants one order higher than the previous,
 using a range of input points starting at the same position in the input
 list as the interpolant's position in the output list.</p></div></div><div class="top"><p class="src"><a id="v:nevilleDiffs" class="def">nevilleDiffs</a> :: <a href="file:///usr/share/doc/ghc-doc/html/libraries/base-4.9.1.0/Prelude.html#t:Fractional">Fractional</a> a =&gt; [(a, a)] -&gt; a -&gt; [[(a, a)]] <a href="src/Math-Polynomial-Interpolation.html#nevilleDiffs" class="link">Source</a> <a href="#v:nevilleDiffs" class="selflink">#</a></p><div class="doc"><p>Computes the tableau generated by a modified form of Neville's algorithm
 described in Numerical Recipes, Ch. 3, Sec. 2, which records the differences
 between interpolants at each level.  Each pair (c,d) is the amount to add
 to the previous level's interpolant at either the same or the subsequent
 position (respectively) in order to obtain the new level's interpolant.
 Mathematically, either sum yields the same value, but due to numerical
 errors they may differ slightly, and some &quot;paths&quot; through the table
 may yield more accurate final results than others.</p></div></div><div class="top"><p class="src"><a id="v:iterativePolyFit" class="def">iterativePolyFit</a> :: (<a href="file:///usr/share/doc/ghc-doc/html/libraries/base-4.9.1.0/Prelude.html#t:Fractional">Fractional</a> a, <a href="file:///usr/share/doc/ghc-doc/html/libraries/base-4.9.1.0/Data-Eq.html#t:Eq">Eq</a> a) =&gt; [(a, a)] -&gt; <a href="Math-Polynomial-Type.html#t:Poly">Poly</a> a <a href="src/Math-Polynomial-Interpolation.html#iterativePolyFit" class="link">Source</a> <a href="#v:iterativePolyFit" class="selflink">#</a></p><div class="doc"><p>Fit a polynomial to a set of points by iteratively evaluating the 
 interpolated polynomial (using <code><a href="Math-Polynomial-Interpolation.html#v:polyInterp">polyInterp</a></code>) at 0 to establish the
 constant coefficient and reducing the polynomial by subtracting that
 coefficient from all y's and dividing by their corresponding x's.</p><p>Slower than <code><a href="Math-Polynomial-Interpolation.html#v:lagrangePolyFit">lagrangePolyFit</a></code> but stable under different sets of 
 conditions.</p><p>Note that computing the coefficients of a fitting polynomial is an 
 inherently ill-conditioned problem.  In most cases it is both faster and 
 more accurate to use <code><a href="Math-Polynomial-Interpolation.html#v:polyInterp">polyInterp</a></code> or <code><a href="Math-Polynomial-Interpolation.html#v:nevilleDiffs">nevilleDiffs</a></code> instead of evaluating
 a fitted polynomial.</p></div></div><div class="top"><p class="src"><a id="v:lagrangePolyFit" class="def">lagrangePolyFit</a> :: (<a href="file:///usr/share/doc/ghc-doc/html/libraries/base-4.9.1.0/Prelude.html#t:Fractional">Fractional</a> a, <a href="file:///usr/share/doc/ghc-doc/html/libraries/base-4.9.1.0/Data-Eq.html#t:Eq">Eq</a> a) =&gt; [(a, a)] -&gt; <a href="Math-Polynomial-Type.html#t:Poly">Poly</a> a <a href="src/Math-Polynomial-Interpolation.html#lagrangePolyFit" class="link">Source</a> <a href="#v:lagrangePolyFit" class="selflink">#</a></p><div class="doc"><p>Fit a polynomial to a set of points using barycentric Lagrange polynomials.</p><p>Note that computing the coefficients of a fitting polynomial is an 
 inherently ill-conditioned problem.  In most cases it is both faster and 
 more accurate to use <code><a href="Math-Polynomial-Interpolation.html#v:polyInterp">polyInterp</a></code> or <code><a href="Math-Polynomial-Interpolation.html#v:nevilleDiffs">nevilleDiffs</a></code> instead of evaluating
 a fitted polynomial.</p></div></div></div></div><div id="footer"><p>Produced by <a href="http://www.haskell.org/haddock/">Haddock</a> version 2.17.3</p></div></body></html>