This file is indexed.

/usr/share/doc/libghc-mono-traversable-doc/html/mono-traversable.txt is in libghc-mono-traversable-doc 1.0.6.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/


-- | Type classes for mapping, folding, and traversing monomorphic containers
--   
--   Please see the README at
--   <a>https://www.stackage.org/package/mono-traversable</a>
@package mono-traversable
@version 1.0.6.0


-- | Type classes mirroring standard typeclasses, but working with
--   monomorphic containers.
--   
--   The motivation is that some commonly used data types (i.e.,
--   <tt>ByteString</tt> and <tt>Text</tt>) do not allow for instances of
--   typeclasses like <a>Functor</a> and <tt>Foldable</tt>, since they are
--   monomorphic structures. This module allows both monomorphic and
--   polymorphic data types to be instances of the same typeclasses.
--   
--   All of the laws for the polymorphic typeclasses apply to their
--   monomorphic cousins. Thus, even though a <a>MonoFunctor</a> instance
--   for <a>Set</a> could theoretically be defined, it is omitted since it
--   could violate the functor law of <tt><a>omap</a> f . <a>omap</a> g =
--   <a>omap</a> (f . g)</tt>.
--   
--   Note that all typeclasses have been prefixed with <tt>Mono</tt>, and
--   functions have been prefixed with <tt>o</tt>. The mnemonic for
--   <tt>o</tt> is "only one", or alternatively "it's mono, but m is
--   overused in Haskell, so we'll use the second letter instead." (Agreed,
--   it's not a great mangling scheme, input is welcome!)
module Data.MonoTraversable

-- | Type family for getting the type of the elements of a monomorphic
--   container.

-- | Monomorphic containers that can be mapped over.
class MonoFunctor mono where omap = fmap

-- | Map over a monomorphic container
omap :: MonoFunctor mono => (Element mono -> Element mono) -> mono -> mono

-- | Map over a monomorphic container
omap :: (MonoFunctor mono, Functor f, Element (f a) ~ a, f a ~ mono) => (Element mono -> Element mono) -> mono -> mono

-- | <tt><a>replaceElem</a> old new</tt> replaces all <tt>old</tt> elements
--   with <tt>new</tt>.
replaceElem :: (MonoFunctor mono, Eq (Element mono)) => Element mono -> Element mono -> mono -> mono
replaceElemStrictText :: Char -> Char -> Text -> Text
replaceElemLazyText :: Char -> Char -> Text -> Text

-- | Monomorphic containers that can be folded.
class MonoFoldable mono where ofoldMap = foldMap ofoldr = foldr ofoldl' = foldl' otoList t = build (\ mono n -> ofoldr mono n t) oall f = getAll . ofoldMap (All . f) oany f = getAny . ofoldMap (Any . f) onull = oall (const False) olength = ofoldl' (\ i _ -> i + 1) 0 olength64 = ofoldl' (\ i _ -> i + 1) 0 ocompareLength c0 i0 = olength c0 `compare` fromIntegral i0 otraverse_ f = ofoldr ((*>) . f) (pure ()) ofor_ = flip otraverse_ omapM_ = otraverse_ oforM_ = flip omapM_ ofoldlM f z0 xs = ofoldr f' return xs z0 where f' x k z = f z x >>= k ofoldMap1Ex f = fromMaybe (error "Data.MonoTraversable.ofoldMap1Ex") . getOption . ofoldMap (Option . Just . f) ofoldr1Ex = foldr1 ofoldl1Ex' = foldl1 headEx = ofoldr const (error "Data.MonoTraversable.headEx: empty") lastEx = ofoldl1Ex' (flip const) unsafeHead = headEx unsafeLast = lastEx maximumByEx f = ofoldl1Ex' go where go x y = case f x y of { LT -> y _ -> x } minimumByEx f = ofoldl1Ex' go where go x y = case f x y of { GT -> y _ -> x } oelem e = elem e . otoList onotElem e = notElem e . otoList

-- | Map each element of a monomorphic container to a <a>Monoid</a> and
--   combine the results.
ofoldMap :: (MonoFoldable mono, Monoid m) => (Element mono -> m) -> mono -> m

-- | Map each element of a monomorphic container to a <a>Monoid</a> and
--   combine the results.
ofoldMap :: (MonoFoldable mono, t a ~ mono, a ~ Element (t a), Foldable t, Monoid m) => (Element mono -> m) -> mono -> m

-- | Right-associative fold of a monomorphic container.
ofoldr :: MonoFoldable mono => (Element mono -> b -> b) -> b -> mono -> b

-- | Right-associative fold of a monomorphic container.
ofoldr :: (MonoFoldable mono, t a ~ mono, a ~ Element (t a), Foldable t) => (Element mono -> b -> b) -> b -> mono -> b

-- | Strict left-associative fold of a monomorphic container.
ofoldl' :: MonoFoldable mono => (a -> Element mono -> a) -> a -> mono -> a

-- | Strict left-associative fold of a monomorphic container.
ofoldl' :: (MonoFoldable mono, t b ~ mono, b ~ Element (t b), Foldable t) => (a -> Element mono -> a) -> a -> mono -> a

-- | Convert a monomorphic container to a list.
otoList :: MonoFoldable mono => mono -> [Element mono]

-- | Are <b>all</b> of the elements in a monomorphic container converted to
--   booleans <a>True</a>?
oall :: MonoFoldable mono => (Element mono -> Bool) -> mono -> Bool

-- | Are <b>any</b> of the elements in a monomorphic container converted to
--   booleans <a>True</a>?
oany :: MonoFoldable mono => (Element mono -> Bool) -> mono -> Bool

-- | Is the monomorphic container empty?
onull :: MonoFoldable mono => mono -> Bool

-- | Length of a monomorphic container, returns a <a>Int</a>.
olength :: MonoFoldable mono => mono -> Int

-- | Length of a monomorphic container, returns a <a>Int64</a>.
olength64 :: MonoFoldable mono => mono -> Int64

-- | Compare the length of a monomorphic container and a given number.
ocompareLength :: (MonoFoldable mono, Integral i) => mono -> i -> Ordering

-- | Map each element of a monomorphic container to an action, evaluate
--   these actions from left to right, and ignore the results.
otraverse_ :: (MonoFoldable mono, Applicative f) => (Element mono -> f b) -> mono -> f ()

-- | <a>ofor_</a> is <a>otraverse_</a> with its arguments flipped.
ofor_ :: (MonoFoldable mono, Applicative f) => mono -> (Element mono -> f b) -> f ()

-- | Map each element of a monomorphic container to a monadic action,
--   evaluate these actions from left to right, and ignore the results.
omapM_ :: (MonoFoldable mono, Applicative m) => (Element mono -> m ()) -> mono -> m ()

-- | <a>oforM_</a> is <a>omapM_</a> with its arguments flipped.
oforM_ :: (MonoFoldable mono, Applicative m) => mono -> (Element mono -> m ()) -> m ()

-- | Monadic fold over the elements of a monomorphic container, associating
--   to the left.
ofoldlM :: (MonoFoldable mono, Monad m) => (a -> Element mono -> m a) -> a -> mono -> m a

-- | Map each element of a monomorphic container to a semigroup, and
--   combine the results.
--   
--   Note: this is a partial function. On an empty <a>MonoFoldable</a>, it
--   will throw an exception.
--   
--   <i>See <a>ofoldMap1</a> from <a>Data.NonNull</a> for a total version
--   of this function.</i>
ofoldMap1Ex :: (MonoFoldable mono, Semigroup m) => (Element mono -> m) -> mono -> m

-- | Right-associative fold of a monomorphic container with no base
--   element.
--   
--   Note: this is a partial function. On an empty <a>MonoFoldable</a>, it
--   will throw an exception.
--   
--   <i>See <a>ofoldr1Ex</a> from <a>Data.NonNull</a> for a total version
--   of this function.</i>
ofoldr1Ex :: MonoFoldable mono => (Element mono -> Element mono -> Element mono) -> mono -> Element mono

-- | Right-associative fold of a monomorphic container with no base
--   element.
--   
--   Note: this is a partial function. On an empty <a>MonoFoldable</a>, it
--   will throw an exception.
--   
--   <i>See <a>ofoldr1Ex</a> from <a>Data.NonNull</a> for a total version
--   of this function.</i>
ofoldr1Ex :: (MonoFoldable mono, t a ~ mono, a ~ Element (t a), Foldable t) => (Element mono -> Element mono -> Element mono) -> mono -> Element mono

-- | Strict left-associative fold of a monomorphic container with no base
--   element.
--   
--   Note: this is a partial function. On an empty <a>MonoFoldable</a>, it
--   will throw an exception.
--   
--   <i>See <a>ofoldl1Ex'</a> from <a>Data.NonNull</a> for a total version
--   of this function.</i>
ofoldl1Ex' :: MonoFoldable mono => (Element mono -> Element mono -> Element mono) -> mono -> Element mono

-- | Strict left-associative fold of a monomorphic container with no base
--   element.
--   
--   Note: this is a partial function. On an empty <a>MonoFoldable</a>, it
--   will throw an exception.
--   
--   <i>See <a>ofoldl1Ex'</a> from <a>Data.NonNull</a> for a total version
--   of this function.</i>
ofoldl1Ex' :: (MonoFoldable mono, t a ~ mono, a ~ Element (t a), Foldable t) => (Element mono -> Element mono -> Element mono) -> mono -> Element mono

-- | Get the first element of a monomorphic container.
--   
--   Note: this is a partial function. On an empty <a>MonoFoldable</a>, it
--   will throw an exception.
--   
--   <i>See <a>head</a> from <a>Data.NonNull</a> for a total version of
--   this function.</i>
headEx :: MonoFoldable mono => mono -> Element mono

-- | Get the last element of a monomorphic container.
--   
--   Note: this is a partial function. On an empty <a>MonoFoldable</a>, it
--   will throw an exception.
--   
--   <i>See 'Data.NonNull.last from <a>Data.NonNull</a> for a total version
--   of this function.</i>
lastEx :: MonoFoldable mono => mono -> Element mono

-- | Equivalent to <a>headEx</a>.
unsafeHead :: MonoFoldable mono => mono -> Element mono

-- | Equivalent to <a>lastEx</a>.
unsafeLast :: MonoFoldable mono => mono -> Element mono

-- | Get the maximum element of a monomorphic container, using a supplied
--   element ordering function.
--   
--   Note: this is a partial function. On an empty <a>MonoFoldable</a>, it
--   will throw an exception.
--   
--   <i>See <a>maximiumBy</a> from <a>Data.NonNull</a> for a total version
--   of this function.</i>
maximumByEx :: MonoFoldable mono => (Element mono -> Element mono -> Ordering) -> mono -> Element mono

-- | Get the minimum element of a monomorphic container, using a supplied
--   element ordering function.
--   
--   Note: this is a partial function. On an empty <a>MonoFoldable</a>, it
--   will throw an exception.
--   
--   <i>See <a>minimumBy</a> from <a>Data.NonNull</a> for a total version
--   of this function.</i>
minimumByEx :: MonoFoldable mono => (Element mono -> Element mono -> Ordering) -> mono -> Element mono

-- | Checks if the monomorphic container includes the supplied element.
oelem :: (MonoFoldable mono, Eq (Element mono)) => Element mono -> mono -> Bool

-- | Checks if the monomorphic container does not include the supplied
--   element.
onotElem :: (MonoFoldable mono, Eq (Element mono)) => Element mono -> mono -> Bool

-- | Safe version of <a>headEx</a>.
--   
--   Returns <a>Nothing</a> instead of throwing an exception when
--   encountering an empty monomorphic container.
headMay :: MonoFoldable mono => mono -> Maybe (Element mono)

-- | Safe version of <a>lastEx</a>.
--   
--   Returns <a>Nothing</a> instead of throwing an exception when
--   encountering an empty monomorphic container.
lastMay :: MonoFoldable mono => mono -> Maybe (Element mono)

-- | <a>osum</a> computes the sum of the numbers of a monomorphic
--   container.
osum :: (MonoFoldable mono, Num (Element mono)) => mono -> Element mono

-- | <a>oproduct</a> computes the product of the numbers of a monomorphic
--   container.
oproduct :: (MonoFoldable mono, Num (Element mono)) => mono -> Element mono

-- | Are <b>all</b> of the elements <a>True</a>?
--   
--   Since 0.6.0
oand :: (Element mono ~ Bool, MonoFoldable mono) => mono -> Bool

-- | Are <b>any</b> of the elements <a>True</a>?
--   
--   Since 0.6.0
oor :: (Element mono ~ Bool, MonoFoldable mono) => mono -> Bool

-- | Synonym for <a>ofoldMap</a>
oconcatMap :: (MonoFoldable mono, Monoid m) => (Element mono -> m) -> mono -> m

-- | Monoidally combine all values in the container
ofold :: (MonoFoldable mono, Monoid (Element mono)) => mono -> Element mono

-- | Synonym for <a>ofold</a>
oconcat :: (MonoFoldable mono, Monoid (Element mono)) => mono -> Element mono

-- | Synonym for <a>ofoldlM</a>
ofoldM :: (MonoFoldable mono, Monad m) => (a -> Element mono -> m a) -> a -> mono -> m a

-- | Perform all actions in the given container
osequence_ :: (Applicative m, MonoFoldable mono, Element mono ~ (m ())) => mono -> m ()

-- | Get the minimum element of a monomorphic container.
--   
--   Note: this is a partial function. On an empty <a>MonoFoldable</a>, it
--   will throw an exception.
--   
--   <i>See <a>maximum</a> from <a>Data.NonNull</a> for a total version of
--   this function.</i>
maximumEx :: (MonoFoldable mono, Ord (Element mono)) => mono -> Element mono

-- | Get the maximum element of a monomorphic container.
--   
--   Note: this is a partial function. On an empty <a>MonoFoldable</a>, it
--   will throw an exception.
--   
--   <i>See <a>minimum</a> from <a>Data.NonNull</a> for a total version of
--   this function.</i>
minimumEx :: (MonoFoldable mono, Ord (Element mono)) => mono -> Element mono

-- | Safe version of <a>maximumEx</a>.
--   
--   Returns <a>Nothing</a> instead of throwing an exception when
--   encountering an empty monomorphic container.
maximumMay :: (MonoFoldable mono, Ord (Element mono)) => mono -> Maybe (Element mono)

-- | Safe version of <a>maximumByEx</a>.
--   
--   Returns <a>Nothing</a> instead of throwing an exception when
--   encountering an empty monomorphic container.
maximumByMay :: MonoFoldable mono => (Element mono -> Element mono -> Ordering) -> mono -> Maybe (Element mono)

-- | Safe version of <a>minimumEx</a>.
--   
--   Returns <a>Nothing</a> instead of throwing an exception when
--   encountering an empty monomorphic container.
minimumMay :: (MonoFoldable mono, Ord (Element mono)) => mono -> Maybe (Element mono)

-- | Safe version of <a>minimumByEx</a>.
--   
--   Returns <a>Nothing</a> instead of throwing an exception when
--   encountering an empty monomorphic container.
minimumByMay :: MonoFoldable mono => (Element mono -> Element mono -> Ordering) -> mono -> Maybe (Element mono)

-- | Monomorphic containers that can be traversed from left to right.
class (MonoFunctor mono, MonoFoldable mono) => MonoTraversable mono where otraverse = traverse omapM = otraverse

-- | Map each element of a monomorphic container to an action, evaluate
--   these actions from left to right, and collect the results.
otraverse :: (MonoTraversable mono, Applicative f) => (Element mono -> f (Element mono)) -> mono -> f mono

-- | Map each element of a monomorphic container to an action, evaluate
--   these actions from left to right, and collect the results.
otraverse :: (MonoTraversable mono, Traversable t, mono ~ t a, a ~ Element mono, Applicative f) => (Element mono -> f (Element mono)) -> mono -> f mono

-- | Map each element of a monomorphic container to a monadic action,
--   evaluate these actions from left to right, and collect the results.
omapM :: (MonoTraversable mono, Applicative m) => (Element mono -> m (Element mono)) -> mono -> m mono

-- | <a>ofor</a> is <a>otraverse</a> with its arguments flipped.
ofor :: (MonoTraversable mono, Applicative f) => mono -> (Element mono -> f (Element mono)) -> f mono

-- | <a>oforM</a> is <a>omapM</a> with its arguments flipped.
oforM :: (MonoTraversable mono, Applicative f) => mono -> (Element mono -> f (Element mono)) -> f mono

-- | A strict left fold, together with an unwrap function.
--   
--   This is convenient when the accumulator value is not the same as the
--   final expected type. It is provided mainly for integration with the
--   <tt>foldl</tt> package, to be used in conjunction with
--   <tt>purely</tt>.
--   
--   Since 0.3.1
ofoldlUnwrap :: MonoFoldable mono => (x -> Element mono -> x) -> x -> (x -> b) -> mono -> b

-- | A monadic strict left fold, together with an unwrap function.
--   
--   Similar to <tt>foldlUnwrap</tt>, but allows monadic actions. To be
--   used with <tt>impurely</tt> from <tt>foldl</tt>.
--   
--   Since 0.3.1
ofoldMUnwrap :: (Monad m, MonoFoldable mono) => (x -> Element mono -> m x) -> m x -> (x -> m b) -> mono -> m b

-- | Typeclass for monomorphic containers that an element can be lifted
--   into.
--   
--   For any <a>MonoFunctor</a>, the following law holds:
--   
--   <pre>
--   <a>omap</a> f . <a>opoint</a> = <a>opoint</a> . f
--   </pre>
class MonoPointed mono where opoint = pure

-- | Lift an element into a monomorphic container.
--   
--   <a>opoint</a> is the same as <a>pure</a> for an <a>Applicative</a>
opoint :: MonoPointed mono => Element mono -> mono

-- | Lift an element into a monomorphic container.
--   
--   <a>opoint</a> is the same as <a>pure</a> for an <a>Applicative</a>
opoint :: (MonoPointed mono, Applicative f, (f a) ~ mono, Element (f a) ~ a) => Element mono -> mono

-- | Typeclass for monomorphic containers where it is always okay to
--   "extract" a value from with <a>oextract</a>, and where you can
--   extrapolate any "extracting" function to be a function on the whole
--   part with <a>oextend</a>.
--   
--   <a>oextend</a> and <a>oextract</a> should work together following the
--   laws:
--   
--   <pre>
--   <a>oextend</a> <a>oextract</a>      = <a>id</a>
--   <a>oextract</a> . <a>oextend</a> f  = f
--   <a>oextend</a> f . <a>oextend</a> g = <a>oextend</a> (f . <a>oextend</a> g)
--   </pre>
--   
--   As an intuition, <tt><a>oextend</a> f</tt> uses <tt>f</tt> to "build
--   up" a new <tt>mono</tt> with pieces from the old one received by
--   <tt>f</tt>.
class MonoFunctor mono => MonoComonad mono

-- | Extract an element from <tt>mono</tt>. Can be thought of as a dual
--   concept to <tt>opoint</tt>.
oextract :: MonoComonad mono => mono -> Element mono

-- | <a>Extend</a> a <tt>mono -&gt; <a>Element</a> mono</tt> function to be
--   a <tt>mono -&gt; mono</tt>; that is, builds a new <tt>mono</tt> from
--   the old one by using pieces glimpsed from the given function.
oextend :: MonoComonad mono => (mono -> Element mono) -> mono -> mono

-- | Containers which, when two values are combined, the combined length is
--   no less than the larger of the two inputs. In code:
--   
--   <pre>
--   olength (x &lt;&gt; y) &gt;= max (olength x) (olength y)
--   </pre>
--   
--   This class has no methods, and is simply used to assert that this law
--   holds, in order to provide guarantees of correctness (see, for
--   instance, <a>Data.NonNull</a>).
--   
--   This should have a <tt>Semigroup</tt> superclass constraint, however,
--   due to <tt>Semigroup</tt> only recently moving to base, some packages
--   do not provide instances.
class MonoFoldable mono => GrowingAppend mono

-- | <tt>intercalate</tt> <tt>seq seqs</tt> inserts <tt>seq</tt> in between
--   <tt>seqs</tt> and concatenates the result.
ointercalate :: (MonoFoldable mono, Monoid (Element mono)) => Element mono -> mono -> Element mono
instance Data.MonoTraversable.MonoFunctor Data.ByteString.Internal.ByteString
instance Data.MonoTraversable.MonoFunctor Data.ByteString.Lazy.Internal.ByteString
instance Data.MonoTraversable.MonoFunctor Data.Text.Internal.Text
instance Data.MonoTraversable.MonoFunctor Data.Text.Internal.Lazy.Text
instance Data.MonoTraversable.MonoFunctor [a]
instance Data.MonoTraversable.MonoFunctor (GHC.Types.IO a)
instance Data.MonoTraversable.MonoFunctor (Control.Applicative.ZipList a)
instance Data.MonoTraversable.MonoFunctor (GHC.Base.Maybe a)
instance Data.MonoTraversable.MonoFunctor (Data.Tree.Tree a)
instance Data.MonoTraversable.MonoFunctor (Data.Sequence.Seq a)
instance Data.MonoTraversable.MonoFunctor (Data.Sequence.ViewL a)
instance Data.MonoTraversable.MonoFunctor (Data.Sequence.ViewR a)
instance Data.MonoTraversable.MonoFunctor (Data.IntMap.Base.IntMap a)
instance Data.MonoTraversable.MonoFunctor (Data.Semigroup.Option a)
instance Data.MonoTraversable.MonoFunctor (Data.List.NonEmpty.NonEmpty a)
instance Data.MonoTraversable.MonoFunctor (Data.Functor.Identity.Identity a)
instance Data.MonoTraversable.MonoFunctor (r -> a)
instance Data.MonoTraversable.MonoFunctor (Data.Either.Either a b)
instance Data.MonoTraversable.MonoFunctor (a, b)
instance Data.MonoTraversable.MonoFunctor (Data.Functor.Const.Const m a)
instance GHC.Base.Monad m => Data.MonoTraversable.MonoFunctor (Control.Applicative.WrappedMonad m a)
instance Data.MonoTraversable.MonoFunctor (Data.Map.Base.Map k v)
instance Data.MonoTraversable.MonoFunctor (Data.HashMap.Base.HashMap k v)
instance Data.MonoTraversable.MonoFunctor (Data.Vector.Vector a)
instance Data.MonoTraversable.MonoFunctor (Data.Semigroup.Arg a b)
instance Control.Arrow.Arrow a => Data.MonoTraversable.MonoFunctor (Control.Applicative.WrappedArrow a b c)
instance GHC.Base.Functor m => Data.MonoTraversable.MonoFunctor (Control.Monad.Trans.Maybe.MaybeT m a)
instance GHC.Base.Functor m => Data.MonoTraversable.MonoFunctor (Control.Monad.Trans.List.ListT m a)
instance GHC.Base.Functor m => Data.MonoTraversable.MonoFunctor (Control.Monad.Trans.Identity.IdentityT m a)
instance GHC.Base.Functor m => Data.MonoTraversable.MonoFunctor (Control.Monad.Trans.Writer.Lazy.WriterT w m a)
instance GHC.Base.Functor m => Data.MonoTraversable.MonoFunctor (Control.Monad.Trans.Writer.Strict.WriterT w m a)
instance GHC.Base.Functor m => Data.MonoTraversable.MonoFunctor (Control.Monad.Trans.State.Lazy.StateT s m a)
instance GHC.Base.Functor m => Data.MonoTraversable.MonoFunctor (Control.Monad.Trans.State.Strict.StateT s m a)
instance GHC.Base.Functor m => Data.MonoTraversable.MonoFunctor (Control.Monad.Trans.RWS.Lazy.RWST r w s m a)
instance GHC.Base.Functor m => Data.MonoTraversable.MonoFunctor (Control.Monad.Trans.RWS.Strict.RWST r w s m a)
instance GHC.Base.Functor m => Data.MonoTraversable.MonoFunctor (Control.Monad.Trans.Reader.ReaderT r m a)
instance GHC.Base.Functor m => Data.MonoTraversable.MonoFunctor (Control.Monad.Trans.Cont.ContT r m a)
instance (GHC.Base.Functor f, GHC.Base.Functor g) => Data.MonoTraversable.MonoFunctor (Data.Functor.Compose.Compose f g a)
instance (GHC.Base.Functor f, GHC.Base.Functor g) => Data.MonoTraversable.MonoFunctor (Data.Functor.Product.Product f g a)
instance Data.Vector.Unboxed.Base.Unbox a => Data.MonoTraversable.MonoFunctor (Data.Vector.Unboxed.Base.Vector a)
instance Foreign.Storable.Storable a => Data.MonoTraversable.MonoFunctor (Data.Vector.Storable.Vector a)
instance Data.MonoTraversable.MonoFoldable Data.ByteString.Internal.ByteString
instance Data.MonoTraversable.MonoFoldable Data.ByteString.Lazy.Internal.ByteString
instance Data.MonoTraversable.MonoFoldable Data.Text.Internal.Text
instance Data.MonoTraversable.MonoFoldable Data.Text.Internal.Lazy.Text
instance Data.MonoTraversable.MonoFoldable Data.IntSet.Base.IntSet
instance Data.MonoTraversable.MonoFoldable [a]
instance Data.MonoTraversable.MonoFoldable (GHC.Base.Maybe a)
instance Data.MonoTraversable.MonoFoldable (Data.Tree.Tree a)
instance Data.MonoTraversable.MonoFoldable (Data.Sequence.Seq a)
instance Data.MonoTraversable.MonoFoldable (Data.Sequence.ViewL a)
instance Data.MonoTraversable.MonoFoldable (Data.Sequence.ViewR a)
instance Data.MonoTraversable.MonoFoldable (Data.IntMap.Base.IntMap a)
instance Data.MonoTraversable.MonoFoldable (Data.Semigroup.Option a)
instance Data.MonoTraversable.MonoFoldable (Data.List.NonEmpty.NonEmpty a)
instance Data.MonoTraversable.MonoFoldable (Data.Functor.Identity.Identity a)
instance Data.MonoTraversable.MonoFoldable (Data.Map.Base.Map k v)
instance Data.MonoTraversable.MonoFoldable (Data.HashMap.Base.HashMap k v)
instance Data.MonoTraversable.MonoFoldable (Data.Vector.Vector a)
instance GHC.Classes.Ord e => Data.MonoTraversable.MonoFoldable (Data.Set.Base.Set e)
instance Data.MonoTraversable.MonoFoldable (Data.HashSet.HashSet e)
instance Data.Vector.Unboxed.Base.Unbox a => Data.MonoTraversable.MonoFoldable (Data.Vector.Unboxed.Base.Vector a)
instance Foreign.Storable.Storable a => Data.MonoTraversable.MonoFoldable (Data.Vector.Storable.Vector a)
instance Data.MonoTraversable.MonoFoldable (Data.Either.Either a b)
instance Data.MonoTraversable.MonoFoldable (a, b)
instance Data.MonoTraversable.MonoFoldable (Data.Functor.Const.Const m a)
instance Data.Foldable.Foldable f => Data.MonoTraversable.MonoFoldable (Control.Monad.Trans.Maybe.MaybeT f a)
instance Data.Foldable.Foldable f => Data.MonoTraversable.MonoFoldable (Control.Monad.Trans.List.ListT f a)
instance Data.Foldable.Foldable f => Data.MonoTraversable.MonoFoldable (Control.Monad.Trans.Identity.IdentityT f a)
instance Data.Foldable.Foldable f => Data.MonoTraversable.MonoFoldable (Control.Monad.Trans.Writer.Lazy.WriterT w f a)
instance Data.Foldable.Foldable f => Data.MonoTraversable.MonoFoldable (Control.Monad.Trans.Writer.Strict.WriterT w f a)
instance (Data.Foldable.Foldable f, Data.Foldable.Foldable g) => Data.MonoTraversable.MonoFoldable (Data.Functor.Compose.Compose f g a)
instance (Data.Foldable.Foldable f, Data.Foldable.Foldable g) => Data.MonoTraversable.MonoFoldable (Data.Functor.Product.Product f g a)
instance Data.MonoTraversable.MonoTraversable Data.ByteString.Internal.ByteString
instance Data.MonoTraversable.MonoTraversable Data.ByteString.Lazy.Internal.ByteString
instance Data.MonoTraversable.MonoTraversable Data.Text.Internal.Text
instance Data.MonoTraversable.MonoTraversable Data.Text.Internal.Lazy.Text
instance Data.MonoTraversable.MonoTraversable [a]
instance Data.MonoTraversable.MonoTraversable (GHC.Base.Maybe a)
instance Data.MonoTraversable.MonoTraversable (Data.Tree.Tree a)
instance Data.MonoTraversable.MonoTraversable (Data.Sequence.Seq a)
instance Data.MonoTraversable.MonoTraversable (Data.Sequence.ViewL a)
instance Data.MonoTraversable.MonoTraversable (Data.Sequence.ViewR a)
instance Data.MonoTraversable.MonoTraversable (Data.IntMap.Base.IntMap a)
instance Data.MonoTraversable.MonoTraversable (Data.Semigroup.Option a)
instance Data.MonoTraversable.MonoTraversable (Data.List.NonEmpty.NonEmpty a)
instance Data.MonoTraversable.MonoTraversable (Data.Functor.Identity.Identity a)
instance Data.MonoTraversable.MonoTraversable (Data.Map.Base.Map k v)
instance Data.MonoTraversable.MonoTraversable (Data.HashMap.Base.HashMap k v)
instance Data.MonoTraversable.MonoTraversable (Data.Vector.Vector a)
instance Data.Vector.Unboxed.Base.Unbox a => Data.MonoTraversable.MonoTraversable (Data.Vector.Unboxed.Base.Vector a)
instance Foreign.Storable.Storable a => Data.MonoTraversable.MonoTraversable (Data.Vector.Storable.Vector a)
instance Data.MonoTraversable.MonoTraversable (Data.Either.Either a b)
instance Data.MonoTraversable.MonoTraversable (a, b)
instance Data.MonoTraversable.MonoTraversable (Data.Functor.Const.Const m a)
instance Data.Traversable.Traversable f => Data.MonoTraversable.MonoTraversable (Control.Monad.Trans.Maybe.MaybeT f a)
instance Data.Traversable.Traversable f => Data.MonoTraversable.MonoTraversable (Control.Monad.Trans.List.ListT f a)
instance Data.Traversable.Traversable f => Data.MonoTraversable.MonoTraversable (Control.Monad.Trans.Identity.IdentityT f a)
instance Data.Traversable.Traversable f => Data.MonoTraversable.MonoTraversable (Control.Monad.Trans.Writer.Lazy.WriterT w f a)
instance Data.Traversable.Traversable f => Data.MonoTraversable.MonoTraversable (Control.Monad.Trans.Writer.Strict.WriterT w f a)
instance (Data.Traversable.Traversable f, Data.Traversable.Traversable g) => Data.MonoTraversable.MonoTraversable (Data.Functor.Compose.Compose f g a)
instance (Data.Traversable.Traversable f, Data.Traversable.Traversable g) => Data.MonoTraversable.MonoTraversable (Data.Functor.Product.Product f g a)
instance Data.MonoTraversable.MonoPointed Data.ByteString.Internal.ByteString
instance Data.MonoTraversable.MonoPointed Data.ByteString.Lazy.Internal.ByteString
instance Data.MonoTraversable.MonoPointed Data.Text.Internal.Text
instance Data.MonoTraversable.MonoPointed Data.Text.Internal.Lazy.Text
instance Data.MonoTraversable.MonoPointed [a]
instance Data.MonoTraversable.MonoPointed (GHC.Base.Maybe a)
instance Data.MonoTraversable.MonoPointed (Data.Semigroup.Option a)
instance Data.MonoTraversable.MonoPointed (Data.List.NonEmpty.NonEmpty a)
instance Data.MonoTraversable.MonoPointed (Data.Functor.Identity.Identity a)
instance Data.MonoTraversable.MonoPointed (Data.Vector.Vector a)
instance Data.MonoTraversable.MonoPointed (GHC.Types.IO a)
instance Data.MonoTraversable.MonoPointed (Control.Applicative.ZipList a)
instance Data.MonoTraversable.MonoPointed (r -> a)
instance GHC.Base.Monoid a => Data.MonoTraversable.MonoPointed (a, b)
instance GHC.Base.Monoid m => Data.MonoTraversable.MonoPointed (Data.Functor.Const.Const m a)
instance GHC.Base.Monad m => Data.MonoTraversable.MonoPointed (Control.Applicative.WrappedMonad m a)
instance GHC.Base.Applicative m => Data.MonoTraversable.MonoPointed (Control.Monad.Trans.List.ListT m a)
instance GHC.Base.Applicative m => Data.MonoTraversable.MonoPointed (Control.Monad.Trans.Identity.IdentityT m a)
instance Control.Arrow.Arrow a => Data.MonoTraversable.MonoPointed (Control.Applicative.WrappedArrow a b c)
instance (GHC.Base.Monoid w, GHC.Base.Applicative m) => Data.MonoTraversable.MonoPointed (Control.Monad.Trans.Writer.Lazy.WriterT w m a)
instance (GHC.Base.Monoid w, GHC.Base.Applicative m) => Data.MonoTraversable.MonoPointed (Control.Monad.Trans.Writer.Strict.WriterT w m a)
instance GHC.Base.Applicative m => Data.MonoTraversable.MonoPointed (Control.Monad.Trans.Reader.ReaderT r m a)
instance Data.MonoTraversable.MonoPointed (Control.Monad.Trans.Cont.ContT r m a)
instance (GHC.Base.Applicative f, GHC.Base.Applicative g) => Data.MonoTraversable.MonoPointed (Data.Functor.Compose.Compose f g a)
instance (GHC.Base.Applicative f, GHC.Base.Applicative g) => Data.MonoTraversable.MonoPointed (Data.Functor.Product.Product f g a)
instance Data.MonoTraversable.MonoPointed (Data.Sequence.Seq a)
instance Data.Vector.Unboxed.Base.Unbox a => Data.MonoTraversable.MonoPointed (Data.Vector.Unboxed.Base.Vector a)
instance Foreign.Storable.Storable a => Data.MonoTraversable.MonoPointed (Data.Vector.Storable.Vector a)
instance Data.MonoTraversable.MonoPointed (Data.Either.Either a b)
instance Data.MonoTraversable.MonoPointed Data.IntSet.Base.IntSet
instance Data.MonoTraversable.MonoPointed (Data.Set.Base.Set a)
instance Data.Hashable.Class.Hashable a => Data.MonoTraversable.MonoPointed (Data.HashSet.HashSet a)
instance GHC.Base.Applicative f => Data.MonoTraversable.MonoPointed (Control.Monad.Trans.Maybe.MaybeT f a)
instance (GHC.Base.Monoid w, GHC.Base.Applicative m) => Data.MonoTraversable.MonoPointed (Control.Monad.Trans.RWS.Lazy.RWST r w s m a)
instance (GHC.Base.Monoid w, GHC.Base.Applicative m) => Data.MonoTraversable.MonoPointed (Control.Monad.Trans.RWS.Strict.RWST r w s m a)
instance GHC.Base.Applicative m => Data.MonoTraversable.MonoPointed (Control.Monad.Trans.State.Lazy.StateT s m a)
instance GHC.Base.Applicative m => Data.MonoTraversable.MonoPointed (Control.Monad.Trans.State.Strict.StateT s m a)
instance Data.MonoTraversable.MonoPointed (Data.Sequence.ViewL a)
instance Data.MonoTraversable.MonoPointed (Data.Sequence.ViewR a)
instance Data.MonoTraversable.MonoPointed (Data.Tree.Tree a)
instance Data.MonoTraversable.MonoComonad (Data.Sequence.ViewL a)
instance Data.MonoTraversable.MonoComonad (Data.Sequence.ViewR a)
instance Data.MonoTraversable.GrowingAppend (Data.Sequence.Seq a)
instance Data.MonoTraversable.GrowingAppend [a]
instance Data.MonoTraversable.GrowingAppend (Data.Vector.Vector a)
instance Data.Vector.Unboxed.Base.Unbox a => Data.MonoTraversable.GrowingAppend (Data.Vector.Unboxed.Base.Vector a)
instance Foreign.Storable.Storable a => Data.MonoTraversable.GrowingAppend (Data.Vector.Storable.Vector a)
instance Data.MonoTraversable.GrowingAppend Data.ByteString.Internal.ByteString
instance Data.MonoTraversable.GrowingAppend Data.ByteString.Lazy.Internal.ByteString
instance Data.MonoTraversable.GrowingAppend Data.Text.Internal.Text
instance Data.MonoTraversable.GrowingAppend Data.Text.Internal.Lazy.Text
instance Data.MonoTraversable.GrowingAppend (Data.List.NonEmpty.NonEmpty a)
instance GHC.Classes.Ord k => Data.MonoTraversable.GrowingAppend (Data.Map.Base.Map k v)
instance (GHC.Classes.Eq k, Data.Hashable.Class.Hashable k) => Data.MonoTraversable.GrowingAppend (Data.HashMap.Base.HashMap k v)
instance GHC.Classes.Ord v => Data.MonoTraversable.GrowingAppend (Data.Set.Base.Set v)
instance (GHC.Classes.Eq v, Data.Hashable.Class.Hashable v) => Data.MonoTraversable.GrowingAppend (Data.HashSet.HashSet v)
instance Data.MonoTraversable.GrowingAppend Data.IntSet.Base.IntSet
instance Data.MonoTraversable.GrowingAppend (Data.IntMap.Base.IntMap v)


-- | The functions in <a>Data.MonoTraversable</a> are all prefixed with the
--   letter <tt>o</tt> to avoid conflicts with their polymorphic
--   counterparts. This module exports the same identifiers without the
--   prefix, for all cases where the monomorphic variant loses no
--   generality versus the polymorphic version. For example, <a>olength</a>
--   is just as general as <tt>Data.Foldable.length</tt>, so we export
--   <tt>length = length</tt>. By contrast, <a>omap</a> cannot fully
--   subsume <tt>fmap</tt> or <tt>map</tt>, so we do not provide such an
--   export.
module Data.MonoTraversable.Unprefixed

-- | Synonym for <a>ofoldMap</a>
foldMap :: (MonoFoldable mono, Monoid m) => (Element mono -> m) -> mono -> m

-- | Synonym for <a>ofoldr</a>
foldr :: MonoFoldable mono => (Element mono -> b -> b) -> b -> mono -> b

-- | Synonym for <a>ofoldl'</a>
foldl' :: MonoFoldable mono => (a -> Element mono -> a) -> a -> mono -> a

-- | Synonym for <a>otoList</a>
toList :: MonoFoldable mono => mono -> [Element mono]

-- | Synonym for <a>oall</a>
all :: MonoFoldable mono => (Element mono -> Bool) -> mono -> Bool

-- | Synonym for <a>oany</a>
any :: MonoFoldable mono => (Element mono -> Bool) -> mono -> Bool

-- | Synonym for <a>onull</a>
null :: MonoFoldable mono => mono -> Bool

-- | Synonym for <a>olength</a>
length :: MonoFoldable mono => mono -> Int

-- | Synonym for <a>olength64</a>
length64 :: MonoFoldable mono => mono -> Int64

-- | Synonym for <a>ocompareLength</a>
compareLength :: (MonoFoldable mono, Integral i) => mono -> i -> Ordering

-- | Synonym for <a>otraverse_</a>
traverse_ :: (MonoFoldable mono, Applicative f) => (Element mono -> f b) -> mono -> f ()

-- | Synonym for <a>ofor_</a>
for_ :: (MonoFoldable mono, Applicative f) => mono -> (Element mono -> f b) -> f ()

-- | Synonym for <a>omapM_</a>
mapM_ :: (MonoFoldable mono, Applicative m) => (Element mono -> m ()) -> mono -> m ()

-- | Synonym for <a>oforM_</a>
forM_ :: (MonoFoldable mono, Applicative m) => mono -> (Element mono -> m ()) -> m ()

-- | Synonym for <a>ofoldlM</a>
foldlM :: (MonoFoldable mono, Monad m) => (a -> Element mono -> m a) -> a -> mono -> m a

-- | Synonym for <a>ofoldMap1Ex</a>
foldMap1Ex :: (MonoFoldable mono, Semigroup m) => (Element mono -> m) -> mono -> m

-- | Synonym for <a>ofoldr1Ex</a>
foldr1Ex :: MonoFoldable mono => (Element mono -> Element mono -> Element mono) -> mono -> Element mono

-- | Synonym for <a>ofoldl1Ex'</a>
foldl1Ex' :: MonoFoldable mono => (Element mono -> Element mono -> Element mono) -> mono -> Element mono

-- | Synonym for <a>osum</a>
sum :: (MonoFoldable mono, Num (Element mono)) => mono -> Element mono

-- | Synonym for <a>oproduct</a>
product :: (MonoFoldable mono, Num (Element mono)) => mono -> Element mono

-- | Synonym for <a>oand</a>
and :: (MonoFoldable mono, Element mono ~ Bool) => mono -> Bool

-- | Synonym for <a>oor</a>
or :: (MonoFoldable mono, Element mono ~ Bool) => mono -> Bool

-- | Synonym for <a>oconcatMap</a>
concatMap :: (MonoFoldable mono, Monoid m) => (Element mono -> m) -> mono -> m

-- | Synonym for <a>oelem</a>
elem :: (MonoFoldable mono, Eq (Element mono)) => Element mono -> mono -> Bool

-- | Synonym for <a>onotElem</a>
notElem :: (MonoFoldable mono, Eq (Element mono)) => Element mono -> mono -> Bool

-- | Synonym for <a>opoint</a>
point :: MonoPointed mono => Element mono -> mono

-- | Synonym for <a>ointercalate</a>
intercalate :: (MonoFoldable mono, Monoid (Element mono)) => Element mono -> mono -> Element mono

-- | Synonym for <a>ofold</a>
fold :: (MonoFoldable mono, Monoid (Element mono)) => mono -> Element mono

-- | Synonym for <a>oconcat</a>
concat :: (MonoFoldable mono, Monoid (Element mono)) => mono -> Element mono

-- | Synonym for <a>ofoldM</a>
foldM :: (MonoFoldable mono, Monad m) => (a -> Element mono -> m a) -> a -> mono -> m a

-- | Synonym for <a>osequence_</a>
sequence_ :: (Applicative m, MonoFoldable mono, Element mono ~ (m ())) => mono -> m ()


-- | Abstractions over sequential data structures, like lists and vectors.
module Data.Sequences

-- | <a>SemiSequence</a> was created to share code between
--   <a>IsSequence</a> and <tt>NonNull</tt>.
--   
--   <tt>Semi</tt> means <tt>SemiGroup</tt> A <a>SemiSequence</a> can
--   accomodate a <tt>SemiGroup</tt> such as <tt>NonEmpty</tt> or
--   <tt>NonNull</tt> A Monoid should be able to fill out
--   <a>IsSequence</a>.
--   
--   <a>SemiSequence</a> operations maintain the same type because they all
--   maintain the same number of elements or increase them. However, a
--   decreasing function such as filter may change they type. For example,
--   from <tt>NonEmpty</tt> to '[]' This type-changing function exists on
--   <tt>NonNull</tt> as <tt>nfilter</tt>
--   
--   <a>filter</a> and other such functions are placed in <a>IsSequence</a>
--   
--   <i>NOTE</i>: Like <a>GrowingAppend</a>, ideally we'd have a
--   <tt>Semigroup</tt> superclass constraint here, but that would pull in
--   more dependencies to this package than desired.
class (Integral (Index seq), GrowingAppend seq) => SemiSequence seq where type Index seq where {
    type family Index seq;
}

-- | <a>intersperse</a> takes an element and intersperses that element
--   between the elements of the sequence.
--   
--   <pre>
--   &gt; <a>intersperse</a> ',' "abcde"
--   "a,b,c,d,e"
--   </pre>
intersperse :: SemiSequence seq => Element seq -> seq -> seq

-- | Reverse a sequence
--   
--   <pre>
--   &gt; <a>reverse</a> "hello world"
--   "dlrow olleh"
--   </pre>
reverse :: SemiSequence seq => seq -> seq

-- | <a>find</a> takes a predicate and a sequence and returns the first
--   element in the sequence matching the predicate, or <a>Nothing</a> if
--   there isn't an element that matches the predicate.
--   
--   <pre>
--   &gt; <a>find</a> (== 5) [1 .. 10]
--   <a>Just</a> 5
--   
--   &gt; <a>find</a> (== 15) [1 .. 10]
--   <a>Nothing</a>
--   </pre>
find :: SemiSequence seq => (Element seq -> Bool) -> seq -> Maybe (Element seq)

-- | Sort a sequence using an supplied element ordering function.
--   
--   <pre>
--   &gt; let compare' x y = case <a>compare</a> x y of LT -&gt; GT; EQ -&gt; EQ; GT -&gt; LT
--   &gt; <a>sortBy</a> compare' [5,3,6,1,2,4]
--   [6,5,4,3,2,1]
--   </pre>
sortBy :: SemiSequence seq => (Element seq -> Element seq -> Ordering) -> seq -> seq

-- | Prepend an element onto a sequence.
--   
--   <pre>
--   &gt; 4 `<a>cons</a>` [1,2,3]
--   [4,1,2,3]
--   </pre>
cons :: SemiSequence seq => Element seq -> seq -> seq

-- | Append an element onto a sequence.
--   
--   <pre>
--   &gt; [1,2,3] `<a>snoc</a>` 4
--   [1,2,3,4]
--   </pre>
snoc :: SemiSequence seq => seq -> Element seq -> seq

-- | Create a sequence from a single element.
--   
--   <pre>
--   &gt; <a>singleton</a> <tt>a</tt> :: <tt>String</tt>
--   "a"
--   &gt; <a>singleton</a> <tt>a</tt> :: <tt>Vector</tt> <a>Char</a>
--   <a>fromList</a> "a"
--   </pre>
singleton :: IsSequence seq => Element seq -> seq

-- | Sequence Laws:
--   
--   <pre>
--   <a>fromList</a> . <a>otoList</a> = <a>id</a>
--   <a>fromList</a> (x &lt;&gt; y) = <a>fromList</a> x &lt;&gt; <a>fromList</a> y
--   <a>otoList</a> (<a>fromList</a> x &lt;&gt; <a>fromList</a> y) = x &lt;&gt; y
--   </pre>
class (Monoid seq, MonoTraversable seq, SemiSequence seq, MonoPointed seq) => IsSequence seq where fromList = mconcat . fmap singleton lengthIndex = fromIntegral . olength64 break f = (fromList *** fromList) . break f . otoList span f = (fromList *** fromList) . span f . otoList dropWhile f = fromList . dropWhile f . otoList takeWhile f = fromList . takeWhile f . otoList splitAt i = (fromList *** fromList) . genericSplitAt i . otoList unsafeSplitAt i seq = (unsafeTake i seq, unsafeDrop i seq) take i = fst . splitAt i unsafeTake = take drop i = snd . splitAt i unsafeDrop = drop dropEnd i s = fst $ splitAt (lengthIndex s - i) s partition f = (fromList *** fromList) . partition f . otoList uncons = fmap (second fromList) . uncons . otoList unsnoc = fmap (first fromList) . unsnoc . otoList filter f = fromList . filter f . otoList filterM f = liftM fromList . filterM f . otoList replicate i = fromList . genericReplicate i replicateM i = liftM fromList . replicateM (fromIntegral i) groupBy f = fmap fromList . groupBy f . otoList groupAllOn f = fmap fromList . groupAllOn f . otoList subsequences = map fromList . subsequences . otoList permutations = map fromList . permutations . otoList tailEx = snd . maybe (error "Data.Sequences.tailEx") id . uncons tailMay seq | onull seq = Nothing | otherwise = Just (tailEx seq) initEx = fst . maybe (error "Data.Sequences.initEx") id . unsnoc initMay seq | onull seq = Nothing | otherwise = Just (initEx seq) unsafeTail = tailEx unsafeInit = initEx index seq' idx = headMay (drop idx seq') indexEx seq' idx = maybe (error "Data.Sequences.indexEx") id (index seq' idx) unsafeIndex = indexEx splitWhen = defaultSplitWhen

-- | Convert a list to a sequence.
--   
--   <pre>
--   &gt; <a>fromList</a> [<tt>a</tt>, <tt>b</tt>, <tt>c</tt>] :: Text
--   "abc"
--   </pre>
fromList :: IsSequence seq => [Element seq] -> seq

-- | <a>lengthIndex</a> returns the length of a sequence as
--   <tt><a>Index</a> seq</tt>.
lengthIndex :: IsSequence seq => seq -> Index seq

-- | <a>break</a> applies a predicate to a sequence, and returns a tuple
--   where the first element is the longest prefix (possibly empty) of
--   elements that <i>do not satisfy</i> the predicate. The second element
--   of the tuple is the remainder of the sequence.
--   
--   <tt><a>break</a> p</tt> is equivalent to <tt><a>span</a> (<tt>not</tt>
--   . p)</tt>
--   
--   <pre>
--   &gt; <a>break</a> (&gt; 3) (<a>fromList</a> [1,2,3,4,1,2,3,4] :: <tt>Vector</tt> <a>Int</a>)
--   (fromList [1,2,3],fromList [4,1,2,3,4])
--   
--   &gt; <a>break</a> (&lt; <tt>z</tt>) (<a>fromList</a> "abc" :: <tt>Text</tt>)
--   ("","abc")
--   
--   &gt; <a>break</a> (&gt; <tt>z</tt>) (<a>fromList</a> "abc" :: <tt>Text</tt>)
--   ("abc","")
--   </pre>
break :: IsSequence seq => (Element seq -> Bool) -> seq -> (seq, seq)

-- | <a>span</a> applies a predicate to a sequence, and returns a tuple
--   where the first element is the longest prefix (possibly empty) that
--   <i>does satisfy</i> the predicate. The second element of the tuple is
--   the remainder of the sequence.
--   
--   <tt><a>span</a> p xs</tt> is equivalent to <tt>(<a>takeWhile</a> p xs,
--   <a>dropWhile</a> p xs)</tt>
--   
--   <pre>
--   &gt; <a>span</a> (&lt; 3) (<a>fromList</a> [1,2,3,4,1,2,3,4] :: <tt>Vector</tt> <a>Int</a>)
--   (fromList [1,2],fromList [3,4,1,2,3,4])
--   
--   &gt; <a>span</a> (&lt; <tt>z</tt>) (<a>fromList</a> "abc" :: <tt>Text</tt>)
--   ("abc","")
--   
--   &gt; <a>span</a> (&lt; 0) <a>1,2,3</a>
--   </pre>
span :: IsSequence seq => (Element seq -> Bool) -> seq -> (seq, seq)

-- | <a>dropWhile</a> returns the suffix remaining after <a>takeWhile</a>.
--   
--   <pre>
--   &gt; <a>dropWhile</a> (&lt; 3) [1,2,3,4,5,1,2,3]
--   [3,4,5,1,2,3]
--   
--   &gt; <a>dropWhile</a> (&lt; <tt>z</tt>) (<a>fromList</a> "abc" :: <tt>Text</tt>)
--   ""
--   </pre>
dropWhile :: IsSequence seq => (Element seq -> Bool) -> seq -> seq

-- | <a>takeWhile</a> applies a predicate to a sequence, and returns the
--   longest prefix (possibly empty) of the sequence of elements that
--   <i>satisfy</i> the predicate.
--   
--   <pre>
--   &gt; <a>takeWhile</a> (&lt; 3) [1,2,3,4,5,1,2,3]
--   [1,2]
--   
--   &gt; <a>takeWhile</a> (&lt; <tt>z</tt>) (<a>fromList</a> "abc" :: <tt>Text</tt>)
--   "abc"
--   </pre>
takeWhile :: IsSequence seq => (Element seq -> Bool) -> seq -> seq

-- | <tt><a>splitAt</a> n se</tt> returns a tuple where the first element
--   is the prefix of the sequence <tt>se</tt> with length <tt>n</tt>, and
--   the second element is the remainder of the sequence.
--   
--   <pre>
--   &gt; <a>splitAt</a> 6 "Hello world!"
--   ("Hello ","world!")
--   
--   &gt; <a>splitAt</a> 3 (<a>fromList</a> [1,2,3,4,5] :: <tt>Vector</tt> <a>Int</a>)
--   (fromList [1,2,3],fromList [4,5])
--   </pre>
splitAt :: IsSequence seq => Index seq -> seq -> (seq, seq)

-- | Equivalent to <a>splitAt</a>.
unsafeSplitAt :: IsSequence seq => Index seq -> seq -> (seq, seq)

-- | <tt><a>take</a> n</tt> returns the prefix of a sequence of length
--   <tt>n</tt>, or the sequence itself if <tt>n &gt; <a>olength</a>
--   seq</tt>.
--   
--   <pre>
--   &gt; <a>take</a> 3 "abcdefg"
--   "abc"
--   &gt; <a>take</a> 4 (<a>fromList</a> [1,2,3,4,5,6] :: <tt>Vector</tt> <a>Int</a>)
--   fromList [1,2,3,4]
--   </pre>
take :: IsSequence seq => Index seq -> seq -> seq

-- | Equivalent to <a>take</a>.
unsafeTake :: IsSequence seq => Index seq -> seq -> seq

-- | <tt><a>drop</a> n</tt> returns the suffix of a sequence after the
--   first <tt>n</tt> elements, or an empty sequence if <tt>n &gt;
--   <a>olength</a> seq</tt>.
--   
--   <pre>
--   &gt; <a>drop</a> 3 "abcdefg"
--   "defg"
--   &gt; <a>drop</a> 4 (<a>fromList</a> [1,2,3,4,5,6] :: <tt>Vector</tt> <a>Int</a>)
--   fromList [5,6]
--   </pre>
drop :: IsSequence seq => Index seq -> seq -> seq

-- | Equivalent to <a>drop</a>
unsafeDrop :: IsSequence seq => Index seq -> seq -> seq

-- | Same as <a>drop</a> but drops from the end of the sequence instead.
--   
--   <pre>
--   &gt; <a>dropEnd</a> 3 "abcdefg"
--   "abcd"
--   &gt; <a>dropEnd</a> 4 (<a>fromList</a> [1,2,3,4,5,6] :: <tt>Vector</tt> <a>Int</a>)
--   fromList [1,2]
--   </pre>
dropEnd :: IsSequence seq => Index seq -> seq -> seq

-- | <a>partition</a> takes a predicate and a sequence and returns the pair
--   of sequences of elements which do and do not satisfy the predicate.
--   
--   <pre>
--   <a>partition</a> p se = (<a>filter</a> p se, <a>filter</a> (<tt>not</tt> . p) se)
--   </pre>
partition :: IsSequence seq => (Element seq -> Bool) -> seq -> (seq, seq)

-- | <a>uncons</a> returns the tuple of the first element of a sequence and
--   the rest of the sequence, or <a>Nothing</a> if the sequence is empty.
--   
--   <pre>
--   &gt; <a>uncons</a> (<a>fromList</a> [1,2,3,4] :: <tt>Vector</tt> <a>Int</a>)
--   <a>Just</a> (1,fromList [2,3,4])
--   
--   &gt; <a>uncons</a> ([] :: [<a>Int</a>])
--   <a>Nothing</a>
--   </pre>
uncons :: IsSequence seq => seq -> Maybe (Element seq, seq)

-- | <a>unsnoc</a> returns the tuple of the init of a sequence and the last
--   element, or <a>Nothing</a> if the sequence is empty.
--   
--   <pre>
--   &gt; <a>unsnoc</a> (<a>fromList</a> [1,2,3,4] :: <tt>Vector</tt> <a>Int</a>)
--   <a>Just</a> (fromList [1,2,3],4)
--   
--   &gt; <a>unsnoc</a> ([] :: [<a>Int</a>])
--   <a>Nothing</a>
--   </pre>
unsnoc :: IsSequence seq => seq -> Maybe (seq, Element seq)

-- | <a>filter</a> given a predicate returns a sequence of all elements
--   that satisfy the predicate.
--   
--   <pre>
--   &gt; <a>filter</a> (&lt; 5) [1 .. 10]
--   [1,2,3,4]
--   </pre>
filter :: IsSequence seq => (Element seq -> Bool) -> seq -> seq

-- | The monadic version of <a>filter</a>.
filterM :: (IsSequence seq, Monad m) => (Element seq -> m Bool) -> seq -> m seq

-- | <tt><a>replicate</a> n x</tt> is a sequence of length <tt>n</tt> with
--   <tt>x</tt> as the value of every element.
--   
--   <pre>
--   &gt; <a>replicate</a> 10 <tt>a</tt> :: Text
--   "aaaaaaaaaa"
--   </pre>
replicate :: IsSequence seq => Index seq -> Element seq -> seq

-- | The monadic version of <a>replicateM</a>.
replicateM :: (IsSequence seq, Monad m) => Index seq -> m (Element seq) -> m seq

-- | <a>group</a> takes a sequence and returns a list of sequences such
--   that the concatenation of the result is equal to the argument. Each
--   subsequence in the result contains only equal elements, using the
--   supplied equality test.
--   
--   <pre>
--   &gt; <a>groupBy</a> (==) <a>Mississippi</a>
--   [<a>M</a>,"i","ss","i","ss","i","pp","i"]
--   </pre>
groupBy :: IsSequence seq => (Element seq -> Element seq -> Bool) -> seq -> [seq]

-- | Similar to standard <a>groupBy</a>, but operates on the whole
--   collection, not just the consecutive items.
groupAllOn :: (IsSequence seq, Eq b) => (Element seq -> b) -> seq -> [seq]

-- | <a>subsequences</a> returns a list of all subsequences of the
--   argument.
--   
--   <pre>
--   &gt; <a>subsequences</a> "abc"
--   ["","a","b","ab","c","ac","bc","abc"]
--   </pre>
subsequences :: IsSequence seq => seq -> [seq]

-- | <a>permutations</a> returns a list of all permutations of the
--   argument.
--   
--   <pre>
--   &gt; <a>permutations</a> "abc"
--   ["abc","bac","cba","bca","cab","acb"]
--   </pre>
permutations :: IsSequence seq => seq -> [seq]

-- | <b>Unsafe</b>
--   
--   Get the tail of a sequence, throw an exception if the sequence is
--   empty.
--   
--   <pre>
--   &gt; <a>tailEx</a> [1,2,3]
--   [2,3]
--   </pre>
tailEx :: IsSequence seq => seq -> seq

-- | Safe version of <a>tailEx</a>.
--   
--   Returns <a>Nothing</a> instead of throwing an exception when
--   encountering an empty monomorphic container.
tailMay :: IsSequence seq => seq -> Maybe seq

-- | <b>Unsafe</b>
--   
--   Get the init of a sequence, throw an exception if the sequence is
--   empty.
--   
--   <pre>
--   &gt; <a>initEx</a> [1,2,3]
--   [1,2]
--   </pre>
initEx :: IsSequence seq => seq -> seq

-- | Safe version of <a>initEx</a>.
--   
--   Returns <a>Nothing</a> instead of throwing an exception when
--   encountering an empty monomorphic container.
initMay :: (IsSequence seq, IsSequence seq) => seq -> Maybe seq

-- | Equivalent to <a>tailEx</a>.
unsafeTail :: IsSequence seq => seq -> seq

-- | Equivalent to <a>initEx</a>.
unsafeInit :: IsSequence seq => seq -> seq

-- | Get the element of a sequence at a certain index, returns
--   <a>Nothing</a> if that index does not exist.
--   
--   <pre>
--   &gt; <a>index</a> (<a>fromList</a> [1,2,3] :: <tt>Vector</tt> <a>Int</a>) 1
--   <a>Just</a> 2
--   &gt; <a>index</a> (<a>fromList</a> [1,2,3] :: <tt>Vector</tt> <a>Int</a>) 4
--   <a>Nothing</a>
--   </pre>
index :: IsSequence seq => seq -> Index seq -> Maybe (Element seq)

-- | <b>Unsafe</b>
--   
--   Get the element of a sequence at a certain index, throws an exception
--   if the index does not exist.
indexEx :: IsSequence seq => seq -> Index seq -> Element seq

-- | Equivalent to <a>indexEx</a>.
unsafeIndex :: IsSequence seq => seq -> Index seq -> Element seq

-- | <a>splitWhen</a> splits a sequence into components delimited by
--   separators, where the predicate returns True for a separator element.
--   The resulting components do not contain the separators. Two adjacent
--   separators result in an empty component in the output. The number of
--   resulting components is greater by one than number of separators.
--   
--   Since 0.9.3
splitWhen :: IsSequence seq => (Element seq -> Bool) -> seq -> [seq]

-- | Use <a>Data.List</a>'s implementation of <a>find</a>.
defaultFind :: MonoFoldable seq => (Element seq -> Bool) -> seq -> Maybe (Element seq)

-- | Use <a>Data.List</a>'s implementation of <a>intersperse</a>.
defaultIntersperse :: IsSequence seq => Element seq -> seq -> seq

-- | Use <a>Data.List</a>'s implementation of <a>reverse</a>.
defaultReverse :: IsSequence seq => seq -> seq

-- | Use <a>Data.List</a>'s implementation of <a>sortBy</a>.
defaultSortBy :: IsSequence seq => (Element seq -> Element seq -> Ordering) -> seq -> seq

-- | Use <a>splitWhen</a> from <a>Data.List.Split</a>
defaultSplitWhen :: IsSequence seq => (Element seq -> Bool) -> seq -> [seq]

-- | Sort a vector using an supplied element ordering function.
vectorSortBy :: Vector v e => (e -> e -> Ordering) -> v e -> v e

-- | Sort a vector.
vectorSort :: (Vector v e, Ord e) => v e -> v e

-- | Use <a>Data.List</a>'s <a>:</a> to prepend an element to a sequence.
defaultCons :: IsSequence seq => Element seq -> seq -> seq

-- | Use <a>Data.List</a>'s <a>++</a> to append an element to a sequence.
defaultSnoc :: IsSequence seq => seq -> Element seq -> seq

-- | like Data.List.tail, but an input of <a>mempty</a> returns
--   <a>mempty</a>
tailDef :: IsSequence seq => seq -> seq

-- | like Data.List.init, but an input of <a>mempty</a> returns
--   <a>mempty</a>
initDef :: IsSequence seq => seq -> seq

-- | <tt><a>splitElem</a></tt> splits a sequence into components delimited
--   by separator element. It's equivalent to <a>splitWhen</a> with
--   equality predicate:
--   
--   <pre>
--   splitElem sep === splitWhen (== sep)
--   </pre>
--   
--   Since 0.9.3
splitElem :: (IsSequence seq, Eq (Element seq)) => Element seq -> seq -> [seq]

-- | <tt><a>splitSeq</a></tt> splits a sequence into components delimited
--   by separator subsequence. <a>splitSeq</a> is the right inverse of
--   <tt>intercalate</tt>:
--   
--   <pre>
--   ointercalate x . splitSeq x === id
--   </pre>
--   
--   <a>splitElem</a> can be considered a special case of <a>splitSeq</a>
--   
--   <pre>
--   splitSeq (singleton sep) === splitElem sep
--   </pre>
--   
--   <tt><a>splitSeq</a> mempty</tt> is another special case: it splits
--   just before each element, and in line with <a>splitWhen</a> rules, it
--   has at least one output component:
--   
--   <pre>
--   &gt; <a>splitSeq</a> "" ""
--   [""]
--   &gt; <a>splitSeq</a> "" "a"
--   ["", "a"]
--   &gt; <a>splitSeq</a> "" "ab"
--   ["", "a", "b"]
--   </pre>
--   
--   Since 0.9.3
splitSeq :: (IsSequence seq, Eq (Element seq)) => seq -> seq -> [seq]

-- | <tt><a>replaceSeq</a> old new</tt> replaces all <tt>old</tt>
--   subsequences with <tt>new</tt>.
--   
--   <pre>
--   replaceSeq old new === ointercalate new . splitSeq old
--   </pre>
replaceSeq :: (IsSequence seq, Eq (Element seq)) => seq -> seq -> seq -> seq

-- | <a>stripPrefix</a> drops the given prefix from a sequence. It returns
--   <a>Nothing</a> if the sequence did not start with the prefix given, or
--   <a>Just</a> the sequence after the prefix, if it does.
--   
--   <pre>
--   &gt; <a>stripPrefix</a> "foo" "foobar"
--   <a>Just</a> "bar"
--   &gt; <a>stripPrefix</a> "abc" "foobar"
--   <a>Nothing</a>
--   </pre>
stripPrefix :: (IsSequence seq, Eq (Element seq)) => seq -> seq -> Maybe seq

-- | <a>stripSuffix</a> drops the given suffix from a sequence. It returns
--   <a>Nothing</a> if the sequence did not end with the suffix given, or
--   <a>Just</a> the sequence before the suffix, if it does.
--   
--   <pre>
--   &gt; <a>stripSuffix</a> "bar" "foobar"
--   <a>Just</a> "foo"
--   &gt; <a>stripSuffix</a> "abc" "foobar"
--   <a>Nothing</a>
--   </pre>
stripSuffix :: (IsSequence seq, Eq (Element seq)) => seq -> seq -> Maybe seq

-- | <a>ensurePrefix</a> will add a prefix to a sequence if it doesn't
--   exist, and otherwise have no effect.
--   
--   <pre>
--   &gt; <a>ensurePrefix</a> "foo" "foobar"
--   "foobar"
--   &gt; <a>ensurePrefix</a> "abc" "foobar"
--   "abcfoobar"
--   </pre>
ensurePrefix :: (Eq (Element seq), IsSequence seq) => seq -> seq -> seq

-- | Append a suffix to a sequence, unless it already has that suffix.
--   
--   <pre>
--   &gt; <a>ensureSuffix</a> "bar" "foobar"
--   "foobar"
--   &gt; <a>ensureSuffix</a> "abc" "foobar"
--   "foobarabc"
--   </pre>
ensureSuffix :: (Eq (Element seq), IsSequence seq) => seq -> seq -> seq

-- | <a>isPrefixOf</a> takes two sequences and returns <a>True</a> if the
--   first sequence is a prefix of the second.
isPrefixOf :: (IsSequence seq, Eq (Element seq)) => seq -> seq -> Bool

-- | <a>isSuffixOf</a> takes two sequences and returns <a>True</a> if the
--   first sequence is a suffix of the second.
isSuffixOf :: (IsSequence seq, Eq (Element seq)) => seq -> seq -> Bool

-- | <a>isInfixOf</a> takes two sequences and returns <tt>true</tt> if the
--   first sequence is contained, wholly and intact, anywhere within the
--   second.
isInfixOf :: (IsSequence seq, Eq (Element seq)) => seq -> seq -> Bool

-- | Equivalent to <tt><a>groupBy</a> (==)</tt>
group :: (IsSequence seq, Eq (Element seq)) => seq -> [seq]

-- | Similar to standard <a>group</a>, but operates on the whole
--   collection, not just the consecutive items.
--   
--   Equivalent to <tt><a>groupAllOn</a> id</tt>
groupAll :: (IsSequence seq, Eq (Element seq)) => seq -> [seq]

delete :: (IsSequence seq, Eq (Element seq)) => Element seq -> seq -> seq

deleteBy :: (IsSequence seq, Eq (Element seq)) => (Element seq -> Element seq -> Bool) -> Element seq -> seq -> seq
splitElemStrictBS :: Word8 -> ByteString -> [ByteString]
stripPrefixStrictBS :: ByteString -> ByteString -> Maybe ByteString
stripSuffixStrictBS :: ByteString -> ByteString -> Maybe ByteString
splitSeqLazyBS :: Word8 -> ByteString -> [ByteString]
stripPrefixLazyBS :: ByteString -> ByteString -> Maybe ByteString
stripSuffixLazyBS :: ByteString -> ByteString -> Maybe ByteString
splitSeqStrictText :: Text -> Text -> [Text]
replaceSeqStrictText :: Text -> Text -> Text -> Text
splitSeqLazyText :: Text -> Text -> [Text]
replaceSeqLazyText :: Text -> Text -> Text -> Text

-- | Sort a ordered sequence.
--   
--   <pre>
--   &gt; <a>sort</a> [4,3,1,2]
--   [1,2,3,4]
--   </pre>
sort :: (IsSequence seq, Ord (Element seq)) => seq -> seq

-- | A typeclass for sequences whose elements are <a>Char</a>s.
class (IsSequence t, IsString t, Element t ~ Char) => Textual t where breakWord = fmap (dropWhile isSpace) . break isSpace breakLine = (killCR *** drop 1) . break (== '\n') where killCR t = case unsnoc t of { Just (t', '\r') -> t' _ -> t }

-- | Break up a textual sequence into a list of words, which were delimited
--   by white space.
--   
--   <pre>
--   &gt; <a>words</a> "abc  def ghi"
--   ["abc","def","ghi"]
--   </pre>
words :: Textual t => t -> [t]

-- | Join a list of textual sequences using seperating spaces.
--   
--   <pre>
--   &gt; <a>unwords</a> ["abc","def","ghi"]
--   "abc def ghi"
--   </pre>
unwords :: (Textual t, Element seq ~ t, MonoFoldable seq) => seq -> t

-- | Break up a textual sequence at newline characters.
--   
--   <pre>
--   &gt; <a>lines</a> "hello\nworld"
--   ["hello","world"]
--   </pre>
lines :: Textual t => t -> [t]

-- | Join a list of textual sequences using newlines.
--   
--   <pre>
--   &gt; <a>unlines</a> ["abc","def","ghi"]
--   "abc\ndef\nghi"
--   </pre>
unlines :: (Textual t, Element seq ~ t, MonoFoldable seq) => seq -> t

-- | Convert a textual sequence to lower-case.
--   
--   <pre>
--   &gt; <a>toLower</a> "HELLO WORLD"
--   "hello world"
--   </pre>
toLower :: Textual t => t -> t

-- | Convert a textual sequence to upper-case.
--   
--   <pre>
--   &gt; <a>toUpper</a> "hello world"
--   "HELLO WORLD"
--   </pre>
toUpper :: Textual t => t -> t

-- | Convert a textual sequence to folded-case.
--   
--   Slightly different from <a>toLower</a>, see
--   <tt><a>Data.Text</a>.<a>toCaseFold</a></tt>
toCaseFold :: Textual t => t -> t

-- | Split a textual sequence into two parts, split at the first space.
--   
--   <pre>
--   &gt; <a>breakWord</a> "hello world"
--   ("hello","world")
--   </pre>
breakWord :: Textual t => t -> (t, t)

-- | Split a textual sequence into two parts, split at the newline.
--   
--   <pre>
--   &gt; <a>breakLine</a> "abc\ndef"
--   ("abc","def")
--   </pre>
breakLine :: Textual t => t -> (t, t)

-- | Takes all of the <a>Just</a> values from a sequence of <tt>Maybe
--   t</tt>s and concatenates them into an unboxed sequence of <tt>t</tt>s.
--   
--   Since 0.6.2
catMaybes :: (IsSequence (f (Maybe t)), Functor f, Element (f (Maybe t)) ~ Maybe t) => f (Maybe t) -> f t

-- | Same as <tt>sortBy . comparing</tt>.
--   
--   Since 0.7.0
sortOn :: (Ord o, SemiSequence seq) => (Element seq -> o) -> seq -> seq

-- | Lazy sequences containing strict chunks of data.
class (IsSequence lazy, IsSequence strict) => LazySequence lazy strict | lazy -> strict, strict -> lazy
toChunks :: LazySequence lazy strict => lazy -> [strict]
fromChunks :: LazySequence lazy strict => [strict] -> lazy
toStrict :: LazySequence lazy strict => lazy -> strict
fromStrict :: LazySequence lazy strict => strict -> lazy

-- | Synonym for <a>fromList</a>
pack :: IsSequence seq => [Element seq] -> seq

-- | Synonym for <a>otoList</a>
unpack :: MonoFoldable mono => mono -> [Element mono]

-- | Repack from one type to another, dropping to a list in the middle.
--   
--   <tt>repack = pack . unpack</tt>.
repack :: (MonoFoldable a, IsSequence b, Element a ~ Element b) => a -> b

-- | Textual data which can be encoded to and decoded from UTF8.
class (Textual textual, IsSequence binary) => Utf8 textual binary | textual -> binary, binary -> textual

-- | Encode from textual to binary using UTF-8 encoding
encodeUtf8 :: Utf8 textual binary => textual -> binary

-- | Note that this function is required to be pure. In the case of a
--   decoding error, Unicode replacement characters must be used.
decodeUtf8 :: Utf8 textual binary => binary -> textual
instance Data.Sequences.SemiSequence [a]
instance Data.Sequences.IsSequence [a]
instance Data.Sequences.SemiSequence (Data.List.NonEmpty.NonEmpty a)
instance Data.Sequences.SemiSequence Data.ByteString.Internal.ByteString
instance Data.Sequences.IsSequence Data.ByteString.Internal.ByteString
instance Data.Sequences.SemiSequence Data.Text.Internal.Text
instance Data.Sequences.IsSequence Data.Text.Internal.Text
instance Data.Sequences.SemiSequence Data.ByteString.Lazy.Internal.ByteString
instance Data.Sequences.IsSequence Data.ByteString.Lazy.Internal.ByteString
instance Data.Sequences.SemiSequence Data.Text.Internal.Lazy.Text
instance Data.Sequences.IsSequence Data.Text.Internal.Lazy.Text
instance Data.Sequences.SemiSequence (Data.Sequence.Seq a)
instance Data.Sequences.IsSequence (Data.Sequence.Seq a)
instance Data.Sequences.SemiSequence (Data.Vector.Vector a)
instance Data.Sequences.IsSequence (Data.Vector.Vector a)
instance Data.Vector.Unboxed.Base.Unbox a => Data.Sequences.SemiSequence (Data.Vector.Unboxed.Base.Vector a)
instance Data.Vector.Unboxed.Base.Unbox a => Data.Sequences.IsSequence (Data.Vector.Unboxed.Base.Vector a)
instance Foreign.Storable.Storable a => Data.Sequences.SemiSequence (Data.Vector.Storable.Vector a)
instance Foreign.Storable.Storable a => Data.Sequences.IsSequence (Data.Vector.Storable.Vector a)
instance c ~ GHC.Types.Char => Data.Sequences.Textual [c]
instance Data.Sequences.Textual Data.Text.Internal.Text
instance Data.Sequences.Textual Data.Text.Internal.Lazy.Text
instance Data.Sequences.LazySequence Data.ByteString.Lazy.Internal.ByteString Data.ByteString.Internal.ByteString
instance Data.Sequences.LazySequence Data.Text.Internal.Lazy.Text Data.Text.Internal.Text
instance (c ~ GHC.Types.Char, w ~ GHC.Word.Word8) => Data.Sequences.Utf8 [c] [w]
instance Data.Sequences.Utf8 Data.Text.Internal.Text Data.ByteString.Internal.ByteString
instance Data.Sequences.Utf8 Data.Text.Internal.Lazy.Text Data.ByteString.Lazy.Internal.ByteString


-- | <a>Data.NonNull</a> extends the concepts from
--   <a>Data.List.NonEmpty</a> to any <a>MonoFoldable</a>.
--   
--   <a>NonNull</a> is a newtype wrapper for a container with 1 or more
--   elements.
module Data.NonNull

-- | A monomorphic container that is not null.
data NonNull mono

-- | <b>Safely</b> convert from an <b>unsafe</b> monomorphic container to a
--   <b>safe</b> non-null monomorphic container.
fromNullable :: MonoFoldable mono => mono -> Maybe (NonNull mono)

-- | <b>Unsafely</b> convert from an <b>unsafe</b> monomorphic container to
--   a <b>safe</b> non-null monomorphic container.
--   
--   Throws an exception if the monomorphic container is empty.
impureNonNull :: MonoFoldable mono => mono -> NonNull mono

-- | Old synonym for <a>impureNonNull</a>

-- | <i>Deprecated: Please use the more explicit impureNonNull instead</i>
nonNull :: MonoFoldable mono => mono -> NonNull mono

-- | <b>Safely</b> convert from a non-null monomorphic container to a
--   nullable monomorphic container.
toNullable :: NonNull mono -> mono

-- | <b>Safely</b> convert from a <tt>NonEmpty</tt> list to a non-null
--   monomorphic container.
fromNonEmpty :: IsSequence seq => NonEmpty (Element seq) -> NonNull seq

-- | Prepend an element to a <a>SemiSequence</a>, creating a non-null
--   <a>SemiSequence</a>.
--   
--   Generally this uses cons underneath. cons is not efficient for most
--   data structures.
--   
--   Alternatives:
--   
--   <ul>
--   <li>if you don't need to cons, use <a>fromNullable</a> or
--   <a>nonNull</a> if you can create your structure in one go.</li>
--   <li>if you need to cons, you might be able to start off with an
--   efficient data structure such as a <tt>NonEmpty</tt> List.
--   <tt>fronNonEmpty</tt> will convert that to your data structure using
--   the structure's fromList function.</li>
--   </ul>
ncons :: SemiSequence seq => Element seq -> seq -> NonNull seq

-- | Extract the first element of a sequnce and the rest of the non-null
--   sequence if it exists.
nuncons :: IsSequence seq => NonNull seq -> (Element seq, Maybe (NonNull seq))

-- | Same as <a>nuncons</a> with no guarantee that the rest of the sequence
--   is non-null.
splitFirst :: IsSequence seq => NonNull seq -> (Element seq, seq)

-- | Equivalent to <tt><a>Data.Sequence</a>.<a>filter</a></tt>, but works
--   on non-nullable sequences.
nfilter :: IsSequence seq => (Element seq -> Bool) -> NonNull seq -> seq

-- | Equivalent to <tt><a>Data.Sequence</a>.<a>filterM</a></tt>, but works
--   on non-nullable sequences.
nfilterM :: (Monad m, IsSequence seq) => (Element seq -> m Bool) -> NonNull seq -> m seq

-- | Equivalent to <tt><a>Data.Sequence</a>.<a>replicate</a></tt>
--   
--   <tt>i</tt> must be <tt>&gt; 0</tt>
--   
--   <tt>i &lt;= 0</tt> is treated the same as providing <tt>1</tt>
nReplicate :: IsSequence seq => Index seq -> Element seq -> NonNull seq

-- | Return the first element of a monomorphic container.
--   
--   Safe version of <a>headEx</a>, only works on monomorphic containers
--   wrapped in a <a>NonNull</a>.
head :: MonoFoldable mono => NonNull mono -> Element mono

-- | <b>Safe</b> version of <a>tailEx</a>, only working on non-nullable
--   sequences.
tail :: IsSequence seq => NonNull seq -> seq

-- | Return the last element of a monomorphic container.
--   
--   Safe version of <a>lastEx</a>, only works on monomorphic containers
--   wrapped in a <a>NonNull</a>.
last :: MonoFoldable mono => NonNull mono -> Element mono

-- | <b>Safe</b> version of <a>initEx</a>, only working on non-nullable
--   sequences.
init :: IsSequence seq => NonNull seq -> seq

-- | Map each element of a monomorphic container to a semigroup, and
--   combine the results.
--   
--   Safe version of <a>ofoldMap1Ex</a>, only works on monomorphic
--   containers wrapped in a <a>NonNull</a>.
--   
--   <h4><b>Examples</b></h4>
--   
--   <pre>
--   &gt; let xs = ncons ("hello", 1 :: <a>Integer</a>) [(" world", 2)]
--   &gt; <a>ofoldMap1</a> <a>fst</a> xs
--   "hello world"
--   </pre>
ofoldMap1 :: (MonoFoldable mono, Semigroup m) => (Element mono -> m) -> NonNull mono -> m

-- | Join a monomorphic container, whose elements are <a>Semigroup</a>s,
--   together.
--   
--   Safe, only works on monomorphic containers wrapped in a
--   <a>NonNull</a>.
--   
--   <h4><b>Examples</b></h4>
--   
--   <pre>
--   &gt; let xs = ncons "a" ["b", "c"]
--   &gt; xs
--   <a>NonNull</a> {toNullable = ["a","b","c"]}
--   
--   &gt; <a>ofold1</a> xs
--   "abc"
--   </pre>
ofold1 :: (MonoFoldable mono, Semigroup (Element mono)) => NonNull mono -> Element mono

-- | Right-associative fold of a monomorphic container with no base
--   element.
--   
--   Safe version of <a>ofoldr1Ex</a>, only works on monomorphic containers
--   wrapped in a <a>NonNull</a>.
--   
--   <pre>
--   <a>foldr1</a> f = <a>Prelude</a>.<a>foldr1</a> f . <a>otoList</a>
--   </pre>
--   
--   <h4><b>Examples</b></h4>
--   
--   <pre>
--   &gt; let xs = ncons "a" ["b", "c"]
--   &gt; <a>ofoldr1</a> (++) xs
--   "abc"
--   </pre>
ofoldr1 :: MonoFoldable mono => (Element mono -> Element mono -> Element mono) -> NonNull mono -> Element mono

-- | Strict left-associative fold of a monomorphic container with no base
--   element.
--   
--   Safe version of <a>ofoldl1Ex'</a>, only works on monomorphic
--   containers wrapped in a <a>NonNull</a>.
--   
--   <pre>
--   <tt>foldl1'</tt> f = <a>Prelude</a>.<a>foldl1'</a> f . <a>otoList</a>
--   </pre>
--   
--   <h4><b>Examples</b></h4>
--   
--   <pre>
--   &gt; let xs = ncons "a" ["b", "c"]
--   &gt; <a>ofoldl1'</a> (++) xs
--   "abc"
--   </pre>
ofoldl1' :: MonoFoldable mono => (Element mono -> Element mono -> Element mono) -> NonNull mono -> Element mono

-- | Get the maximum element of a monomorphic container.
--   
--   Safe version of <a>maximumEx</a>, only works on monomorphic containers
--   wrapped in a <a>NonNull</a>.
--   
--   <h4><b>Examples</b></h4>
--   
--   <pre>
--   &gt; let xs = ncons 1 [2, 3 :: Int]
--   &gt; <a>maximum</a> xs
--   3
--   </pre>
maximum :: (MonoFoldable mono, Ord (Element mono)) => NonNull mono -> Element mono

-- | Get the maximum element of a monomorphic container, using a supplied
--   element ordering function.
--   
--   Safe version of <a>maximumByEx</a>, only works on monomorphic
--   containers wrapped in a <a>NonNull</a>.
maximumBy :: MonoFoldable mono => (Element mono -> Element mono -> Ordering) -> NonNull mono -> Element mono

-- | Get the minimum element of a monomorphic container.
--   
--   Safe version of <a>minimumEx</a>, only works on monomorphic containers
--   wrapped in a <a>NonNull</a>.
--   
--   <h4><b>Examples</b></h4>
--   
--   <pre>
--   &gt; let xs = ncons 1 [2, 3 :: Int]
--   &gt; <a>minimum</a> xs
--   1
--   </pre>
minimum :: (MonoFoldable mono, Ord (Element mono)) => NonNull mono -> Element mono

-- | Get the minimum element of a monomorphic container, using a supplied
--   element ordering function.
--   
--   Safe version of <a>minimumByEx</a>, only works on monomorphic
--   containers wrapped in a <a>NonNull</a>.
minimumBy :: MonoFoldable mono => (Element mono -> Element mono -> Ordering) -> NonNull mono -> Element mono

-- | Prepend an element to a non-null <a>SemiSequence</a>.
(<|) :: SemiSequence seq => Element seq -> NonNull seq -> NonNull seq
infixr 5 <|

-- | Specializes <a>fromNonEmpty</a> to lists only.
toMinList :: NonEmpty a -> NonNull [a]

-- | <a>fmap</a> over the underlying container in a <a>NonNull</a>.
mapNonNull :: (Functor f, MonoFoldable (f b)) => (a -> b) -> NonNull (f a) -> NonNull (f b)

-- | Containers which, when two values are combined, the combined length is
--   no less than the larger of the two inputs. In code:
--   
--   <pre>
--   olength (x &lt;&gt; y) &gt;= max (olength x) (olength y)
--   </pre>
--   
--   This class has no methods, and is simply used to assert that this law
--   holds, in order to provide guarantees of correctness (see, for
--   instance, <a>Data.NonNull</a>).
--   
--   This should have a <tt>Semigroup</tt> superclass constraint, however,
--   due to <tt>Semigroup</tt> only recently moving to base, some packages
--   do not provide instances.
class MonoFoldable mono => GrowingAppend mono
instance Data.Data.Data mono => Data.Data.Data (Data.NonNull.NonNull mono)
instance GHC.Show.Show mono => GHC.Show.Show (Data.NonNull.NonNull mono)
instance GHC.Read.Read mono => GHC.Read.Read (Data.NonNull.NonNull mono)
instance GHC.Classes.Ord mono => GHC.Classes.Ord (Data.NonNull.NonNull mono)
instance GHC.Classes.Eq mono => GHC.Classes.Eq (Data.NonNull.NonNull mono)
instance GHC.Show.Show Data.NonNull.NullError
instance Data.MonoTraversable.MonoFunctor mono => Data.MonoTraversable.MonoFunctor (Data.NonNull.NonNull mono)
instance Data.MonoTraversable.MonoFoldable mono => Data.MonoTraversable.MonoFoldable (Data.NonNull.NonNull mono)
instance GHC.Exception.Exception Data.NonNull.NullError
instance Data.MonoTraversable.MonoTraversable mono => Data.MonoTraversable.MonoTraversable (Data.NonNull.NonNull mono)
instance Data.MonoTraversable.GrowingAppend mono => Data.MonoTraversable.GrowingAppend (Data.NonNull.NonNull mono)
instance (Data.Semigroup.Semigroup mono, Data.MonoTraversable.GrowingAppend mono) => Data.Semigroup.Semigroup (Data.NonNull.NonNull mono)
instance Data.Sequences.SemiSequence seq => Data.Sequences.SemiSequence (Data.NonNull.NonNull seq)
instance Data.MonoTraversable.MonoPointed mono => Data.MonoTraversable.MonoPointed (Data.NonNull.NonNull mono)
instance Data.Sequences.IsSequence mono => Data.MonoTraversable.MonoComonad (Data.NonNull.NonNull mono)


-- | Warning: This module should be considered highly experimental.
module Data.Containers

-- | A container whose values are stored in Key-Value pairs.
class (Monoid set, Semigroup set, MonoFoldable set, Eq (ContainerKey set), GrowingAppend set) => SetContainer set where type ContainerKey set unions = ofoldl' union mempty where {
    type family ContainerKey set;
}

-- | Check if there is a value with the supplied key in the container.
member :: SetContainer set => ContainerKey set -> set -> Bool

-- | Check if there isn't a value with the supplied key in the container.
notMember :: SetContainer set => ContainerKey set -> set -> Bool

-- | Get the union of two containers.
union :: SetContainer set => set -> set -> set

-- | Combine a collection of <tt>SetContainer</tt>s, with left-most values
--   overriding when there are matching keys.
unions :: (SetContainer set, MonoFoldable mono, Element mono ~ set) => mono -> set

-- | Get the difference of two containers.
difference :: SetContainer set => set -> set -> set

-- | Get the intersection of two containers.
intersection :: SetContainer set => set -> set -> set

-- | Get a list of all of the keys in the container.
keys :: SetContainer set => set -> [ContainerKey set]

-- | This instance uses the functions from <a>Data.Map.Strict</a>.

-- | This instance uses the functions from <a>Data.HashMap.Strict</a>.

-- | This instance uses the functions from <a>Data.IntMap.Strict</a>.

-- | A guaranteed-polymorphic <tt>Map</tt>, which allows for more
--   polymorphic versions of functions.
class PolyMap map

-- | Get the difference between two maps, using the left map's values.
differenceMap :: PolyMap map => map value1 -> map value2 -> map value1

-- | Get the intersection of two maps, using the left map's values.
intersectionMap :: PolyMap map => map value1 -> map value2 -> map value1

-- | Get the intersection of two maps with a supplied function that takes
--   in the left map's value and the right map's value.
intersectionWithMap :: PolyMap map => (value1 -> value2 -> value3) -> map value1 -> map value2 -> map value3

-- | This instance uses the functions from <a>Data.Map.Strict</a>.

-- | This instance uses the functions from <a>Data.HashMap.Strict</a>.

-- | This instance uses the functions from <a>Data.IntMap.Strict</a>.

-- | A <tt>Map</tt> type polymorphic in both its key and value.
class BiPolyMap map where type BPMKeyConstraint map key :: Constraint where {
    type family BPMKeyConstraint map key :: Constraint;
}
mapKeysWith :: (BiPolyMap map, BPMKeyConstraint map k1, BPMKeyConstraint map k2) => (v -> v -> v) -> (k1 -> k2) -> map k1 v -> map k2 v

-- | Polymorphic typeclass for interacting with different map types
class (MonoTraversable map, SetContainer map) => IsMap map where type MapValue map findWithDefault def key = fromMaybe def . lookup key insertWith f k v m = v' `seq` insertMap k v' m where v' = case lookup k m of { Nothing -> v Just vold -> f v vold } insertWithKey f k v m = v' `seq` insertMap k v' m where v' = case lookup k m of { Nothing -> v Just vold -> f k v vold } insertLookupWithKey f k v m = v' `seq` (mold, insertMap k v' m) where (mold, v') = case lookup k m of { Nothing -> (Nothing, v) Just vold -> (Just vold, f k v vold) } adjustMap f k m = case lookup k m of { Nothing -> m Just v -> let v' = f v in v' `seq` insertMap k v' m } adjustWithKey f k m = case lookup k m of { Nothing -> m Just v -> let v' = f k v in v' `seq` insertMap k v' m } updateMap f k m = case lookup k m of { Nothing -> m Just v -> case f v of { Nothing -> deleteMap k m Just v' -> v' `seq` insertMap k v' m } } updateWithKey f k m = case lookup k m of { Nothing -> m Just v -> case f k v of { Nothing -> deleteMap k m Just v' -> v' `seq` insertMap k v' m } } updateLookupWithKey f k m = case lookup k m of { Nothing -> (Nothing, m) Just v -> case f k v of { Nothing -> (Just v, deleteMap k m) Just v' -> v' `seq` (Just v', insertMap k v' m) } } alterMap f k m = case f mold of { Nothing -> case mold of { Nothing -> m Just _ -> deleteMap k m } Just v -> insertMap k v m } where mold = lookup k m unionWith f x y = mapFromList $ loop $ mapToList x ++ mapToList y where loop [] = [] loop ((k, v) : rest) = case lookup k rest of { Nothing -> (k, v) : loop rest Just v' -> (k, f v v') : loop (deleteMap k rest) } unionWithKey f x y = mapFromList $ loop $ mapToList x ++ mapToList y where loop [] = [] loop ((k, v) : rest) = case lookup k rest of { Nothing -> (k, v) : loop rest Just v' -> (k, f k v v') : loop (deleteMap k rest) } unionsWith _ [] = mempty unionsWith _ [x] = x unionsWith f (x : y : z) = unionsWith f (unionWith f x y : z) mapWithKey f = mapFromList . map go . mapToList where go (k, v) = (k, f k v) omapKeysWith g f = mapFromList . unionsWith g . map go . mapToList where go (k, v) = [(f k, v)] where {
    type family MapValue map;
}

-- | Look up a value in a map with a specified key.
lookup :: IsMap map => ContainerKey map -> map -> Maybe (MapValue map)

-- | Insert a key-value pair into a map.
insertMap :: IsMap map => ContainerKey map -> MapValue map -> map -> map

-- | Delete a key-value pair of a map using a specified key.
deleteMap :: IsMap map => ContainerKey map -> map -> map

-- | Create a map from a single key-value pair.
singletonMap :: IsMap map => ContainerKey map -> MapValue map -> map

-- | Convert a list of key-value pairs to a map
mapFromList :: IsMap map => [(ContainerKey map, MapValue map)] -> map

-- | Convert a map to a list of key-value pairs.
mapToList :: IsMap map => map -> [(ContainerKey map, MapValue map)]

-- | Like <a>lookup</a>, but uses a default value when the key does not
--   exist in the map.
findWithDefault :: IsMap map => MapValue map -> ContainerKey map -> map -> MapValue map

-- | Insert a key-value pair into a map.
--   
--   Inserts the value directly if the key does not exist in the map.
--   Otherwise, apply a supplied function that accepts the new value and
--   the previous value and insert that result into the map.
insertWith :: IsMap map => (MapValue map -> MapValue map -> MapValue map) -> ContainerKey map -> MapValue map -> map -> map

-- | Insert a key-value pair into a map.
--   
--   Inserts the value directly if the key does not exist in the map.
--   Otherwise, apply a supplied function that accepts the key, the new
--   value, and the previous value and insert that result into the map.
insertWithKey :: IsMap map => (ContainerKey map -> MapValue map -> MapValue map -> MapValue map) -> ContainerKey map -> MapValue map -> map -> map

-- | Insert a key-value pair into a map, return the previous key's value if
--   it existed.
--   
--   Inserts the value directly if the key does not exist in the map.
--   Otherwise, apply a supplied function that accepts the key, the new
--   value, and the previous value and insert that result into the map.
insertLookupWithKey :: IsMap map => (ContainerKey map -> MapValue map -> MapValue map -> MapValue map) -> ContainerKey map -> MapValue map -> map -> (Maybe (MapValue map), map)

-- | Apply a function to the value of a given key.
--   
--   Returns the input map when the key-value pair does not exist.
adjustMap :: IsMap map => (MapValue map -> MapValue map) -> ContainerKey map -> map -> map

-- | Equivalent to <a>adjustMap</a>, but the function accepts the key, as
--   well as the previous value.
adjustWithKey :: IsMap map => (ContainerKey map -> MapValue map -> MapValue map) -> ContainerKey map -> map -> map

-- | Apply a function to the value of a given key.
--   
--   If the function returns <a>Nothing</a>, this deletes the key-value
--   pair.
--   
--   Returns the input map when the key-value pair does not exist.
updateMap :: IsMap map => (MapValue map -> Maybe (MapValue map)) -> ContainerKey map -> map -> map

-- | Equivalent to <a>updateMap</a>, but the function accepts the key, as
--   well as the previous value.
updateWithKey :: IsMap map => (ContainerKey map -> MapValue map -> Maybe (MapValue map)) -> ContainerKey map -> map -> map

-- | Apply a function to the value of a given key.
--   
--   If the map does not contain the key this returns <a>Nothing</a> and
--   the input map.
--   
--   If the map does contain the key but the function returns
--   <a>Nothing</a>, this returns the previous value and the map with the
--   key-value pair removed.
--   
--   If the map contains the key and the function returns a value, this
--   returns the new value and the map with the key-value pair with the new
--   value.
updateLookupWithKey :: IsMap map => (ContainerKey map -> MapValue map -> Maybe (MapValue map)) -> ContainerKey map -> map -> (Maybe (MapValue map), map)

-- | Update/Delete the value of a given key.
--   
--   Applies a function to previous value of a given key, if it results in
--   <a>Nothing</a> delete the key-value pair from the map, otherwise
--   replace the previous value with the new value.
alterMap :: IsMap map => (Maybe (MapValue map) -> Maybe (MapValue map)) -> ContainerKey map -> map -> map

-- | Combine two maps.
--   
--   When a key exists in both maps, apply a function to both of the values
--   and use the result of that as the value of the key in the resulting
--   map.
unionWith :: IsMap map => (MapValue map -> MapValue map -> MapValue map) -> map -> map -> map
unionWithKey :: IsMap map => (ContainerKey map -> MapValue map -> MapValue map -> MapValue map) -> map -> map -> map

-- | Combine a list of maps.
--   
--   When a key exists in two different maps, apply a function to both of
--   the values and use the result of that as the value of the key in the
--   resulting map.
unionsWith :: IsMap map => (MapValue map -> MapValue map -> MapValue map) -> [map] -> map

-- | Apply a function over every key-value pair of a map.
mapWithKey :: IsMap map => (ContainerKey map -> MapValue map -> MapValue map) -> map -> map

-- | Apply a function over every key of a pair and run <a>unionsWith</a>
--   over the results.
omapKeysWith :: IsMap map => (MapValue map -> MapValue map -> MapValue map) -> (ContainerKey map -> ContainerKey map) -> map -> map

-- | This instance uses the functions from <a>Data.Map.Strict</a>.

-- | This instance uses the functions from <a>Data.HashMap.Strict</a>.

-- | This instance uses the functions from <a>Data.IntMap.Strict</a>.

-- | Polymorphic typeclass for interacting with different set types
class (SetContainer set, Element set ~ ContainerKey set) => IsSet set

-- | Insert a value into a set.
insertSet :: IsSet set => Element set -> set -> set

-- | Delete a value from a set.
deleteSet :: IsSet set => Element set -> set -> set

-- | Create a set from a single element.
singletonSet :: IsSet set => Element set -> set

-- | Convert a list to a set.
setFromList :: IsSet set => [Element set] -> set

-- | Convert a set to a list.
setToList :: IsSet set => set -> [Element set]

-- | Zip operations on <a>MonoFunctor</a>s.
class MonoFunctor mono => MonoZip mono

-- | Combine each element of two <a>MonoZip</a>s using a supplied function.
ozipWith :: MonoZip mono => (Element mono -> Element mono -> Element mono) -> mono -> mono -> mono

-- | Take two <a>MonoZip</a>s and return a list of the pairs of their
--   elements.
ozip :: MonoZip mono => mono -> mono -> [(Element mono, Element mono)]

-- | Take a list of pairs of elements and return a <a>MonoZip</a> of the
--   first components and a <a>MonoZip</a> of the second components.
ounzip :: MonoZip mono => [(Element mono, Element mono)] -> (mono, mono)

-- | Type class for maps whose keys can be converted into sets.
class SetContainer set => HasKeysSet set where type KeySet set where {
    type family KeySet set;
}

-- | Convert a map into a set of its keys.
keysSet :: HasKeysSet set => set -> KeySet set
instance GHC.Classes.Ord k => Data.Containers.SetContainer (Data.Map.Base.Map k v)
instance (GHC.Classes.Eq key, Data.Hashable.Class.Hashable key) => Data.Containers.SetContainer (Data.HashMap.Base.HashMap key value)
instance Data.Containers.SetContainer (Data.IntMap.Base.IntMap value)
instance GHC.Classes.Ord element => Data.Containers.SetContainer (Data.Set.Base.Set element)
instance (GHC.Classes.Eq element, Data.Hashable.Class.Hashable element) => Data.Containers.SetContainer (Data.HashSet.HashSet element)
instance Data.Containers.SetContainer Data.IntSet.Base.IntSet
instance GHC.Classes.Eq key => Data.Containers.SetContainer [(key, value)]
instance GHC.Classes.Ord key => Data.Containers.PolyMap (Data.Map.Base.Map key)
instance (GHC.Classes.Eq key, Data.Hashable.Class.Hashable key) => Data.Containers.PolyMap (Data.HashMap.Base.HashMap key)
instance Data.Containers.PolyMap Data.IntMap.Base.IntMap
instance Data.Containers.BiPolyMap Data.Map.Base.Map
instance Data.Containers.BiPolyMap Data.HashMap.Base.HashMap
instance GHC.Classes.Ord key => Data.Containers.IsMap (Data.Map.Base.Map key value)
instance (GHC.Classes.Eq key, Data.Hashable.Class.Hashable key) => Data.Containers.IsMap (Data.HashMap.Base.HashMap key value)
instance Data.Containers.IsMap (Data.IntMap.Base.IntMap value)
instance GHC.Classes.Eq key => Data.Containers.IsMap [(key, value)]
instance GHC.Classes.Ord element => Data.Containers.IsSet (Data.Set.Base.Set element)
instance (GHC.Classes.Eq element, Data.Hashable.Class.Hashable element) => Data.Containers.IsSet (Data.HashSet.HashSet element)
instance Data.Containers.IsSet Data.IntSet.Base.IntSet
instance Data.Containers.MonoZip Data.ByteString.Internal.ByteString
instance Data.Containers.MonoZip Data.ByteString.Lazy.Internal.ByteString
instance Data.Containers.MonoZip Data.Text.Internal.Text
instance Data.Containers.MonoZip Data.Text.Internal.Lazy.Text
instance GHC.Classes.Ord k => Data.Containers.HasKeysSet (Data.Map.Base.Map k v)
instance Data.Containers.HasKeysSet (Data.IntMap.Base.IntMap v)
instance (Data.Hashable.Class.Hashable k, GHC.Classes.Eq k) => Data.Containers.HasKeysSet (Data.HashMap.Base.HashMap k v)