This file is indexed.

/usr/share/doc/libghc-maths-doc/html/src/Math-Combinatorics-CombinatorialHopfAlgebra.html is in libghc-maths-doc 0.4.8-4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<!-- Generated by HsColour, http://code.haskell.org/~malcolm/hscolour/ -->
<title>Math/Combinatorics/CombinatorialHopfAlgebra.hs</title>
<link type='text/css' rel='stylesheet' href='hscolour.css' />
</head>
<body>
<pre><a name="line-1"></a><span class='hs-comment'>-- Copyright (c) 2012-2015, David Amos. All rights reserved.</span>
<a name="line-2"></a>
<a name="line-3"></a><span class='hs-comment'>{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, NoMonomorphismRestriction, ScopedTypeVariables, DeriveFunctor #-}</span>
<a name="line-4"></a>
<a name="line-5"></a><span class='hs-comment'>-- |A module defining the following Combinatorial Hopf Algebras, together with coalgebra or Hopf algebra morphisms between them:</span>
<a name="line-6"></a><span class='hs-comment'>--</span>
<a name="line-7"></a><span class='hs-comment'>-- * Sh, the Shuffle Hopf algebra</span>
<a name="line-8"></a><span class='hs-comment'>--</span>
<a name="line-9"></a><span class='hs-comment'>-- * SSym, the Malvenuto-Reutnenauer Hopf algebra of permutations</span>
<a name="line-10"></a><span class='hs-comment'>--</span>
<a name="line-11"></a><span class='hs-comment'>-- * YSym, the (dual of the) Loday-Ronco Hopf algebra of binary trees</span>
<a name="line-12"></a><span class='hs-comment'>--</span>
<a name="line-13"></a><span class='hs-comment'>-- * QSym, the Hopf algebra of quasi-symmetric functions (having a basis indexed by compositions)</span>
<a name="line-14"></a><span class='hs-comment'>--</span>
<a name="line-15"></a><span class='hs-comment'>-- * Sym, the Hopf algebra of symmetric functions (having a basis indexed by integer partitions)</span>
<a name="line-16"></a><span class='hs-comment'>--</span>
<a name="line-17"></a><span class='hs-comment'>-- * NSym, the Hopf algebra of non-commutative symmetric functions</span>
<a name="line-18"></a><span class='hs-keyword'>module</span> <span class='hs-conid'>Math</span><span class='hs-varop'>.</span><span class='hs-conid'>Combinatorics</span><span class='hs-varop'>.</span><span class='hs-conid'>CombinatorialHopfAlgebra</span> <span class='hs-keyword'>where</span>
<a name="line-19"></a>
<a name="line-20"></a><span class='hs-comment'>-- Sources:</span>
<a name="line-21"></a>
<a name="line-22"></a><span class='hs-comment'>-- Structure of the Malvenuto-Reutenauer Hopf algebra of permutations</span>
<a name="line-23"></a><span class='hs-comment'>-- Marcelo Aguiar and Frank Sottile</span>
<a name="line-24"></a><span class='hs-comment'>-- <a href="http://www.math.tamu.edu/~sottile/research/pdf/SSym.pdf">http://www.math.tamu.edu/~sottile/research/pdf/SSym.pdf</a></span>
<a name="line-25"></a>
<a name="line-26"></a><span class='hs-comment'>-- Structure of the Loday-Ronco Hopf algebra of trees</span>
<a name="line-27"></a><span class='hs-comment'>-- Marcelo Aguiar and Frank Sottile</span>
<a name="line-28"></a><span class='hs-comment'>-- <a href="http://www.math.tamu.edu/~sottile/research/pdf/Loday.pdf">http://www.math.tamu.edu/~sottile/research/pdf/Loday.pdf</a></span>
<a name="line-29"></a>
<a name="line-30"></a><span class='hs-comment'>-- Hopf Structures on the Multiplihedra</span>
<a name="line-31"></a><span class='hs-comment'>-- Stefan Forcey, Aaron Lauve and Frank Sottile</span>
<a name="line-32"></a><span class='hs-comment'>-- <a href="http://www.math.tamu.edu/~sottile/research/pdf/MSym.pdf">http://www.math.tamu.edu/~sottile/research/pdf/MSym.pdf</a></span>
<a name="line-33"></a>
<a name="line-34"></a><span class='hs-comment'>-- Lie Algebras and Hopf Algebras</span>
<a name="line-35"></a><span class='hs-comment'>-- Michiel Hazewinkel, Nadiya Gubareni, V.V.Kirichenko</span>
<a name="line-36"></a>
<a name="line-37"></a><span class='hs-keyword'>import</span> <span class='hs-conid'>Prelude</span> <span class='hs-varid'>hiding</span> <span class='hs-layout'>(</span> <span class='hs-layout'>(</span><span class='hs-varop'>*&gt;</span><span class='hs-layout'>)</span> <span class='hs-layout'>)</span>
<a name="line-38"></a>
<a name="line-39"></a><span class='hs-keyword'>import</span> <span class='hs-conid'>Data</span><span class='hs-varop'>.</span><span class='hs-conid'>List</span> <span class='hs-keyword'>as</span> <span class='hs-conid'>L</span>
<a name="line-40"></a><span class='hs-keyword'>import</span> <span class='hs-conid'>Data</span><span class='hs-varop'>.</span><span class='hs-conid'>Maybe</span> <span class='hs-layout'>(</span><span class='hs-varid'>fromJust</span><span class='hs-layout'>)</span>
<a name="line-41"></a><span class='hs-keyword'>import</span> <span class='hs-keyword'>qualified</span> <span class='hs-conid'>Data</span><span class='hs-varop'>.</span><span class='hs-conid'>Set</span> <span class='hs-keyword'>as</span> <span class='hs-conid'>S</span>
<a name="line-42"></a>
<a name="line-43"></a><span class='hs-keyword'>import</span> <span class='hs-conid'>Math</span><span class='hs-varop'>.</span><span class='hs-conid'>Core</span><span class='hs-varop'>.</span><span class='hs-conid'>Field</span>
<a name="line-44"></a><span class='hs-keyword'>import</span> <span class='hs-conid'>Math</span><span class='hs-varop'>.</span><span class='hs-conid'>Core</span><span class='hs-varop'>.</span><span class='hs-conid'>Utils</span>
<a name="line-45"></a>
<a name="line-46"></a><span class='hs-keyword'>import</span> <span class='hs-conid'>Math</span><span class='hs-varop'>.</span><span class='hs-conid'>Algebras</span><span class='hs-varop'>.</span><span class='hs-conid'>VectorSpace</span> <span class='hs-varid'>hiding</span> <span class='hs-layout'>(</span><span class='hs-conid'>E</span><span class='hs-layout'>)</span>
<a name="line-47"></a><span class='hs-keyword'>import</span> <span class='hs-conid'>Math</span><span class='hs-varop'>.</span><span class='hs-conid'>Algebras</span><span class='hs-varop'>.</span><span class='hs-conid'>TensorProduct</span>
<a name="line-48"></a><span class='hs-keyword'>import</span> <span class='hs-conid'>Math</span><span class='hs-varop'>.</span><span class='hs-conid'>Algebras</span><span class='hs-varop'>.</span><span class='hs-conid'>Structures</span>
<a name="line-49"></a>
<a name="line-50"></a><span class='hs-keyword'>import</span> <span class='hs-conid'>Math</span><span class='hs-varop'>.</span><span class='hs-conid'>Combinatorics</span><span class='hs-varop'>.</span><span class='hs-conid'>Poset</span>
<a name="line-51"></a>
<a name="line-52"></a><span class='hs-comment'>-- import Math.Algebra.Group.PermutationGroup</span>
<a name="line-53"></a><span class='hs-keyword'>import</span> <span class='hs-conid'>Math</span><span class='hs-varop'>.</span><span class='hs-conid'>CommutativeAlgebra</span><span class='hs-varop'>.</span><span class='hs-conid'>Polynomial</span>
<a name="line-54"></a>
<a name="line-55"></a>
<a name="line-56"></a><span class='hs-comment'>-- SHUFFLE ALGEBRA</span>
<a name="line-57"></a><span class='hs-comment'>-- This is just the tensor algebra, but with shuffle product (and deconcatenation coproduct)</span>
<a name="line-58"></a>
<a name="line-59"></a><a name="Shuffle"></a><span class='hs-comment'>-- |A basis for the shuffle algebra. As a vector space, the shuffle algebra is identical to the tensor algebra.</span>
<a name="line-60"></a><a name="Shuffle"></a><span class='hs-comment'>-- However, we consider a different algebra structure, based on the shuffle product. Together with the</span>
<a name="line-61"></a><a name="Shuffle"></a><span class='hs-comment'>-- deconcatenation coproduct, this leads to a Hopf algebra structure.</span>
<a name="line-62"></a><a name="Shuffle"></a><span class='hs-keyword'>newtype</span> <span class='hs-conid'>Shuffle</span> <span class='hs-varid'>a</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>Sh</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>a</span><span class='hs-keyglyph'>]</span> <span class='hs-keyword'>deriving</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span><span class='hs-layout'>,</span><span class='hs-conid'>Ord</span><span class='hs-layout'>,</span><span class='hs-conid'>Show</span><span class='hs-layout'>)</span>
<a name="line-63"></a>
<a name="line-64"></a><a name="sh"></a><span class='hs-comment'>-- |Construct a basis element of the shuffle algebra</span>
<a name="line-65"></a><span class='hs-definition'>sh</span> <span class='hs-keyglyph'>::</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>a</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-conid'>Q</span> <span class='hs-layout'>(</span><span class='hs-conid'>Shuffle</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span>
<a name="line-66"></a><span class='hs-definition'>sh</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-varop'>.</span> <span class='hs-conid'>Sh</span>
<a name="line-67"></a>
<a name="line-68"></a><a name="shuffles"></a><span class='hs-definition'>shuffles</span> <span class='hs-layout'>(</span><span class='hs-varid'>x</span><span class='hs-conop'>:</span><span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>y</span><span class='hs-conop'>:</span><span class='hs-varid'>ys</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>map</span> <span class='hs-layout'>(</span><span class='hs-varid'>x</span><span class='hs-conop'>:</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>shuffles</span> <span class='hs-varid'>xs</span> <span class='hs-layout'>(</span><span class='hs-varid'>y</span><span class='hs-conop'>:</span><span class='hs-varid'>ys</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-varop'>++</span> <span class='hs-varid'>map</span> <span class='hs-layout'>(</span><span class='hs-varid'>y</span><span class='hs-conop'>:</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>shuffles</span> <span class='hs-layout'>(</span><span class='hs-varid'>x</span><span class='hs-conop'>:</span><span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span>
<a name="line-69"></a><span class='hs-definition'>shuffles</span> <span class='hs-varid'>xs</span> <span class='hs-conid'>[]</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>xs</span><span class='hs-keyglyph'>]</span>
<a name="line-70"></a><span class='hs-definition'>shuffles</span> <span class='hs-conid'>[]</span> <span class='hs-varid'>ys</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>ys</span><span class='hs-keyglyph'>]</span>
<a name="line-71"></a>
<a name="line-72"></a><a name="instance%20Algebra%20k%20(Shuffle%20a)"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Ord</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Algebra</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>Shuffle</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyword'>where</span>
<a name="line-73"></a>    <span class='hs-varid'>unit</span> <span class='hs-varid'>x</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>x</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>Sh</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span>
<a name="line-74"></a>    <span class='hs-varid'>mult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>mult'</span> <span class='hs-keyword'>where</span>
<a name="line-75"></a>        <span class='hs-varid'>mult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>Sh</span> <span class='hs-varid'>xs</span><span class='hs-layout'>,</span> <span class='hs-conid'>Sh</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>Sh</span> <span class='hs-varid'>zs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>zs</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>shuffles</span> <span class='hs-varid'>xs</span> <span class='hs-varid'>ys</span><span class='hs-keyglyph'>]</span>
<a name="line-76"></a>
<a name="line-77"></a><a name="deconcatenations"></a><span class='hs-definition'>deconcatenations</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>zip</span> <span class='hs-layout'>(</span><span class='hs-varid'>inits</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>tails</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span>
<a name="line-78"></a>
<a name="line-79"></a><a name="instance%20Coalgebra%20k%20(Shuffle%20a)"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Ord</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Coalgebra</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>Shuffle</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyword'>where</span>
<a name="line-80"></a>    <span class='hs-varid'>counit</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>unwrap</span> <span class='hs-varop'>.</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>counit'</span> <span class='hs-keyword'>where</span> <span class='hs-varid'>counit'</span> <span class='hs-layout'>(</span><span class='hs-conid'>Sh</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>if</span> <span class='hs-varid'>null</span> <span class='hs-varid'>xs</span> <span class='hs-keyword'>then</span> <span class='hs-num'>1</span> <span class='hs-keyword'>else</span> <span class='hs-num'>0</span>
<a name="line-81"></a>    <span class='hs-varid'>comult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>comult'</span> <span class='hs-keyword'>where</span>
<a name="line-82"></a>        <span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>Sh</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>Sh</span> <span class='hs-varid'>us</span><span class='hs-layout'>,</span> <span class='hs-conid'>Sh</span> <span class='hs-varid'>vs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-layout'>(</span><span class='hs-varid'>us</span><span class='hs-layout'>,</span> <span class='hs-varid'>vs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>deconcatenations</span> <span class='hs-varid'>xs</span><span class='hs-keyglyph'>]</span>
<a name="line-83"></a>
<a name="line-84"></a><a name="instance%20Bialgebra%20k%20(Shuffle%20a)"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Ord</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Bialgebra</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>Shuffle</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyword'>where</span> <span class='hs-layout'>{</span><span class='hs-layout'>}</span>
<a name="line-85"></a>
<a name="line-86"></a><a name="instance%20HopfAlgebra%20k%20(Shuffle%20a)"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Ord</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>HopfAlgebra</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>Shuffle</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyword'>where</span>
<a name="line-87"></a>    <span class='hs-varid'>antipode</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-layout'>(</span><span class='hs-keyglyph'>\</span><span class='hs-layout'>(</span><span class='hs-conid'>Sh</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-layout'>(</span><span class='hs-comment'>-</span><span class='hs-num'>1</span><span class='hs-layout'>)</span><span class='hs-varop'>^</span><span class='hs-varid'>length</span> <span class='hs-varid'>xs</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>Sh</span> <span class='hs-layout'>(</span><span class='hs-varid'>reverse</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span>
<a name="line-88"></a>
<a name="line-89"></a>
<a name="line-90"></a><span class='hs-comment'>-- SSYM: PERMUTATIONS</span>
<a name="line-91"></a><span class='hs-comment'>-- (This is permutations considered as combinatorial objects rather than as algebraic objects)</span>
<a name="line-92"></a>
<a name="line-93"></a><span class='hs-comment'>-- Permutations with shifted shuffle product and flattened deconcatenation coproduct</span>
<a name="line-94"></a><span class='hs-comment'>-- This is the Malvenuto-Reutenauer Hopf algebra of permutations, SSym.</span>
<a name="line-95"></a><span class='hs-comment'>-- It is neither commutative nor co-commutative</span>
<a name="line-96"></a>
<a name="line-97"></a><span class='hs-comment'>-- ssymF xs is the fundamental basis F_xs (Aguiar and Sottile)</span>
<a name="line-98"></a>
<a name="line-99"></a><a name="SSymF"></a><span class='hs-comment'>-- |The fundamental basis for the Malvenuto-Reutenauer Hopf algebra of permutations, SSym.</span>
<a name="line-100"></a><a name="SSymF"></a><span class='hs-keyword'>newtype</span> <span class='hs-conid'>SSymF</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>SSymF</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyword'>deriving</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span><span class='hs-layout'>)</span>
<a name="line-101"></a>
<a name="line-102"></a><a name="instance%20Ord%20SSymF"></a><span class='hs-keyword'>instance</span> <span class='hs-conid'>Ord</span> <span class='hs-conid'>SSymF</span> <span class='hs-keyword'>where</span>
<a name="line-103"></a>    <span class='hs-varid'>compare</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>compare</span> <span class='hs-layout'>(</span><span class='hs-varid'>length</span> <span class='hs-varid'>xs</span><span class='hs-layout'>,</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>length</span> <span class='hs-varid'>ys</span><span class='hs-layout'>,</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span>
<a name="line-104"></a>
<a name="line-105"></a><a name="instance%20Show%20SSymF"></a><span class='hs-keyword'>instance</span> <span class='hs-conid'>Show</span> <span class='hs-conid'>SSymF</span> <span class='hs-keyword'>where</span>
<a name="line-106"></a>    <span class='hs-varid'>show</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-str'>"F "</span> <span class='hs-varop'>++</span> <span class='hs-varid'>show</span> <span class='hs-varid'>xs</span>
<a name="line-107"></a>
<a name="line-108"></a><a name="ssymF"></a><span class='hs-comment'>-- |Construct a fundamental basis element in SSym.</span>
<a name="line-109"></a><span class='hs-comment'>-- The list of ints must be a permutation of [1..n], eg [1,2], [3,4,2,1].</span>
<a name="line-110"></a><span class='hs-definition'>ssymF</span> <span class='hs-keyglyph'>::</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-conid'>Q</span> <span class='hs-conid'>SSymF</span>
<a name="line-111"></a><span class='hs-definition'>ssymF</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>|</span> <span class='hs-conid'>L</span><span class='hs-varop'>.</span><span class='hs-varid'>sort</span> <span class='hs-varid'>xs</span> <span class='hs-varop'>==</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>1</span><span class='hs-keyglyph'>..</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span>
<a name="line-112"></a>         <span class='hs-keyglyph'>|</span> <span class='hs-varid'>otherwise</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>error</span> <span class='hs-str'>"Not a permutation of [1..n]"</span>
<a name="line-113"></a>         <span class='hs-keyword'>where</span> <span class='hs-varid'>n</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>length</span> <span class='hs-varid'>xs</span>
<a name="line-114"></a>
<a name="line-115"></a><a name="shiftedConcat"></a><span class='hs-comment'>-- so this is a candidate mult. It is associative and SSymF [] is obviously a left and right identity</span>
<a name="line-116"></a><span class='hs-comment'>-- (need quickcheck properties to prove that)</span>
<a name="line-117"></a><span class='hs-definition'>shiftedConcat</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>let</span> <span class='hs-varid'>k</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>length</span> <span class='hs-varid'>xs</span> <span class='hs-keyword'>in</span> <span class='hs-conid'>SSymF</span> <span class='hs-layout'>(</span><span class='hs-varid'>xs</span> <span class='hs-varop'>++</span> <span class='hs-varid'>map</span> <span class='hs-layout'>(</span><span class='hs-varop'>+</span><span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span>
<a name="line-118"></a>
<a name="line-119"></a><a name="prop_Associative"></a><span class='hs-definition'>prop_Associative</span> <span class='hs-varid'>f</span> <span class='hs-layout'>(</span><span class='hs-varid'>x</span><span class='hs-layout'>,</span><span class='hs-varid'>y</span><span class='hs-layout'>,</span><span class='hs-varid'>z</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>f</span> <span class='hs-varid'>x</span> <span class='hs-layout'>(</span><span class='hs-varid'>f</span> <span class='hs-varid'>y</span> <span class='hs-varid'>z</span><span class='hs-layout'>)</span> <span class='hs-varop'>==</span> <span class='hs-varid'>f</span> <span class='hs-layout'>(</span><span class='hs-varid'>f</span> <span class='hs-varid'>x</span> <span class='hs-varid'>y</span><span class='hs-layout'>)</span> <span class='hs-varid'>z</span>
<a name="line-120"></a>
<a name="line-121"></a><span class='hs-comment'>-- &gt; quickCheck (prop_Associative shiftedConcat)</span>
<a name="line-122"></a><span class='hs-comment'>-- +++ OK, passed 100 tests.</span>
<a name="line-123"></a>
<a name="line-124"></a>
<a name="line-125"></a><a name="instance%20Algebra%20k%20SSymF"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Algebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymF</span> <span class='hs-keyword'>where</span>
<a name="line-126"></a>    <span class='hs-varid'>unit</span> <span class='hs-varid'>x</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>x</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span>
<a name="line-127"></a>    <span class='hs-varid'>mult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>mult'</span> <span class='hs-keyword'>where</span>
<a name="line-128"></a>        <span class='hs-varid'>mult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>,</span> <span class='hs-conid'>SSymF</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span>
<a name="line-129"></a>            <span class='hs-keyword'>let</span> <span class='hs-varid'>k</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>length</span> <span class='hs-varid'>xs</span>
<a name="line-130"></a>            <span class='hs-keyword'>in</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>zs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>zs</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>shuffles</span> <span class='hs-varid'>xs</span> <span class='hs-layout'>(</span><span class='hs-varid'>map</span> <span class='hs-layout'>(</span><span class='hs-varop'>+</span><span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span><span class='hs-keyglyph'>]</span>
<a name="line-131"></a>
<a name="line-132"></a>
<a name="line-133"></a><a name="flatten"></a><span class='hs-comment'>-- standard permutation, also called flattening, eg [6,2,5] -&gt; [3,1,2]</span>
<a name="line-134"></a><span class='hs-definition'>flatten</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>let</span> <span class='hs-varid'>mapping</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>zip</span> <span class='hs-layout'>(</span><span class='hs-conid'>L</span><span class='hs-varop'>.</span><span class='hs-varid'>sort</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>1</span><span class='hs-keyglyph'>..</span><span class='hs-keyglyph'>]</span>
<a name="line-135"></a>        <span class='hs-keyword'>in</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>y</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>x</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>xs</span><span class='hs-layout'>,</span> <span class='hs-keyword'>let</span> <span class='hs-conid'>Just</span> <span class='hs-varid'>y</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>lookup</span> <span class='hs-varid'>x</span> <span class='hs-varid'>mapping</span><span class='hs-keyglyph'>]</span> 
<a name="line-136"></a>
<a name="line-137"></a><a name="instance%20Coalgebra%20k%20SSymF"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Coalgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymF</span> <span class='hs-keyword'>where</span>
<a name="line-138"></a>    <span class='hs-varid'>counit</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>unwrap</span> <span class='hs-varop'>.</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>counit'</span> <span class='hs-keyword'>where</span> <span class='hs-varid'>counit'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>if</span> <span class='hs-varid'>null</span> <span class='hs-varid'>xs</span> <span class='hs-keyword'>then</span> <span class='hs-num'>1</span> <span class='hs-keyword'>else</span> <span class='hs-num'>0</span>
<a name="line-139"></a>    <span class='hs-varid'>comult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>comult'</span>
<a name="line-140"></a>        <span class='hs-keyword'>where</span> <span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-layout'>(</span><span class='hs-varid'>st</span> <span class='hs-varid'>us</span><span class='hs-layout'>)</span><span class='hs-layout'>,</span> <span class='hs-conid'>SSymF</span> <span class='hs-layout'>(</span><span class='hs-varid'>st</span> <span class='hs-varid'>vs</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-layout'>(</span><span class='hs-varid'>us</span><span class='hs-layout'>,</span> <span class='hs-varid'>vs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>deconcatenations</span> <span class='hs-varid'>xs</span><span class='hs-keyglyph'>]</span>
<a name="line-141"></a>              <span class='hs-varid'>st</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>flatten</span>
<a name="line-142"></a>
<a name="line-143"></a><a name="instance%20Bialgebra%20k%20SSymF"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Bialgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymF</span> <span class='hs-keyword'>where</span> <span class='hs-layout'>{</span><span class='hs-layout'>}</span>
<a name="line-144"></a>
<a name="line-145"></a><a name="instance%20HopfAlgebra%20k%20SSymF"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>HopfAlgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymF</span> <span class='hs-keyword'>where</span>
<a name="line-146"></a>    <span class='hs-varid'>antipode</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>antipode'</span> <span class='hs-keyword'>where</span>
<a name="line-147"></a>        <span class='hs-varid'>antipode'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span>
<a name="line-148"></a>        <span class='hs-varid'>antipode'</span> <span class='hs-varid'>x</span><span class='hs-keyglyph'>@</span><span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-layout'>(</span><span class='hs-varid'>negatev</span> <span class='hs-varop'>.</span> <span class='hs-varid'>mult</span> <span class='hs-varop'>.</span> <span class='hs-layout'>(</span><span class='hs-varid'>id</span> <span class='hs-varop'>`tf`</span> <span class='hs-varid'>antipode</span><span class='hs-layout'>)</span> <span class='hs-varop'>.</span> <span class='hs-varid'>removeTerm</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-conid'>[]</span><span class='hs-layout'>,</span><span class='hs-varid'>x</span><span class='hs-layout'>)</span> <span class='hs-varop'>.</span> <span class='hs-varid'>comult</span> <span class='hs-varop'>.</span> <span class='hs-varid'>return</span><span class='hs-layout'>)</span> <span class='hs-varid'>x</span>
<a name="line-149"></a>        <span class='hs-comment'>-- This expression for antipode is derived from mult . (id `tf` antipode) . comult == unit . counit</span>
<a name="line-150"></a>        <span class='hs-comment'>-- It's possible because this is a graded, connected Hopf algebra. (connected means the counit is projection onto the grade 0 part)</span>
<a name="line-151"></a><span class='hs-comment'>-- It would be nicer to have an explicit expression for antipode.</span>
<a name="line-152"></a><span class='hs-comment'>{-
<a name="line-153"></a>instance (Eq k, Num k) =&gt; HopfAlgebra k SSymF where
<a name="line-154"></a>    antipode = linear antipode'
<a name="line-155"></a>        where antipode' (SSymF v) = sumv [lambda v w *&gt; return (SSymF w) | w &lt;- L.permutations v]
<a name="line-156"></a>              lambda v w = length [s | s &lt;- powerset [1..n-1],  odd (length s), descentSet (w^-1 * v_s) `isSubset` s]
<a name="line-157"></a>                         - length [s | s &lt;- powerset [1..n-1],  even (length s), descentSet (w^-1 * v_s) `isSubset` s]
<a name="line-158"></a>-}</span>
<a name="line-159"></a>
<a name="line-160"></a><a name="instance%20HasInverses%20SSymF"></a><span class='hs-keyword'>instance</span> <span class='hs-conid'>HasInverses</span> <span class='hs-conid'>SSymF</span> <span class='hs-keyword'>where</span>
<a name="line-161"></a>    <span class='hs-varid'>inverse</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>SSymF</span> <span class='hs-varop'>$</span> <span class='hs-varid'>map</span> <span class='hs-varid'>snd</span> <span class='hs-varop'>$</span> <span class='hs-conid'>L</span><span class='hs-varop'>.</span><span class='hs-varid'>sort</span> <span class='hs-varop'>$</span> <span class='hs-varid'>map</span> <span class='hs-layout'>(</span><span class='hs-keyglyph'>\</span><span class='hs-layout'>(</span><span class='hs-varid'>s</span><span class='hs-layout'>,</span><span class='hs-varid'>t</span><span class='hs-layout'>)</span><span class='hs-keyglyph'>-&gt;</span><span class='hs-layout'>(</span><span class='hs-varid'>t</span><span class='hs-layout'>,</span><span class='hs-varid'>s</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-varop'>$</span> <span class='hs-varid'>zip</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>1</span><span class='hs-keyglyph'>..</span><span class='hs-keyglyph'>]</span> <span class='hs-varid'>xs</span>
<a name="line-162"></a>
<a name="line-163"></a><a name="instance%20HasPairing%20k%20SSymF%20SSymF"></a><span class='hs-comment'>-- Hazewinkel p267</span>
<a name="line-164"></a><a name="instance%20HasPairing%20k%20SSymF%20SSymF"></a><span class='hs-comment'>-- |A pairing showing that SSym is self-adjoint</span>
<a name="line-165"></a><a name="instance%20HasPairing%20k%20SSymF%20SSymF"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>HasPairing</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymF</span> <span class='hs-conid'>SSymF</span> <span class='hs-keyword'>where</span>
<a name="line-166"></a>    <span class='hs-varid'>pairing</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>pairing'</span> <span class='hs-keyword'>where</span>
<a name="line-167"></a>        <span class='hs-varid'>pairing'</span> <span class='hs-layout'>(</span><span class='hs-varid'>x</span><span class='hs-layout'>,</span><span class='hs-varid'>y</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>delta</span> <span class='hs-varid'>x</span> <span class='hs-layout'>(</span><span class='hs-varid'>inverse</span> <span class='hs-varid'>y</span><span class='hs-layout'>)</span>
<a name="line-168"></a><span class='hs-comment'>-- Not entirely clear to me why this works</span>
<a name="line-169"></a><span class='hs-comment'>-- The pairing is *not* positive definite (Hazewinkel p267)</span>
<a name="line-170"></a><span class='hs-comment'>-- eg (\x -&gt; pairing' x x &gt;= 0) (ssymF [1,3,2] + ssymF [2,3,1] - ssymF [3,1,2]) == False</span>
<a name="line-171"></a>
<a name="line-172"></a>
<a name="line-173"></a><a name="SSymM"></a><span class='hs-comment'>-- |An alternative \"monomial\" basis for the Malvenuto-Reutenauer Hopf algebra of permutations, SSym.</span>
<a name="line-174"></a><a name="SSymM"></a><span class='hs-comment'>-- This basis is related to the fundamental basis by Mobius inversion in the poset of permutations with the weak order.</span>
<a name="line-175"></a><a name="SSymM"></a><span class='hs-keyword'>newtype</span> <span class='hs-conid'>SSymM</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>SSymM</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyword'>deriving</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span><span class='hs-layout'>)</span>
<a name="line-176"></a>
<a name="line-177"></a><a name="instance%20Ord%20SSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-conid'>Ord</span> <span class='hs-conid'>SSymM</span> <span class='hs-keyword'>where</span>
<a name="line-178"></a>    <span class='hs-varid'>compare</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymM</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymM</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>compare</span> <span class='hs-layout'>(</span><span class='hs-varid'>length</span> <span class='hs-varid'>xs</span><span class='hs-layout'>,</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>length</span> <span class='hs-varid'>ys</span><span class='hs-layout'>,</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span>
<a name="line-179"></a>
<a name="line-180"></a><a name="instance%20Show%20SSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-conid'>Show</span> <span class='hs-conid'>SSymM</span> <span class='hs-keyword'>where</span>
<a name="line-181"></a>    <span class='hs-varid'>show</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymM</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-str'>"M "</span> <span class='hs-varop'>++</span> <span class='hs-varid'>show</span> <span class='hs-varid'>xs</span>
<a name="line-182"></a>
<a name="line-183"></a><a name="ssymM"></a><span class='hs-comment'>-- |Construct a monomial basis element in SSym.</span>
<a name="line-184"></a><span class='hs-comment'>-- The list of ints must be a permutation of [1..n], eg [1,2], [3,4,2,1].</span>
<a name="line-185"></a><span class='hs-definition'>ssymM</span> <span class='hs-keyglyph'>::</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-conid'>Q</span> <span class='hs-conid'>SSymM</span>
<a name="line-186"></a><span class='hs-definition'>ssymM</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>|</span> <span class='hs-conid'>L</span><span class='hs-varop'>.</span><span class='hs-varid'>sort</span> <span class='hs-varid'>xs</span> <span class='hs-varop'>==</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>1</span><span class='hs-keyglyph'>..</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymM</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span>
<a name="line-187"></a>         <span class='hs-keyglyph'>|</span> <span class='hs-varid'>otherwise</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>error</span> <span class='hs-str'>"Not a permutation of [1..n]"</span>
<a name="line-188"></a>         <span class='hs-keyword'>where</span> <span class='hs-varid'>n</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>length</span> <span class='hs-varid'>xs</span>
<a name="line-189"></a>
<a name="line-190"></a><a name="inversions"></a><span class='hs-definition'>inversions</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>let</span> <span class='hs-varid'>ixs</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>zip</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>1</span><span class='hs-keyglyph'>..</span><span class='hs-keyglyph'>]</span> <span class='hs-varid'>xs</span>
<a name="line-191"></a>                <span class='hs-keyword'>in</span> <span class='hs-keyglyph'>[</span><span class='hs-layout'>(</span><span class='hs-varid'>i</span><span class='hs-layout'>,</span><span class='hs-varid'>j</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-layout'>(</span><span class='hs-layout'>(</span><span class='hs-varid'>i</span><span class='hs-layout'>,</span><span class='hs-varid'>xi</span><span class='hs-layout'>)</span><span class='hs-layout'>,</span><span class='hs-layout'>(</span><span class='hs-varid'>j</span><span class='hs-layout'>,</span><span class='hs-varid'>xj</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>pairs</span> <span class='hs-varid'>ixs</span><span class='hs-layout'>,</span> <span class='hs-varid'>xi</span> <span class='hs-varop'>&gt;</span> <span class='hs-varid'>xj</span><span class='hs-keyglyph'>]</span>
<a name="line-192"></a>
<a name="line-193"></a><a name="weakOrder"></a><span class='hs-comment'>-- should really check that xs and ys have the same length, and perhaps insist also on same type</span>
<a name="line-194"></a><span class='hs-definition'>weakOrder</span> <span class='hs-varid'>xs</span> <span class='hs-varid'>ys</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>inversions</span> <span class='hs-varid'>xs</span> <span class='hs-varop'>`isSubsetAsc`</span> <span class='hs-varid'>inversions</span> <span class='hs-varid'>ys</span>
<a name="line-195"></a>
<a name="line-196"></a><a name="mu"></a><span class='hs-definition'>mu</span> <span class='hs-layout'>(</span><span class='hs-varid'>set</span><span class='hs-layout'>,</span><span class='hs-varid'>po</span><span class='hs-layout'>)</span> <span class='hs-varid'>x</span> <span class='hs-varid'>y</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>mu'</span> <span class='hs-varid'>x</span> <span class='hs-varid'>y</span> <span class='hs-keyword'>where</span>
<a name="line-197"></a>    <span class='hs-varid'>mu'</span> <span class='hs-varid'>x</span> <span class='hs-varid'>y</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>x</span> <span class='hs-varop'>==</span> <span class='hs-varid'>y</span>    <span class='hs-keyglyph'>=</span> <span class='hs-num'>1</span>
<a name="line-198"></a>            <span class='hs-keyglyph'>|</span> <span class='hs-varid'>po</span> <span class='hs-varid'>x</span> <span class='hs-varid'>y</span>    <span class='hs-keyglyph'>=</span> <span class='hs-varid'>negate</span> <span class='hs-varop'>$</span> <span class='hs-varid'>sum</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>mu'</span> <span class='hs-varid'>x</span> <span class='hs-varid'>z</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>z</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>set</span><span class='hs-layout'>,</span> <span class='hs-varid'>po</span> <span class='hs-varid'>x</span> <span class='hs-varid'>z</span><span class='hs-layout'>,</span> <span class='hs-varid'>po</span> <span class='hs-varid'>z</span> <span class='hs-varid'>y</span><span class='hs-layout'>,</span> <span class='hs-varid'>z</span> <span class='hs-varop'>/=</span> <span class='hs-varid'>y</span><span class='hs-keyglyph'>]</span>
<a name="line-199"></a>            <span class='hs-keyglyph'>|</span> <span class='hs-varid'>otherwise</span> <span class='hs-keyglyph'>=</span> <span class='hs-num'>0</span>
<a name="line-200"></a>
<a name="line-201"></a><a name="ssymMtoF"></a><span class='hs-comment'>-- |Convert an element of SSym represented in the monomial basis to the fundamental basis</span>
<a name="line-202"></a><span class='hs-definition'>ssymMtoF</span> <span class='hs-keyglyph'>::</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymM</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymF</span>
<a name="line-203"></a><span class='hs-definition'>ssymMtoF</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>ssymMtoF'</span> <span class='hs-keyword'>where</span>
<a name="line-204"></a>    <span class='hs-varid'>ssymMtoF'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymM</span> <span class='hs-varid'>u</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>mu</span> <span class='hs-layout'>(</span><span class='hs-varid'>set</span><span class='hs-layout'>,</span><span class='hs-varid'>po</span><span class='hs-layout'>)</span> <span class='hs-varid'>u</span> <span class='hs-varid'>v</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>v</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>v</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>set</span><span class='hs-layout'>,</span> <span class='hs-varid'>po</span> <span class='hs-varid'>u</span> <span class='hs-varid'>v</span><span class='hs-keyglyph'>]</span>
<a name="line-205"></a>        <span class='hs-keyword'>where</span> <span class='hs-varid'>set</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>L</span><span class='hs-varop'>.</span><span class='hs-varid'>permutations</span> <span class='hs-varid'>u</span>
<a name="line-206"></a>              <span class='hs-varid'>po</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>weakOrder</span>
<a name="line-207"></a>
<a name="line-208"></a><a name="ssymFtoM"></a><span class='hs-comment'>-- |Convert an element of SSym represented in the fundamental basis to the monomial basis</span>
<a name="line-209"></a><span class='hs-definition'>ssymFtoM</span> <span class='hs-keyglyph'>::</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymF</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymM</span>
<a name="line-210"></a><span class='hs-definition'>ssymFtoM</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>ssymFtoM'</span> <span class='hs-keyword'>where</span>
<a name="line-211"></a>    <span class='hs-varid'>ssymFtoM'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>u</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymM</span> <span class='hs-varid'>v</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>v</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>set</span><span class='hs-layout'>,</span> <span class='hs-varid'>po</span> <span class='hs-varid'>u</span> <span class='hs-varid'>v</span><span class='hs-keyglyph'>]</span>
<a name="line-212"></a>        <span class='hs-keyword'>where</span> <span class='hs-varid'>set</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>L</span><span class='hs-varop'>.</span><span class='hs-varid'>permutations</span> <span class='hs-varid'>u</span>
<a name="line-213"></a>              <span class='hs-varid'>po</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>weakOrder</span>
<a name="line-214"></a>
<a name="line-215"></a><span class='hs-comment'>-- (p,q)-shuffles: permutations of [1..p+q] having at most one descent, at position p</span>
<a name="line-216"></a><span class='hs-comment'>-- denoted S^{(p,q)} in Aguiar&amp;Sottile</span>
<a name="line-217"></a><span class='hs-comment'>-- (Grassmannian permutations?)</span>
<a name="line-218"></a><span class='hs-comment'>-- pqShuffles p q = [u++v | u &lt;- combinationsOf p [1..n], let v = [1..n] `diffAsc` u] where n = p+q</span>
<a name="line-219"></a>
<a name="line-220"></a><span class='hs-comment'>-- The inverse of a (p,q)-shuffle.</span>
<a name="line-221"></a><span class='hs-comment'>-- The special form of (p,q)-shuffles makes an O(n) algorithm possible</span>
<a name="line-222"></a><span class='hs-comment'>-- pqInverse :: Int -&gt; Int -&gt; [Int] -&gt; [Int]</span>
<a name="line-223"></a><span class='hs-comment'>{-
<a name="line-224"></a>-- incorrect
<a name="line-225"></a>pqInverse p q xs = pqInverse' [1..p] [p+1..p+q] xs
<a name="line-226"></a>    where pqInverse' (l:ls) (r:rs) (x:xs) =
<a name="line-227"></a>              if x &lt;= p then l : pqInverse' ls (r:rs) xs else r : pqInverse' (l:ls) rs xs
<a name="line-228"></a>          pqInverse' ls rs _ = ls ++ rs -- one of them is null
<a name="line-229"></a>-}</span>
<a name="line-230"></a><span class='hs-comment'>-- pqInverseShuffles p q = shuffles [1..p] [p+1..p+q]</span>
<a name="line-231"></a>
<a name="line-232"></a>
<a name="line-233"></a><a name="instance%20Algebra%20k%20SSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Algebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymM</span> <span class='hs-keyword'>where</span>
<a name="line-234"></a>    <span class='hs-varid'>unit</span> <span class='hs-varid'>x</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>x</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymM</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span>
<a name="line-235"></a>    <span class='hs-varid'>mult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>ssymFtoM</span> <span class='hs-varop'>.</span> <span class='hs-varid'>mult</span> <span class='hs-varop'>.</span> <span class='hs-layout'>(</span><span class='hs-varid'>ssymMtoF</span> <span class='hs-varop'>`tf`</span> <span class='hs-varid'>ssymMtoF</span><span class='hs-layout'>)</span>
<a name="line-236"></a>
<a name="line-237"></a><span class='hs-comment'>{-
<a name="line-238"></a>mult2 = linear mult'
<a name="line-239"></a>    where mult' (SSymM u, SSymM v) = sumv [alpha u v w *&gt; return (SSymM w) | w &lt;- L.permutations [1..p+q] ]
<a name="line-240"></a>                                     where p = length u; q = length v
<a name="line-241"></a>
<a name="line-242"></a>alpha u v w = length [z | z &lt;- pqInverseShuffles p q, let uv = shiftedConcat u v,
<a name="line-243"></a>                          uv * z `weakOrder` w, u and v are maximal, ie no transposition of adjacents in either also works]
<a name="line-244"></a>    where p = length u
<a name="line-245"></a>          q = length v
<a name="line-246"></a>-- so we need to define (*) for permutations in row form
<a name="line-247"></a>-}</span>
<a name="line-248"></a>
<a name="line-249"></a><a name="instance%20Coalgebra%20k%20SSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Coalgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymM</span> <span class='hs-keyword'>where</span>
<a name="line-250"></a>    <span class='hs-varid'>counit</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>unwrap</span> <span class='hs-varop'>.</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>counit'</span> <span class='hs-keyword'>where</span> <span class='hs-varid'>counit'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymM</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>if</span> <span class='hs-varid'>null</span> <span class='hs-varid'>xs</span> <span class='hs-keyword'>then</span> <span class='hs-num'>1</span> <span class='hs-keyword'>else</span> <span class='hs-num'>0</span>
<a name="line-251"></a>    <span class='hs-comment'>-- comult = (ssymFtoM `tf` ssymFtoM) . comult . ssymMtoF</span>
<a name="line-252"></a>    <span class='hs-varid'>comult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>comult'</span>
<a name="line-253"></a>        <span class='hs-keyword'>where</span> <span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymM</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymM</span> <span class='hs-layout'>(</span><span class='hs-varid'>flatten</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span><span class='hs-layout'>,</span> <span class='hs-conid'>SSymM</span> <span class='hs-layout'>(</span><span class='hs-varid'>flatten</span> <span class='hs-varid'>zs</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span>
<a name="line-254"></a>                                        <span class='hs-keyglyph'>|</span> <span class='hs-layout'>(</span><span class='hs-varid'>ys</span><span class='hs-layout'>,</span><span class='hs-varid'>zs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>deconcatenations</span> <span class='hs-varid'>xs</span><span class='hs-layout'>,</span>
<a name="line-255"></a>                                          <span class='hs-varid'>minimum</span> <span class='hs-layout'>(</span><span class='hs-varid'>infinity</span><span class='hs-conop'>:</span><span class='hs-varid'>ys</span><span class='hs-layout'>)</span> <span class='hs-varop'>&gt;</span> <span class='hs-varid'>maximum</span> <span class='hs-layout'>(</span><span class='hs-num'>0</span><span class='hs-conop'>:</span><span class='hs-varid'>zs</span><span class='hs-layout'>)</span><span class='hs-keyglyph'>]</span> <span class='hs-comment'>-- ie deconcatenations at a global descent</span>
<a name="line-256"></a>              <span class='hs-varid'>infinity</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>maxBound</span> <span class='hs-keyglyph'>::</span> <span class='hs-conid'>Int</span>
<a name="line-257"></a>
<a name="line-258"></a><a name="instance%20Bialgebra%20k%20SSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Bialgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymM</span> <span class='hs-keyword'>where</span> <span class='hs-layout'>{</span><span class='hs-layout'>}</span>
<a name="line-259"></a>
<a name="line-260"></a><a name="instance%20HopfAlgebra%20k%20SSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>HopfAlgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymM</span> <span class='hs-keyword'>where</span>
<a name="line-261"></a>    <span class='hs-varid'>antipode</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>ssymFtoM</span> <span class='hs-varop'>.</span> <span class='hs-varid'>antipode</span> <span class='hs-varop'>.</span> <span class='hs-varid'>ssymMtoF</span>
<a name="line-262"></a>
<a name="line-263"></a>
<a name="line-264"></a><a name="instance%20Algebra%20k%20(Dual%20SSymF)"></a><span class='hs-comment'>-- Hazewinkel p265</span>
<a name="line-265"></a><a name="instance%20Algebra%20k%20(Dual%20SSymF)"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Algebra</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>Dual</span> <span class='hs-conid'>SSymF</span><span class='hs-layout'>)</span> <span class='hs-keyword'>where</span>
<a name="line-266"></a>    <span class='hs-varid'>unit</span> <span class='hs-varid'>x</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>x</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>Dual</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span>
<a name="line-267"></a>    <span class='hs-varid'>mult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>mult'</span> <span class='hs-keyword'>where</span>
<a name="line-268"></a>        <span class='hs-varid'>mult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>Dual</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span><span class='hs-layout'>,</span> <span class='hs-conid'>Dual</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span>
<a name="line-269"></a>            <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-layout'>(</span><span class='hs-varid'>return</span> <span class='hs-varop'>.</span> <span class='hs-conid'>Dual</span> <span class='hs-varop'>.</span> <span class='hs-conid'>SSymF</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>xs''</span> <span class='hs-varop'>++</span> <span class='hs-varid'>ys''</span><span class='hs-layout'>)</span>
<a name="line-270"></a>                 <span class='hs-keyglyph'>|</span> <span class='hs-varid'>xs'</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>combinationsOf</span> <span class='hs-varid'>r</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>1</span><span class='hs-keyglyph'>..</span><span class='hs-varid'>r</span><span class='hs-varop'>+</span><span class='hs-varid'>s</span><span class='hs-keyglyph'>]</span><span class='hs-layout'>,</span> <span class='hs-keyword'>let</span> <span class='hs-varid'>ys'</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>diffAsc</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>1</span><span class='hs-keyglyph'>..</span><span class='hs-varid'>r</span><span class='hs-varop'>+</span><span class='hs-varid'>s</span><span class='hs-keyglyph'>]</span> <span class='hs-varid'>xs'</span><span class='hs-layout'>,</span>
<a name="line-271"></a>                   <span class='hs-varid'>xs''</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-conid'>L</span><span class='hs-varop'>.</span><span class='hs-varid'>permutations</span> <span class='hs-varid'>xs'</span><span class='hs-layout'>,</span> <span class='hs-varid'>flatten</span> <span class='hs-varid'>xs''</span> <span class='hs-varop'>==</span> <span class='hs-varid'>xs</span><span class='hs-layout'>,</span>
<a name="line-272"></a>                   <span class='hs-varid'>ys''</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-conid'>L</span><span class='hs-varop'>.</span><span class='hs-varid'>permutations</span> <span class='hs-varid'>ys'</span><span class='hs-layout'>,</span> <span class='hs-varid'>flatten</span> <span class='hs-varid'>ys''</span> <span class='hs-varop'>==</span> <span class='hs-varid'>ys</span> <span class='hs-keyglyph'>]</span>
<a name="line-273"></a>            <span class='hs-keyword'>where</span> <span class='hs-varid'>r</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>length</span> <span class='hs-varid'>xs</span><span class='hs-layout'>;</span> <span class='hs-varid'>s</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>length</span> <span class='hs-varid'>ys</span>
<a name="line-274"></a><span class='hs-comment'>-- In other words, mult x y is the sum of those z whose comult (in SSymF) has an (x,y) term</span>
<a name="line-275"></a><span class='hs-comment'>-- So the matrix for mult is the transpose of the matrix for comult in SSymF</span>
<a name="line-276"></a>
<a name="line-277"></a><a name="instance%20Coalgebra%20k%20(Dual%20SSymF)"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Coalgebra</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>Dual</span> <span class='hs-conid'>SSymF</span><span class='hs-layout'>)</span> <span class='hs-keyword'>where</span>
<a name="line-278"></a>    <span class='hs-varid'>counit</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>unwrap</span> <span class='hs-varop'>.</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>counit'</span> <span class='hs-keyword'>where</span> <span class='hs-varid'>counit'</span> <span class='hs-layout'>(</span><span class='hs-conid'>Dual</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>if</span> <span class='hs-varid'>null</span> <span class='hs-varid'>xs</span> <span class='hs-keyword'>then</span> <span class='hs-num'>1</span> <span class='hs-keyword'>else</span> <span class='hs-num'>0</span>
<a name="line-279"></a>    <span class='hs-varid'>comult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>comult'</span> <span class='hs-keyword'>where</span>
<a name="line-280"></a>        <span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>Dual</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span>
<a name="line-281"></a>            <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>Dual</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span><span class='hs-layout'>,</span> <span class='hs-conid'>Dual</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-layout'>(</span><span class='hs-varid'>flatten</span> <span class='hs-varid'>zs</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>i</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>0</span><span class='hs-keyglyph'>..</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span><span class='hs-layout'>,</span> <span class='hs-keyword'>let</span> <span class='hs-layout'>(</span><span class='hs-varid'>ys</span><span class='hs-layout'>,</span><span class='hs-varid'>zs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>L</span><span class='hs-varop'>.</span><span class='hs-varid'>partition</span> <span class='hs-layout'>(</span><span class='hs-varop'>&lt;=</span><span class='hs-varid'>i</span><span class='hs-layout'>)</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>]</span>
<a name="line-282"></a>            <span class='hs-keyword'>where</span> <span class='hs-varid'>n</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>length</span> <span class='hs-varid'>xs</span>
<a name="line-283"></a><span class='hs-comment'>-- In other words, comult x is the sum of those (y,z) whose mult (in SSymF) has a z term</span>
<a name="line-284"></a><span class='hs-comment'>-- So the matrix for comult is the transpose of the matrix for mult in SSymF</span>
<a name="line-285"></a>
<a name="line-286"></a><a name="instance%20Bialgebra%20k%20(Dual%20SSymF)"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Bialgebra</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>Dual</span> <span class='hs-conid'>SSymF</span><span class='hs-layout'>)</span> <span class='hs-keyword'>where</span> <span class='hs-layout'>{</span><span class='hs-layout'>}</span>
<a name="line-287"></a>
<a name="line-288"></a><a name="instance%20HopfAlgebra%20k%20(Dual%20SSymF)"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>HopfAlgebra</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>Dual</span> <span class='hs-conid'>SSymF</span><span class='hs-layout'>)</span> <span class='hs-keyword'>where</span>
<a name="line-289"></a>    <span class='hs-varid'>antipode</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>antipode'</span> <span class='hs-keyword'>where</span>
<a name="line-290"></a>        <span class='hs-varid'>antipode'</span> <span class='hs-layout'>(</span><span class='hs-conid'>Dual</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>Dual</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span>
<a name="line-291"></a>        <span class='hs-varid'>antipode'</span> <span class='hs-varid'>x</span><span class='hs-keyglyph'>@</span><span class='hs-layout'>(</span><span class='hs-conid'>Dual</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span>
<a name="line-292"></a>            <span class='hs-layout'>(</span><span class='hs-varid'>negatev</span> <span class='hs-varop'>.</span> <span class='hs-varid'>mult</span> <span class='hs-varop'>.</span> <span class='hs-layout'>(</span><span class='hs-varid'>id</span> <span class='hs-varop'>`tf`</span> <span class='hs-varid'>antipode</span><span class='hs-layout'>)</span> <span class='hs-varop'>.</span> <span class='hs-varid'>removeTerm</span> <span class='hs-layout'>(</span><span class='hs-conid'>Dual</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span><span class='hs-layout'>,</span><span class='hs-varid'>x</span><span class='hs-layout'>)</span> <span class='hs-varop'>.</span> <span class='hs-varid'>comult</span> <span class='hs-varop'>.</span> <span class='hs-varid'>return</span><span class='hs-layout'>)</span> <span class='hs-varid'>x</span>
<a name="line-293"></a>
<a name="line-294"></a><a name="instance%20HasPairing%20k%20SSymF%20(Dual%20SSymF)"></a><span class='hs-comment'>-- This pairing is positive definite (Hazewinkel p267)</span>
<a name="line-295"></a><a name="instance%20HasPairing%20k%20SSymF%20(Dual%20SSymF)"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>HasPairing</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymF</span> <span class='hs-layout'>(</span><span class='hs-conid'>Dual</span> <span class='hs-conid'>SSymF</span><span class='hs-layout'>)</span> <span class='hs-keyword'>where</span>
<a name="line-296"></a>    <span class='hs-varid'>pairing</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>pairing'</span> <span class='hs-keyword'>where</span>
<a name="line-297"></a>        <span class='hs-varid'>pairing'</span> <span class='hs-layout'>(</span><span class='hs-varid'>x</span><span class='hs-layout'>,</span> <span class='hs-conid'>Dual</span> <span class='hs-varid'>y</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>delta</span> <span class='hs-varid'>x</span> <span class='hs-varid'>y</span>
<a name="line-298"></a>
<a name="line-299"></a><a name="ssymFtoDual"></a><span class='hs-comment'>-- |The isomorphism from SSym to its dual that takes a permutation in the fundamental basis to its inverse in the dual basis</span>
<a name="line-300"></a><span class='hs-definition'>ssymFtoDual</span> <span class='hs-keyglyph'>::</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymF</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>Dual</span> <span class='hs-conid'>SSymF</span><span class='hs-layout'>)</span>
<a name="line-301"></a><span class='hs-definition'>ssymFtoDual</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>nf</span> <span class='hs-varop'>.</span> <span class='hs-varid'>fmap</span> <span class='hs-layout'>(</span><span class='hs-conid'>Dual</span> <span class='hs-varop'>.</span> <span class='hs-varid'>inverse</span><span class='hs-layout'>)</span>
<a name="line-302"></a><span class='hs-comment'>-- This is theta on Hazewinkel p266 (though later he also uses theta for the inverse of this map)</span>
<a name="line-303"></a>
<a name="line-304"></a>
<a name="line-305"></a><span class='hs-comment'>-- YSYM: PLANAR BINARY TREES</span>
<a name="line-306"></a><span class='hs-comment'>-- These are really rooted planar binary trees.</span>
<a name="line-307"></a><span class='hs-comment'>-- It's because they're planar that we can distinguish left and right child branches.</span>
<a name="line-308"></a><span class='hs-comment'>-- (Non-planar would be if we considered trees where left and right children are swapped relative to one another as the same tree)</span>
<a name="line-309"></a><span class='hs-comment'>-- It is neither commutative nor co-commutative</span>
<a name="line-310"></a>
<a name="line-311"></a><a name="PBT"></a><span class='hs-comment'>-- |A type for (rooted) planar binary trees. The basis elements of the Loday-Ronco Hopf algebra are indexed by these.</span>
<a name="line-312"></a><a name="PBT"></a><span class='hs-comment'>--</span>
<a name="line-313"></a><a name="PBT"></a><span class='hs-comment'>-- Although the trees are labelled, we're really only interested in the shapes of the trees, and hence in the type PBT ().</span>
<a name="line-314"></a><a name="PBT"></a><span class='hs-comment'>-- The Algebra, Coalgebra and HopfAlgebra instances all ignore the labels.</span>
<a name="line-315"></a><a name="PBT"></a><span class='hs-comment'>-- However, it is convenient to allow labels, as they can be useful for seeing what is going on, and they also make it possible</span>
<a name="line-316"></a><a name="PBT"></a><span class='hs-comment'>-- to define various ways to create trees from lists of labels.</span>
<a name="line-317"></a><a name="PBT"></a><span class='hs-keyword'>data</span> <span class='hs-conid'>PBT</span> <span class='hs-varid'>a</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>T</span> <span class='hs-layout'>(</span><span class='hs-conid'>PBT</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-varid'>a</span> <span class='hs-layout'>(</span><span class='hs-conid'>PBT</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-conid'>E</span> <span class='hs-keyword'>deriving</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span><span class='hs-layout'>,</span> <span class='hs-conid'>Show</span><span class='hs-layout'>,</span> <span class='hs-conid'>Functor</span><span class='hs-layout'>)</span>
<a name="line-318"></a>
<a name="line-319"></a><a name="instance%20Ord%20(PBT%20a)"></a><span class='hs-keyword'>instance</span> <span class='hs-conid'>Ord</span> <span class='hs-varid'>a</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Ord</span> <span class='hs-layout'>(</span><span class='hs-conid'>PBT</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyword'>where</span>
<a name="line-320"></a>    <span class='hs-varid'>compare</span> <span class='hs-varid'>u</span> <span class='hs-varid'>v</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>compare</span> <span class='hs-layout'>(</span><span class='hs-varid'>shapeSignature</span> <span class='hs-varid'>u</span><span class='hs-layout'>,</span> <span class='hs-varid'>prefix</span> <span class='hs-varid'>u</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>shapeSignature</span> <span class='hs-varid'>v</span><span class='hs-layout'>,</span> <span class='hs-varid'>prefix</span> <span class='hs-varid'>v</span><span class='hs-layout'>)</span>
<a name="line-321"></a>
<a name="line-322"></a><a name="YSymF"></a><span class='hs-comment'>-- |The fundamental basis for (the dual of) the Loday-Ronco Hopf algebra of binary trees, YSym.</span>
<a name="line-323"></a><a name="YSymF"></a><span class='hs-keyword'>newtype</span> <span class='hs-conid'>YSymF</span> <span class='hs-varid'>a</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>YSymF</span> <span class='hs-layout'>(</span><span class='hs-conid'>PBT</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyword'>deriving</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span><span class='hs-layout'>,</span> <span class='hs-conid'>Ord</span><span class='hs-layout'>,</span> <span class='hs-conid'>Functor</span><span class='hs-layout'>)</span>
<a name="line-324"></a>
<a name="line-325"></a><a name="instance%20Show%20(YSymF%20a)"></a><span class='hs-keyword'>instance</span> <span class='hs-conid'>Show</span> <span class='hs-varid'>a</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Show</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyword'>where</span>
<a name="line-326"></a>    <span class='hs-varid'>show</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-str'>"F("</span> <span class='hs-varop'>++</span> <span class='hs-varid'>show</span> <span class='hs-varid'>t</span> <span class='hs-varop'>++</span> <span class='hs-str'>")"</span>
<a name="line-327"></a>
<a name="line-328"></a><a name="ysymF"></a><span class='hs-comment'>-- |Construct the element of YSym in the fundamental basis indexed by the given tree</span>
<a name="line-329"></a><span class='hs-definition'>ysymF</span> <span class='hs-keyglyph'>::</span> <span class='hs-conid'>PBT</span> <span class='hs-varid'>a</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-conid'>Q</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span>
<a name="line-330"></a><span class='hs-definition'>ysymF</span> <span class='hs-varid'>t</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span>
<a name="line-331"></a>
<a name="line-332"></a><a name="nodecount"></a><span class='hs-comment'>{-
<a name="line-333"></a>depth (T l x r) = 1 + max (depth l) (depth r)
<a name="line-334"></a>depth E = 0
<a name="line-335"></a>-}</span>
<a name="line-336"></a><span class='hs-definition'>nodecount</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-varid'>x</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-num'>1</span> <span class='hs-varop'>+</span> <span class='hs-varid'>nodecount</span> <span class='hs-varid'>l</span> <span class='hs-varop'>+</span> <span class='hs-varid'>nodecount</span> <span class='hs-varid'>r</span>
<a name="line-337"></a><span class='hs-definition'>nodecount</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>=</span> <span class='hs-num'>0</span>
<a name="line-338"></a>
<a name="line-339"></a><a name="leafcount"></a><span class='hs-comment'>-- in fact leafcount t = 1 + nodecount t (easiest to see with a picture)</span>
<a name="line-340"></a><span class='hs-definition'>leafcount</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-varid'>x</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>leafcount</span> <span class='hs-varid'>l</span> <span class='hs-varop'>+</span> <span class='hs-varid'>leafcount</span> <span class='hs-varid'>r</span>
<a name="line-341"></a><span class='hs-definition'>leafcount</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>=</span> <span class='hs-num'>1</span>
<a name="line-342"></a>
<a name="line-343"></a><a name="prefix"></a><span class='hs-definition'>prefix</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>[]</span>
<a name="line-344"></a><span class='hs-definition'>prefix</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-varid'>x</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>x</span> <span class='hs-conop'>:</span> <span class='hs-varid'>prefix</span> <span class='hs-varid'>l</span> <span class='hs-varop'>++</span> <span class='hs-varid'>prefix</span> <span class='hs-varid'>r</span>
<a name="line-345"></a>
<a name="line-346"></a><a name="shapeSignature"></a><span class='hs-comment'>-- The shape signature uniquely identifies the shape of a tree.</span>
<a name="line-347"></a><span class='hs-comment'>-- Trees with distinct shapes have distinct signatures.</span>
<a name="line-348"></a><span class='hs-comment'>-- In addition, if sorting on shapeSignature, smaller trees sort before larger trees,</span>
<a name="line-349"></a><span class='hs-comment'>-- and leftward leaning trees sort before rightward leaning trees</span>
<a name="line-350"></a><span class='hs-definition'>shapeSignature</span> <span class='hs-varid'>t</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>shapeSignature'</span> <span class='hs-layout'>(</span><span class='hs-varid'>nodeCountTree</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span>
<a name="line-351"></a>    <span class='hs-keyword'>where</span> <span class='hs-varid'>shapeSignature'</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>0</span><span class='hs-keyglyph'>]</span> <span class='hs-comment'>-- not [], otherwise we can't distinguish T (T E () E) () E from T E () (T E () E)</span>
<a name="line-352"></a>          <span class='hs-varid'>shapeSignature'</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-varid'>x</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>x</span> <span class='hs-conop'>:</span> <span class='hs-varid'>shapeSignature'</span> <span class='hs-varid'>r</span> <span class='hs-varop'>++</span> <span class='hs-varid'>shapeSignature'</span> <span class='hs-varid'>l</span>
<a name="line-353"></a>
<a name="line-354"></a><a name="nodeCountTree"></a><span class='hs-definition'>nodeCountTree</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>E</span>
<a name="line-355"></a><span class='hs-definition'>nodeCountTree</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-keyword'>_</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>T</span> <span class='hs-varid'>l'</span> <span class='hs-varid'>n</span> <span class='hs-varid'>r'</span>
<a name="line-356"></a>    <span class='hs-keyword'>where</span> <span class='hs-varid'>l'</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>nodeCountTree</span> <span class='hs-varid'>l</span>
<a name="line-357"></a>          <span class='hs-varid'>r'</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>nodeCountTree</span> <span class='hs-varid'>r</span>
<a name="line-358"></a>          <span class='hs-varid'>n</span> <span class='hs-keyglyph'>=</span> <span class='hs-num'>1</span> <span class='hs-varop'>+</span> <span class='hs-layout'>(</span><span class='hs-keyword'>case</span> <span class='hs-varid'>l'</span> <span class='hs-keyword'>of</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-num'>0</span><span class='hs-layout'>;</span> <span class='hs-conid'>T</span> <span class='hs-keyword'>_</span> <span class='hs-varid'>lc</span> <span class='hs-keyword'>_</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-varid'>lc</span><span class='hs-layout'>)</span> <span class='hs-varop'>+</span> <span class='hs-layout'>(</span><span class='hs-keyword'>case</span> <span class='hs-varid'>r'</span> <span class='hs-keyword'>of</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-num'>0</span><span class='hs-layout'>;</span> <span class='hs-conid'>T</span> <span class='hs-keyword'>_</span> <span class='hs-varid'>rc</span> <span class='hs-keyword'>_</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-varid'>rc</span><span class='hs-layout'>)</span>
<a name="line-359"></a>
<a name="line-360"></a><a name="leafCountTree"></a><span class='hs-definition'>leafCountTree</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>E</span>
<a name="line-361"></a><span class='hs-definition'>leafCountTree</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-keyword'>_</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>T</span> <span class='hs-varid'>l'</span> <span class='hs-varid'>n</span> <span class='hs-varid'>r'</span>
<a name="line-362"></a>    <span class='hs-keyword'>where</span> <span class='hs-varid'>l'</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>leafCountTree</span> <span class='hs-varid'>l</span>
<a name="line-363"></a>          <span class='hs-varid'>r'</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>leafCountTree</span> <span class='hs-varid'>r</span>
<a name="line-364"></a>          <span class='hs-varid'>n</span> <span class='hs-keyglyph'>=</span> <span class='hs-layout'>(</span><span class='hs-keyword'>case</span> <span class='hs-varid'>l'</span> <span class='hs-keyword'>of</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-num'>1</span><span class='hs-layout'>;</span> <span class='hs-conid'>T</span> <span class='hs-keyword'>_</span> <span class='hs-varid'>lc</span> <span class='hs-keyword'>_</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-varid'>lc</span><span class='hs-layout'>)</span> <span class='hs-varop'>+</span> <span class='hs-layout'>(</span><span class='hs-keyword'>case</span> <span class='hs-varid'>r'</span> <span class='hs-keyword'>of</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-num'>1</span><span class='hs-layout'>;</span> <span class='hs-conid'>T</span> <span class='hs-keyword'>_</span> <span class='hs-varid'>rc</span> <span class='hs-keyword'>_</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-varid'>rc</span><span class='hs-layout'>)</span>
<a name="line-365"></a>
<a name="line-366"></a><a name="lrCountTree"></a><span class='hs-comment'>-- A tree that counts nodes in left and right subtrees</span>
<a name="line-367"></a><span class='hs-definition'>lrCountTree</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>E</span>
<a name="line-368"></a><span class='hs-definition'>lrCountTree</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-keyword'>_</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>T</span> <span class='hs-varid'>l'</span> <span class='hs-layout'>(</span><span class='hs-varid'>lc</span><span class='hs-layout'>,</span><span class='hs-varid'>rc</span><span class='hs-layout'>)</span> <span class='hs-varid'>r'</span>
<a name="line-369"></a>    <span class='hs-keyword'>where</span> <span class='hs-varid'>l'</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>lrCountTree</span> <span class='hs-varid'>l</span>
<a name="line-370"></a>          <span class='hs-varid'>r'</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>lrCountTree</span> <span class='hs-varid'>r</span>
<a name="line-371"></a>          <span class='hs-varid'>lc</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>case</span> <span class='hs-varid'>l'</span> <span class='hs-keyword'>of</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-num'>0</span><span class='hs-layout'>;</span> <span class='hs-conid'>T</span> <span class='hs-keyword'>_</span> <span class='hs-layout'>(</span><span class='hs-varid'>llc</span><span class='hs-layout'>,</span><span class='hs-varid'>lrc</span><span class='hs-layout'>)</span> <span class='hs-keyword'>_</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-num'>1</span> <span class='hs-varop'>+</span> <span class='hs-varid'>llc</span> <span class='hs-varop'>+</span> <span class='hs-varid'>lrc</span>
<a name="line-372"></a>          <span class='hs-varid'>rc</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>case</span> <span class='hs-varid'>r'</span> <span class='hs-keyword'>of</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-num'>0</span><span class='hs-layout'>;</span> <span class='hs-conid'>T</span> <span class='hs-keyword'>_</span> <span class='hs-layout'>(</span><span class='hs-varid'>rlc</span><span class='hs-layout'>,</span><span class='hs-varid'>rrc</span><span class='hs-layout'>)</span> <span class='hs-keyword'>_</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-num'>1</span> <span class='hs-varop'>+</span> <span class='hs-varid'>rlc</span> <span class='hs-varop'>+</span> <span class='hs-varid'>rrc</span>
<a name="line-373"></a>
<a name="line-374"></a><a name="shape"></a><span class='hs-definition'>shape</span> <span class='hs-keyglyph'>::</span> <span class='hs-conid'>PBT</span> <span class='hs-varid'>a</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>PBT</span> <span class='hs-conid'>()</span>
<a name="line-375"></a><span class='hs-definition'>shape</span> <span class='hs-varid'>t</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>fmap</span> <span class='hs-layout'>(</span><span class='hs-keyglyph'>\</span><span class='hs-keyword'>_</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>()</span><span class='hs-layout'>)</span> <span class='hs-varid'>t</span>
<a name="line-376"></a>
<a name="line-377"></a><a name="numbered"></a><span class='hs-comment'>-- label the nodes of a tree in infix order while preserving its shape</span>
<a name="line-378"></a><span class='hs-definition'>numbered</span> <span class='hs-varid'>t</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>numbered'</span> <span class='hs-num'>1</span> <span class='hs-varid'>t</span>
<a name="line-379"></a>    <span class='hs-keyword'>where</span> <span class='hs-varid'>numbered'</span> <span class='hs-keyword'>_</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>E</span>
<a name="line-380"></a>          <span class='hs-varid'>numbered'</span> <span class='hs-varid'>i</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-varid'>x</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>let</span> <span class='hs-varid'>k</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>nodecount</span> <span class='hs-varid'>l</span> <span class='hs-keyword'>in</span> <span class='hs-conid'>T</span> <span class='hs-layout'>(</span><span class='hs-varid'>numbered'</span> <span class='hs-varid'>i</span> <span class='hs-varid'>l</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>i</span><span class='hs-varop'>+</span><span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>numbered'</span> <span class='hs-layout'>(</span><span class='hs-varid'>i</span><span class='hs-varop'>+</span><span class='hs-varid'>k</span><span class='hs-varop'>+</span><span class='hs-num'>1</span><span class='hs-layout'>)</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span>
<a name="line-381"></a><span class='hs-comment'>-- could also pair the numbers with the input labels</span>
<a name="line-382"></a>
<a name="line-383"></a>
<a name="line-384"></a><a name="splits"></a><span class='hs-definition'>splits</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-layout'>(</span><span class='hs-conid'>E</span><span class='hs-layout'>,</span><span class='hs-conid'>E</span><span class='hs-layout'>)</span><span class='hs-keyglyph'>]</span>
<a name="line-385"></a><span class='hs-definition'>splits</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-varid'>x</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-layout'>(</span><span class='hs-varid'>u</span><span class='hs-layout'>,</span> <span class='hs-conid'>T</span> <span class='hs-varid'>v</span> <span class='hs-varid'>x</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-layout'>(</span><span class='hs-varid'>u</span><span class='hs-layout'>,</span><span class='hs-varid'>v</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>splits</span> <span class='hs-varid'>l</span><span class='hs-keyglyph'>]</span> <span class='hs-varop'>++</span> <span class='hs-keyglyph'>[</span><span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-varid'>x</span> <span class='hs-varid'>u</span><span class='hs-layout'>,</span> <span class='hs-varid'>v</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-layout'>(</span><span class='hs-varid'>u</span><span class='hs-layout'>,</span><span class='hs-varid'>v</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>splits</span> <span class='hs-varid'>r</span><span class='hs-keyglyph'>]</span>
<a name="line-386"></a>
<a name="line-387"></a><a name="instance%20Coalgebra%20k%20(YSymF%20a)"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Ord</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Coalgebra</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyword'>where</span>
<a name="line-388"></a>    <span class='hs-varid'>counit</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>unwrap</span> <span class='hs-varop'>.</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>counit'</span> <span class='hs-keyword'>where</span> <span class='hs-varid'>counit'</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-conid'>E</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-num'>1</span><span class='hs-layout'>;</span> <span class='hs-varid'>counit'</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-keyword'>_</span> <span class='hs-keyword'>_</span> <span class='hs-keyword'>_</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-num'>0</span>
<a name="line-389"></a>    <span class='hs-varid'>comult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>comult'</span>
<a name="line-390"></a>        <span class='hs-keyword'>where</span> <span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-varid'>u</span><span class='hs-layout'>,</span> <span class='hs-conid'>YSymF</span> <span class='hs-varid'>v</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-layout'>(</span><span class='hs-varid'>u</span><span class='hs-layout'>,</span><span class='hs-varid'>v</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>splits</span> <span class='hs-varid'>t</span><span class='hs-keyglyph'>]</span>
<a name="line-391"></a>              <span class='hs-comment'>-- using sumv rather than sum to avoid requiring Show a</span>
<a name="line-392"></a>    <span class='hs-comment'>-- so again this is a kind of deconcatenation coproduct</span>
<a name="line-393"></a>
<a name="line-394"></a><a name="multisplits"></a><span class='hs-definition'>multisplits</span> <span class='hs-num'>1</span> <span class='hs-varid'>t</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>t</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>]</span>
<a name="line-395"></a><span class='hs-definition'>multisplits</span> <span class='hs-num'>2</span> <span class='hs-varid'>t</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>u</span><span class='hs-layout'>,</span><span class='hs-varid'>v</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>|</span> <span class='hs-layout'>(</span><span class='hs-varid'>u</span><span class='hs-layout'>,</span><span class='hs-varid'>v</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>splits</span> <span class='hs-varid'>t</span> <span class='hs-keyglyph'>]</span>
<a name="line-396"></a><span class='hs-definition'>multisplits</span> <span class='hs-varid'>n</span> <span class='hs-varid'>t</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span> <span class='hs-varid'>u</span><span class='hs-conop'>:</span><span class='hs-varid'>ws</span> <span class='hs-keyglyph'>|</span> <span class='hs-layout'>(</span><span class='hs-varid'>u</span><span class='hs-layout'>,</span><span class='hs-varid'>v</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>splits</span> <span class='hs-varid'>t</span><span class='hs-layout'>,</span> <span class='hs-varid'>ws</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>multisplits</span> <span class='hs-layout'>(</span><span class='hs-varid'>n</span><span class='hs-comment'>-</span><span class='hs-num'>1</span><span class='hs-layout'>)</span> <span class='hs-varid'>v</span> <span class='hs-keyglyph'>]</span>
<a name="line-397"></a>
<a name="line-398"></a><a name="graft"></a><span class='hs-definition'>graft</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>t</span><span class='hs-keyglyph'>]</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>t</span>
<a name="line-399"></a><span class='hs-definition'>graft</span> <span class='hs-varid'>ts</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-varid'>x</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>let</span> <span class='hs-layout'>(</span><span class='hs-varid'>ls</span><span class='hs-layout'>,</span><span class='hs-varid'>rs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>splitAt</span> <span class='hs-layout'>(</span><span class='hs-varid'>leafcount</span> <span class='hs-varid'>l</span><span class='hs-layout'>)</span> <span class='hs-varid'>ts</span>
<a name="line-400"></a>                     <span class='hs-keyword'>in</span> <span class='hs-conid'>T</span> <span class='hs-layout'>(</span><span class='hs-varid'>graft</span> <span class='hs-varid'>ls</span> <span class='hs-varid'>l</span><span class='hs-layout'>)</span> <span class='hs-varid'>x</span> <span class='hs-layout'>(</span><span class='hs-varid'>graft</span> <span class='hs-varid'>rs</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span>
<a name="line-401"></a>
<a name="line-402"></a><a name="instance%20Algebra%20k%20(YSymF%20a)"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Ord</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Algebra</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyword'>where</span>
<a name="line-403"></a>    <span class='hs-varid'>unit</span> <span class='hs-varid'>x</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>x</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-conid'>E</span><span class='hs-layout'>)</span>
<a name="line-404"></a>    <span class='hs-varid'>mult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>mult'</span> <span class='hs-keyword'>where</span>
<a name="line-405"></a>        <span class='hs-varid'>mult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-varid'>t</span><span class='hs-layout'>,</span> <span class='hs-conid'>YSymF</span> <span class='hs-varid'>u</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-layout'>(</span><span class='hs-varid'>graft</span> <span class='hs-varid'>ts</span> <span class='hs-varid'>u</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>ts</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>multisplits</span> <span class='hs-layout'>(</span><span class='hs-varid'>leafcount</span> <span class='hs-varid'>u</span><span class='hs-layout'>)</span> <span class='hs-varid'>t</span><span class='hs-keyglyph'>]</span>
<a name="line-406"></a>        <span class='hs-comment'>-- using sumv rather than sum to avoid requiring Show a</span>
<a name="line-407"></a>
<a name="line-408"></a><a name="instance%20Bialgebra%20k%20(YSymF%20a)"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Ord</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Bialgebra</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyword'>where</span> <span class='hs-layout'>{</span><span class='hs-layout'>}</span>
<a name="line-409"></a>
<a name="line-410"></a><a name="instance%20HopfAlgebra%20k%20(YSymF%20a)"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Ord</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>HopfAlgebra</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyword'>where</span>
<a name="line-411"></a>    <span class='hs-varid'>antipode</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>antipode'</span> <span class='hs-keyword'>where</span>
<a name="line-412"></a>        <span class='hs-varid'>antipode'</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-conid'>E</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-conid'>E</span><span class='hs-layout'>)</span>
<a name="line-413"></a>        <span class='hs-varid'>antipode'</span> <span class='hs-varid'>x</span> <span class='hs-keyglyph'>=</span> <span class='hs-layout'>(</span><span class='hs-varid'>negatev</span> <span class='hs-varop'>.</span> <span class='hs-varid'>mult</span> <span class='hs-varop'>.</span> <span class='hs-layout'>(</span><span class='hs-varid'>id</span> <span class='hs-varop'>`tf`</span> <span class='hs-varid'>antipode</span><span class='hs-layout'>)</span> <span class='hs-varop'>.</span> <span class='hs-varid'>removeTerm</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-conid'>E</span><span class='hs-layout'>,</span><span class='hs-varid'>x</span><span class='hs-layout'>)</span> <span class='hs-varop'>.</span> <span class='hs-varid'>comult</span> <span class='hs-varop'>.</span> <span class='hs-varid'>return</span><span class='hs-layout'>)</span> <span class='hs-varid'>x</span>
<a name="line-414"></a>
<a name="line-415"></a>
<a name="line-416"></a><a name="YSymM"></a><span class='hs-comment'>-- |An alternative \"monomial\" basis for (the dual of) the Loday-Ronco Hopf algebra of binary trees, YSym.</span>
<a name="line-417"></a><a name="YSymM"></a><span class='hs-keyword'>newtype</span> <span class='hs-conid'>YSymM</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>YSymM</span> <span class='hs-layout'>(</span><span class='hs-conid'>PBT</span> <span class='hs-conid'>()</span><span class='hs-layout'>)</span> <span class='hs-keyword'>deriving</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span><span class='hs-layout'>,</span> <span class='hs-conid'>Ord</span><span class='hs-layout'>)</span>
<a name="line-418"></a>
<a name="line-419"></a><a name="instance%20Show%20YSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-conid'>Show</span> <span class='hs-conid'>YSymM</span> <span class='hs-keyword'>where</span>
<a name="line-420"></a>    <span class='hs-varid'>show</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymM</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-str'>"M("</span> <span class='hs-varop'>++</span> <span class='hs-varid'>show</span> <span class='hs-varid'>t</span> <span class='hs-varop'>++</span> <span class='hs-str'>")"</span>
<a name="line-421"></a>
<a name="line-422"></a><a name="ysymM"></a><span class='hs-comment'>-- |Construct the element of YSym in the monomial basis indexed by the given tree</span>
<a name="line-423"></a><span class='hs-definition'>ysymM</span> <span class='hs-keyglyph'>::</span> <span class='hs-conid'>PBT</span> <span class='hs-conid'>()</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-conid'>Q</span> <span class='hs-conid'>YSymM</span>
<a name="line-424"></a><span class='hs-definition'>ysymM</span> <span class='hs-varid'>t</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymM</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span>
<a name="line-425"></a>
<a name="line-426"></a><a name="trees"></a><span class='hs-comment'>-- |List all trees with the given number of nodes</span>
<a name="line-427"></a><span class='hs-definition'>trees</span> <span class='hs-keyglyph'>::</span> <span class='hs-conid'>Int</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>PBT</span> <span class='hs-conid'>()</span><span class='hs-keyglyph'>]</span>
<a name="line-428"></a><span class='hs-definition'>trees</span> <span class='hs-num'>0</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>E</span><span class='hs-keyglyph'>]</span>
<a name="line-429"></a><span class='hs-definition'>trees</span> <span class='hs-varid'>n</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-conid'>()</span> <span class='hs-varid'>r</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>i</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>0</span><span class='hs-keyglyph'>..</span><span class='hs-varid'>n</span><span class='hs-comment'>-</span><span class='hs-num'>1</span><span class='hs-keyglyph'>]</span><span class='hs-layout'>,</span> <span class='hs-varid'>l</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>trees</span> <span class='hs-layout'>(</span><span class='hs-varid'>n</span><span class='hs-comment'>-</span><span class='hs-num'>1</span><span class='hs-comment'>-</span><span class='hs-varid'>i</span><span class='hs-layout'>)</span><span class='hs-layout'>,</span> <span class='hs-varid'>r</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>trees</span> <span class='hs-varid'>i</span><span class='hs-keyglyph'>]</span>
<a name="line-430"></a>
<a name="line-431"></a><a name="tamariCovers"></a><span class='hs-comment'>-- |The covering relation for the Tamari partial order on binary trees</span>
<a name="line-432"></a><span class='hs-definition'>tamariCovers</span> <span class='hs-keyglyph'>::</span> <span class='hs-conid'>PBT</span> <span class='hs-varid'>a</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>PBT</span> <span class='hs-varid'>a</span><span class='hs-keyglyph'>]</span>
<a name="line-433"></a><span class='hs-definition'>tamariCovers</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>[]</span>
<a name="line-434"></a><span class='hs-definition'>tamariCovers</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>t</span><span class='hs-keyglyph'>@</span><span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>u</span> <span class='hs-varid'>x</span> <span class='hs-varid'>v</span><span class='hs-layout'>)</span> <span class='hs-varid'>y</span> <span class='hs-varid'>w</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>T</span> <span class='hs-varid'>t'</span> <span class='hs-varid'>y</span> <span class='hs-varid'>w</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>t'</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>tamariCovers</span> <span class='hs-varid'>t</span><span class='hs-keyglyph'>]</span>
<a name="line-435"></a>                                <span class='hs-varop'>++</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>T</span> <span class='hs-varid'>t</span> <span class='hs-varid'>y</span> <span class='hs-varid'>w'</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>w'</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>tamariCovers</span> <span class='hs-varid'>w</span><span class='hs-keyglyph'>]</span>
<a name="line-436"></a>                                <span class='hs-varop'>++</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>T</span> <span class='hs-varid'>u</span> <span class='hs-varid'>y</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>v</span> <span class='hs-varid'>x</span> <span class='hs-varid'>w</span><span class='hs-layout'>)</span><span class='hs-keyglyph'>]</span>
<a name="line-437"></a>                                <span class='hs-comment'>-- Note that this preserves the descending property, and hence the bijection with permutations</span>
<a name="line-438"></a>                                <span class='hs-comment'>-- If we were to swap x and y, we would preserve the binary search tree property instead (if our trees had it)</span>
<a name="line-439"></a><span class='hs-definition'>tamariCovers</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-conid'>E</span> <span class='hs-varid'>x</span> <span class='hs-varid'>u</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>T</span> <span class='hs-conid'>E</span> <span class='hs-varid'>x</span> <span class='hs-varid'>u'</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>u'</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>tamariCovers</span> <span class='hs-varid'>u</span><span class='hs-keyglyph'>]</span>  
<a name="line-440"></a>
<a name="line-441"></a><a name="tamariUpSet"></a><span class='hs-comment'>-- |The up-set of a binary tree in the Tamari partial order</span>
<a name="line-442"></a><span class='hs-definition'>tamariUpSet</span> <span class='hs-keyglyph'>::</span> <span class='hs-conid'>Ord</span> <span class='hs-varid'>a</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>PBT</span> <span class='hs-varid'>a</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>PBT</span> <span class='hs-varid'>a</span><span class='hs-keyglyph'>]</span>
<a name="line-443"></a><span class='hs-definition'>tamariUpSet</span> <span class='hs-varid'>t</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>upSet'</span> <span class='hs-conid'>[]</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>t</span><span class='hs-keyglyph'>]</span>
<a name="line-444"></a>    <span class='hs-keyword'>where</span> <span class='hs-varid'>upSet'</span> <span class='hs-varid'>interior</span> <span class='hs-varid'>boundary</span> <span class='hs-keyglyph'>=</span>
<a name="line-445"></a>              <span class='hs-keyword'>if</span> <span class='hs-varid'>null</span> <span class='hs-varid'>boundary</span>
<a name="line-446"></a>              <span class='hs-keyword'>then</span> <span class='hs-varid'>interior</span>
<a name="line-447"></a>              <span class='hs-keyword'>else</span> <span class='hs-keyword'>let</span> <span class='hs-varid'>interior'</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>setUnionAsc</span> <span class='hs-varid'>interior</span> <span class='hs-varid'>boundary</span>
<a name="line-448"></a>                       <span class='hs-varid'>boundary'</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>toSet</span> <span class='hs-varop'>$</span> <span class='hs-varid'>concatMap</span> <span class='hs-varid'>tamariCovers</span> <span class='hs-varid'>boundary</span>
<a name="line-449"></a>                   <span class='hs-keyword'>in</span> <span class='hs-varid'>upSet'</span> <span class='hs-varid'>interior'</span> <span class='hs-varid'>boundary'</span>
<a name="line-450"></a>
<a name="line-451"></a><span class='hs-comment'>-- tamariOrder1 u v = v `elem` upSet u</span>
<a name="line-452"></a>
<a name="line-453"></a><a name="tamariOrder"></a><span class='hs-comment'>-- |The Tamari partial order on binary trees.</span>
<a name="line-454"></a><span class='hs-comment'>-- This is only defined between trees of the same size (number of nodes).</span>
<a name="line-455"></a><span class='hs-comment'>-- The result between trees of different sizes is undefined (we don't check).</span>
<a name="line-456"></a><span class='hs-definition'>tamariOrder</span> <span class='hs-keyglyph'>::</span> <span class='hs-conid'>PBT</span> <span class='hs-varid'>a</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>PBT</span> <span class='hs-varid'>a</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Bool</span>
<a name="line-457"></a><span class='hs-definition'>tamariOrder</span> <span class='hs-varid'>u</span> <span class='hs-varid'>v</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>weakOrder</span> <span class='hs-layout'>(</span><span class='hs-varid'>minPerm</span> <span class='hs-varid'>u</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>minPerm</span> <span class='hs-varid'>v</span><span class='hs-layout'>)</span>
<a name="line-458"></a><span class='hs-comment'>-- It should be possible to unpack this to be a statement purely about trees, but probably not worth it</span>
<a name="line-459"></a>
<a name="line-460"></a><a name="ysymMtoF"></a><span class='hs-comment'>-- |Convert an element of YSym represented in the monomial basis to the fundamental basis</span>
<a name="line-461"></a><span class='hs-definition'>ysymMtoF</span> <span class='hs-keyglyph'>::</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>YSymM</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-conid'>()</span><span class='hs-layout'>)</span>
<a name="line-462"></a><span class='hs-definition'>ysymMtoF</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>ysymMtoF'</span> <span class='hs-keyword'>where</span>
<a name="line-463"></a>    <span class='hs-varid'>ysymMtoF'</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymM</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>mu</span> <span class='hs-layout'>(</span><span class='hs-varid'>set</span><span class='hs-layout'>,</span><span class='hs-varid'>po</span><span class='hs-layout'>)</span> <span class='hs-varid'>t</span> <span class='hs-varid'>s</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-varid'>s</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>s</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>set</span><span class='hs-keyglyph'>]</span>
<a name="line-464"></a>        <span class='hs-keyword'>where</span> <span class='hs-varid'>po</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>tamariOrder</span>
<a name="line-465"></a>              <span class='hs-varid'>set</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>tamariUpSet</span> <span class='hs-varid'>t</span> <span class='hs-comment'>-- [s | s &lt;- trees (nodecount t), t `tamariOrder` s]</span>
<a name="line-466"></a>
<a name="line-467"></a><a name="ysymFtoM"></a><span class='hs-comment'>-- |Convert an element of YSym represented in the fundamental basis to the monomial basis</span>
<a name="line-468"></a><span class='hs-definition'>ysymFtoM</span> <span class='hs-keyglyph'>::</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-conid'>()</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>YSymM</span>
<a name="line-469"></a><span class='hs-definition'>ysymFtoM</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>ysymFtoM'</span> <span class='hs-keyword'>where</span>
<a name="line-470"></a>    <span class='hs-varid'>ysymFtoM'</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymM</span> <span class='hs-varid'>s</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>s</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>tamariUpSet</span> <span class='hs-varid'>t</span><span class='hs-keyglyph'>]</span>
<a name="line-471"></a>                       <span class='hs-comment'>-- sumv [return (YSymM s) | s &lt;- trees (nodecount t), t `tamariOrder` s]</span>
<a name="line-472"></a>
<a name="line-473"></a>
<a name="line-474"></a><a name="instance%20Algebra%20k%20YSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Algebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>YSymM</span> <span class='hs-keyword'>where</span>
<a name="line-475"></a>    <span class='hs-varid'>unit</span> <span class='hs-varid'>x</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>x</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymM</span> <span class='hs-conid'>E</span><span class='hs-layout'>)</span>
<a name="line-476"></a>    <span class='hs-varid'>mult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>ysymFtoM</span> <span class='hs-varop'>.</span> <span class='hs-varid'>mult</span> <span class='hs-varop'>.</span> <span class='hs-layout'>(</span><span class='hs-varid'>ysymMtoF</span> <span class='hs-varop'>`tf`</span> <span class='hs-varid'>ysymMtoF</span><span class='hs-layout'>)</span>
<a name="line-477"></a>
<a name="line-478"></a><a name="instance%20Coalgebra%20k%20YSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Coalgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>YSymM</span> <span class='hs-keyword'>where</span>
<a name="line-479"></a>    <span class='hs-varid'>counit</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>unwrap</span> <span class='hs-varop'>.</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>counit'</span> <span class='hs-keyword'>where</span> <span class='hs-varid'>counit'</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymM</span> <span class='hs-conid'>E</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-num'>1</span><span class='hs-layout'>;</span> <span class='hs-varid'>counit'</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymM</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-keyword'>_</span> <span class='hs-keyword'>_</span> <span class='hs-keyword'>_</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-num'>0</span>
<a name="line-480"></a>    <span class='hs-comment'>-- comult = (ysymFtoM `tf` ysymFtoM) . comult . ysymMtoF</span>
<a name="line-481"></a>    <span class='hs-varid'>comult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>comult'</span> <span class='hs-keyword'>where</span>
<a name="line-482"></a>        <span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymM</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymM</span> <span class='hs-varid'>r</span><span class='hs-layout'>,</span> <span class='hs-conid'>YSymM</span> <span class='hs-varid'>s</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-layout'>(</span><span class='hs-varid'>rs</span><span class='hs-layout'>,</span><span class='hs-varid'>ss</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>deconcatenations</span> <span class='hs-layout'>(</span><span class='hs-varid'>underDecomposition</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span><span class='hs-layout'>,</span>
<a name="line-483"></a>                                                              <span class='hs-keyword'>let</span> <span class='hs-varid'>r</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>foldl</span> <span class='hs-varid'>under</span> <span class='hs-conid'>E</span> <span class='hs-varid'>rs</span><span class='hs-layout'>,</span> <span class='hs-keyword'>let</span> <span class='hs-varid'>s</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>foldl</span> <span class='hs-varid'>under</span> <span class='hs-conid'>E</span> <span class='hs-varid'>ss</span><span class='hs-keyglyph'>]</span>
<a name="line-484"></a>
<a name="line-485"></a>
<a name="line-486"></a><a name="instance%20Bialgebra%20k%20YSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Bialgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>YSymM</span> <span class='hs-keyword'>where</span> <span class='hs-layout'>{</span><span class='hs-layout'>}</span>
<a name="line-487"></a>
<a name="line-488"></a><a name="instance%20HopfAlgebra%20k%20YSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>HopfAlgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>YSymM</span> <span class='hs-keyword'>where</span>
<a name="line-489"></a>    <span class='hs-varid'>antipode</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>ysymFtoM</span> <span class='hs-varop'>.</span> <span class='hs-varid'>antipode</span> <span class='hs-varop'>.</span> <span class='hs-varid'>ysymMtoF</span> 
<a name="line-490"></a>
<a name="line-491"></a>
<a name="line-492"></a><span class='hs-comment'>-- QSYM: QUASI-SYMMETRIC FUNCTIONS</span>
<a name="line-493"></a><span class='hs-comment'>-- The following is the Hopf algebra QSym of quasi-symmetric functions</span>
<a name="line-494"></a><span class='hs-comment'>-- using the monomial and fundamental bases (indexed by compositions)</span>
<a name="line-495"></a>
<a name="line-496"></a><a name="compositions"></a><span class='hs-comment'>-- compositions in ascending order</span>
<a name="line-497"></a><span class='hs-comment'>-- might be better to use bfs to get length order</span>
<a name="line-498"></a><span class='hs-comment'>-- |List the compositions of an integer n. For example, the compositions of 4 are [[1,1,1,1],[1,1,2],[1,2,1],[1,3],[2,1,1],[2,2],[3,1],[4]]</span>
<a name="line-499"></a><span class='hs-definition'>compositions</span> <span class='hs-keyglyph'>::</span> <span class='hs-conid'>Int</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-keyglyph'>[</span><span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span><span class='hs-keyglyph'>]</span>
<a name="line-500"></a><span class='hs-definition'>compositions</span> <span class='hs-num'>0</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>[]</span><span class='hs-keyglyph'>]</span>
<a name="line-501"></a><span class='hs-definition'>compositions</span> <span class='hs-varid'>n</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>i</span><span class='hs-conop'>:</span><span class='hs-varid'>is</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>i</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>1</span><span class='hs-keyglyph'>..</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span><span class='hs-layout'>,</span> <span class='hs-varid'>is</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>compositions</span> <span class='hs-layout'>(</span><span class='hs-varid'>n</span><span class='hs-comment'>-</span><span class='hs-varid'>i</span><span class='hs-layout'>)</span><span class='hs-keyglyph'>]</span>
<a name="line-502"></a>
<a name="line-503"></a><span class='hs-comment'>-- can retrieve subsets of [1..n-1] from compositions n as follows</span>
<a name="line-504"></a><span class='hs-comment'>-- &gt; map (tail . scanl (+) 0) (map init $ compositions 4)</span>
<a name="line-505"></a><span class='hs-comment'>-- [[],[3],[2],[2,3],[1],[1,3],[1,2],[1,2,3]]</span>
<a name="line-506"></a>
<a name="line-507"></a><a name="quasiShuffles"></a><span class='hs-comment'>-- quasi shuffles of two compositions</span>
<a name="line-508"></a><span class='hs-definition'>quasiShuffles</span> <span class='hs-keyglyph'>::</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-keyglyph'>[</span><span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span><span class='hs-keyglyph'>]</span>
<a name="line-509"></a><span class='hs-definition'>quasiShuffles</span> <span class='hs-layout'>(</span><span class='hs-varid'>x</span><span class='hs-conop'>:</span><span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>y</span><span class='hs-conop'>:</span><span class='hs-varid'>ys</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>map</span> <span class='hs-layout'>(</span><span class='hs-varid'>x</span><span class='hs-conop'>:</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>quasiShuffles</span> <span class='hs-varid'>xs</span> <span class='hs-layout'>(</span><span class='hs-varid'>y</span><span class='hs-conop'>:</span><span class='hs-varid'>ys</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-varop'>++</span>
<a name="line-510"></a>                              <span class='hs-varid'>map</span> <span class='hs-layout'>(</span><span class='hs-layout'>(</span><span class='hs-varid'>x</span><span class='hs-varop'>+</span><span class='hs-varid'>y</span><span class='hs-layout'>)</span><span class='hs-conop'>:</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>quasiShuffles</span> <span class='hs-varid'>xs</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span> <span class='hs-varop'>++</span>
<a name="line-511"></a>                              <span class='hs-varid'>map</span> <span class='hs-layout'>(</span><span class='hs-varid'>y</span><span class='hs-conop'>:</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>quasiShuffles</span> <span class='hs-layout'>(</span><span class='hs-varid'>x</span><span class='hs-conop'>:</span><span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span>
<a name="line-512"></a><span class='hs-definition'>quasiShuffles</span> <span class='hs-varid'>xs</span> <span class='hs-conid'>[]</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>xs</span><span class='hs-keyglyph'>]</span>
<a name="line-513"></a><span class='hs-definition'>quasiShuffles</span> <span class='hs-conid'>[]</span> <span class='hs-varid'>ys</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>ys</span><span class='hs-keyglyph'>]</span>
<a name="line-514"></a>
<a name="line-515"></a>
<a name="line-516"></a><a name="QSymM"></a><span class='hs-comment'>-- |A type for the monomial basis for the quasi-symmetric functions, indexed by compositions.</span>
<a name="line-517"></a><a name="QSymM"></a><span class='hs-keyword'>newtype</span> <span class='hs-conid'>QSymM</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>QSymM</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyword'>deriving</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span><span class='hs-layout'>)</span>
<a name="line-518"></a>
<a name="line-519"></a><a name="instance%20Ord%20QSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-conid'>Ord</span> <span class='hs-conid'>QSymM</span> <span class='hs-keyword'>where</span>
<a name="line-520"></a>    <span class='hs-varid'>compare</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymM</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymM</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>compare</span> <span class='hs-layout'>(</span><span class='hs-varid'>sum</span> <span class='hs-varid'>xs</span><span class='hs-layout'>,</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>sum</span> <span class='hs-varid'>ys</span><span class='hs-layout'>,</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span>
<a name="line-521"></a>
<a name="line-522"></a><a name="instance%20Show%20QSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-conid'>Show</span> <span class='hs-conid'>QSymM</span> <span class='hs-keyword'>where</span>
<a name="line-523"></a>    <span class='hs-varid'>show</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymM</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-str'>"M "</span> <span class='hs-varop'>++</span> <span class='hs-varid'>show</span> <span class='hs-varid'>xs</span>
<a name="line-524"></a>
<a name="line-525"></a><a name="qsymM"></a><span class='hs-comment'>-- |Construct the element of QSym in the monomial basis indexed by the given composition</span>
<a name="line-526"></a><span class='hs-definition'>qsymM</span> <span class='hs-keyglyph'>::</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-conid'>Q</span> <span class='hs-conid'>QSymM</span>
<a name="line-527"></a><span class='hs-definition'>qsymM</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>all</span> <span class='hs-layout'>(</span><span class='hs-varop'>&gt;</span><span class='hs-num'>0</span><span class='hs-layout'>)</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymM</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span>
<a name="line-528"></a>         <span class='hs-keyglyph'>|</span> <span class='hs-varid'>otherwise</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>error</span> <span class='hs-str'>"qsymM: not a composition"</span>
<a name="line-529"></a>
<a name="line-530"></a><a name="instance%20Algebra%20k%20QSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Algebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>QSymM</span> <span class='hs-keyword'>where</span>
<a name="line-531"></a>    <span class='hs-varid'>unit</span> <span class='hs-varid'>x</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>x</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymM</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span>
<a name="line-532"></a>    <span class='hs-varid'>mult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>mult'</span> <span class='hs-keyword'>where</span>
<a name="line-533"></a>        <span class='hs-varid'>mult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymM</span> <span class='hs-varid'>alpha</span><span class='hs-layout'>,</span> <span class='hs-conid'>QSymM</span> <span class='hs-varid'>beta</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymM</span> <span class='hs-varid'>gamma</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>gamma</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>quasiShuffles</span> <span class='hs-varid'>alpha</span> <span class='hs-varid'>beta</span><span class='hs-keyglyph'>]</span>
<a name="line-534"></a>
<a name="line-535"></a><a name="instance%20Coalgebra%20k%20QSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Coalgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>QSymM</span> <span class='hs-keyword'>where</span>
<a name="line-536"></a>    <span class='hs-varid'>counit</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>unwrap</span> <span class='hs-varop'>.</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>counit'</span> <span class='hs-keyword'>where</span> <span class='hs-varid'>counit'</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymM</span> <span class='hs-varid'>alpha</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>if</span> <span class='hs-varid'>null</span> <span class='hs-varid'>alpha</span> <span class='hs-keyword'>then</span> <span class='hs-num'>1</span> <span class='hs-keyword'>else</span> <span class='hs-num'>0</span>
<a name="line-537"></a>    <span class='hs-varid'>comult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>comult'</span> <span class='hs-keyword'>where</span>
<a name="line-538"></a>        <span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymM</span> <span class='hs-varid'>gamma</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymM</span> <span class='hs-varid'>alpha</span><span class='hs-layout'>,</span> <span class='hs-conid'>QSymM</span> <span class='hs-varid'>beta</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-layout'>(</span><span class='hs-varid'>alpha</span><span class='hs-layout'>,</span><span class='hs-varid'>beta</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>deconcatenations</span> <span class='hs-varid'>gamma</span><span class='hs-keyglyph'>]</span>
<a name="line-539"></a>
<a name="line-540"></a><a name="instance%20Bialgebra%20k%20QSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Bialgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>QSymM</span> <span class='hs-keyword'>where</span> <span class='hs-layout'>{</span><span class='hs-layout'>}</span>
<a name="line-541"></a>
<a name="line-542"></a><a name="instance%20HopfAlgebra%20k%20QSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>HopfAlgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>QSymM</span> <span class='hs-keyword'>where</span>
<a name="line-543"></a>    <span class='hs-varid'>antipode</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>antipode'</span> <span class='hs-keyword'>where</span>
<a name="line-544"></a>        <span class='hs-varid'>antipode'</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymM</span> <span class='hs-varid'>alpha</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-layout'>(</span><span class='hs-comment'>-</span><span class='hs-num'>1</span><span class='hs-layout'>)</span><span class='hs-varop'>^</span><span class='hs-varid'>length</span> <span class='hs-varid'>alpha</span> <span class='hs-varop'>*</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymM</span> <span class='hs-varid'>beta</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>beta</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>coarsenings</span> <span class='hs-layout'>(</span><span class='hs-varid'>reverse</span> <span class='hs-varid'>alpha</span><span class='hs-layout'>)</span><span class='hs-keyglyph'>]</span>
<a name="line-545"></a>        <span class='hs-comment'>-- antipode' (QSymM alpha) = (-1)^length alpha * sumv [return (QSymM (reverse beta)) | beta &lt;- coarsenings alpha]</span>
<a name="line-546"></a>
<a name="line-547"></a><a name="coarsenings"></a><span class='hs-definition'>coarsenings</span> <span class='hs-layout'>(</span><span class='hs-varid'>x1</span><span class='hs-conop'>:</span><span class='hs-varid'>x2</span><span class='hs-conop'>:</span><span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>map</span> <span class='hs-layout'>(</span><span class='hs-varid'>x1</span><span class='hs-conop'>:</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>coarsenings</span> <span class='hs-layout'>(</span><span class='hs-varid'>x2</span><span class='hs-conop'>:</span><span class='hs-varid'>xs</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-varop'>++</span> <span class='hs-varid'>coarsenings</span> <span class='hs-layout'>(</span><span class='hs-layout'>(</span><span class='hs-varid'>x1</span><span class='hs-varop'>+</span><span class='hs-varid'>x2</span><span class='hs-layout'>)</span><span class='hs-conop'>:</span><span class='hs-varid'>xs</span><span class='hs-layout'>)</span>
<a name="line-548"></a><span class='hs-definition'>coarsenings</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>xs</span><span class='hs-keyglyph'>]</span> <span class='hs-comment'>-- for xs a singleton or null</span>
<a name="line-549"></a>
<a name="line-550"></a><a name="refinements"></a><span class='hs-definition'>refinements</span> <span class='hs-layout'>(</span><span class='hs-varid'>x</span><span class='hs-conop'>:</span><span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>y</span><span class='hs-varop'>++</span><span class='hs-varid'>ys</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>y</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>compositions</span> <span class='hs-varid'>x</span><span class='hs-layout'>,</span> <span class='hs-varid'>ys</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>refinements</span> <span class='hs-varid'>xs</span><span class='hs-keyglyph'>]</span>
<a name="line-551"></a><span class='hs-definition'>refinements</span> <span class='hs-conid'>[]</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>[]</span><span class='hs-keyglyph'>]</span>
<a name="line-552"></a>
<a name="line-553"></a>
<a name="line-554"></a><a name="QSymF"></a><span class='hs-comment'>-- |A type for the fundamental basis for the quasi-symmetric functions, indexed by compositions.</span>
<a name="line-555"></a><a name="QSymF"></a><span class='hs-keyword'>newtype</span> <span class='hs-conid'>QSymF</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>QSymF</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyword'>deriving</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span><span class='hs-layout'>)</span>
<a name="line-556"></a>
<a name="line-557"></a><a name="instance%20Ord%20QSymF"></a><span class='hs-keyword'>instance</span> <span class='hs-conid'>Ord</span> <span class='hs-conid'>QSymF</span> <span class='hs-keyword'>where</span>
<a name="line-558"></a>    <span class='hs-varid'>compare</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymF</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>compare</span> <span class='hs-layout'>(</span><span class='hs-varid'>sum</span> <span class='hs-varid'>xs</span><span class='hs-layout'>,</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>sum</span> <span class='hs-varid'>ys</span><span class='hs-layout'>,</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span>
<a name="line-559"></a>
<a name="line-560"></a><a name="instance%20Show%20QSymF"></a><span class='hs-keyword'>instance</span> <span class='hs-conid'>Show</span> <span class='hs-conid'>QSymF</span> <span class='hs-keyword'>where</span>
<a name="line-561"></a>    <span class='hs-varid'>show</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-str'>"F "</span> <span class='hs-varop'>++</span> <span class='hs-varid'>show</span> <span class='hs-varid'>xs</span>
<a name="line-562"></a>
<a name="line-563"></a><a name="qsymF"></a><span class='hs-comment'>-- |Construct the element of QSym in the fundamental basis indexed by the given composition</span>
<a name="line-564"></a><span class='hs-definition'>qsymF</span> <span class='hs-keyglyph'>::</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-conid'>Q</span> <span class='hs-conid'>QSymF</span>
<a name="line-565"></a><span class='hs-definition'>qsymF</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>all</span> <span class='hs-layout'>(</span><span class='hs-varop'>&gt;</span><span class='hs-num'>0</span><span class='hs-layout'>)</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span>
<a name="line-566"></a>         <span class='hs-keyglyph'>|</span> <span class='hs-varid'>otherwise</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>error</span> <span class='hs-str'>"qsymF: not a composition"</span>
<a name="line-567"></a>
<a name="line-568"></a><a name="qsymMtoF"></a><span class='hs-comment'>-- |Convert an element of QSym represented in the monomial basis to the fundamental basis</span>
<a name="line-569"></a><span class='hs-definition'>qsymMtoF</span> <span class='hs-keyglyph'>::</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>QSymM</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>QSymF</span>
<a name="line-570"></a><span class='hs-definition'>qsymMtoF</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>qsymMtoF'</span> <span class='hs-keyword'>where</span>
<a name="line-571"></a>    <span class='hs-varid'>qsymMtoF'</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymM</span> <span class='hs-varid'>alpha</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-layout'>(</span><span class='hs-comment'>-</span><span class='hs-num'>1</span><span class='hs-layout'>)</span> <span class='hs-varop'>^</span> <span class='hs-layout'>(</span><span class='hs-varid'>length</span> <span class='hs-varid'>beta</span> <span class='hs-comment'>-</span> <span class='hs-varid'>length</span> <span class='hs-varid'>alpha</span><span class='hs-layout'>)</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymF</span> <span class='hs-varid'>beta</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>beta</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>refinements</span> <span class='hs-varid'>alpha</span><span class='hs-keyglyph'>]</span>
<a name="line-572"></a>
<a name="line-573"></a><a name="qsymFtoM"></a><span class='hs-comment'>-- |Convert an element of QSym represented in the fundamental basis to the monomial basis</span>
<a name="line-574"></a><span class='hs-definition'>qsymFtoM</span> <span class='hs-keyglyph'>::</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>QSymF</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>QSymM</span>
<a name="line-575"></a><span class='hs-definition'>qsymFtoM</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>qsymFtoM'</span> <span class='hs-keyword'>where</span>
<a name="line-576"></a>    <span class='hs-varid'>qsymFtoM'</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymF</span> <span class='hs-varid'>alpha</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymM</span> <span class='hs-varid'>beta</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>beta</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>refinements</span> <span class='hs-varid'>alpha</span><span class='hs-keyglyph'>]</span> <span class='hs-comment'>-- ie beta &lt;- up-set of alpha</span>
<a name="line-577"></a>
<a name="line-578"></a><a name="instance%20Algebra%20k%20QSymF"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Algebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>QSymF</span> <span class='hs-keyword'>where</span>
<a name="line-579"></a>    <span class='hs-varid'>unit</span> <span class='hs-varid'>x</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>x</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymF</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span>
<a name="line-580"></a>    <span class='hs-varid'>mult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>qsymMtoF</span> <span class='hs-varop'>.</span> <span class='hs-varid'>mult</span> <span class='hs-varop'>.</span> <span class='hs-layout'>(</span><span class='hs-varid'>qsymFtoM</span> <span class='hs-varop'>`tf`</span> <span class='hs-varid'>qsymFtoM</span><span class='hs-layout'>)</span>
<a name="line-581"></a>
<a name="line-582"></a><a name="instance%20Coalgebra%20k%20QSymF"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Coalgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>QSymF</span> <span class='hs-keyword'>where</span>
<a name="line-583"></a>    <span class='hs-varid'>counit</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>unwrap</span> <span class='hs-varop'>.</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>counit'</span> <span class='hs-keyword'>where</span> <span class='hs-varid'>counit'</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>if</span> <span class='hs-varid'>null</span> <span class='hs-varid'>xs</span> <span class='hs-keyword'>then</span> <span class='hs-num'>1</span> <span class='hs-keyword'>else</span> <span class='hs-num'>0</span>
<a name="line-584"></a>    <span class='hs-varid'>comult</span> <span class='hs-keyglyph'>=</span> <span class='hs-layout'>(</span><span class='hs-varid'>qsymMtoF</span> <span class='hs-varop'>`tf`</span> <span class='hs-varid'>qsymMtoF</span><span class='hs-layout'>)</span> <span class='hs-varop'>.</span> <span class='hs-varid'>comult</span> <span class='hs-varop'>.</span> <span class='hs-varid'>qsymFtoM</span>
<a name="line-585"></a>
<a name="line-586"></a><a name="instance%20Bialgebra%20k%20QSymF"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Bialgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>QSymF</span> <span class='hs-keyword'>where</span> <span class='hs-layout'>{</span><span class='hs-layout'>}</span>
<a name="line-587"></a>
<a name="line-588"></a><a name="instance%20HopfAlgebra%20k%20QSymF"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>HopfAlgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>QSymF</span> <span class='hs-keyword'>where</span>
<a name="line-589"></a>    <span class='hs-varid'>antipode</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>qsymMtoF</span> <span class='hs-varop'>.</span> <span class='hs-varid'>antipode</span> <span class='hs-varop'>.</span> <span class='hs-varid'>qsymFtoM</span>
<a name="line-590"></a>
<a name="line-591"></a>
<a name="line-592"></a><span class='hs-comment'>-- QUASI-SYMMETRIC POLYNOMIALS</span>
<a name="line-593"></a>
<a name="line-594"></a><span class='hs-comment'>-- the above induces Hopf algebra structure on quasi-symmetric functions via</span>
<a name="line-595"></a><span class='hs-comment'>-- m_alpha -&gt; sum [product (zipWith (^) (map x_ is) alpha | is &lt;- combinationsOf k [] ] where k = length alpha</span>
<a name="line-596"></a>
<a name="line-597"></a><span class='hs-comment'>-- xvars n = [glexvar ("x" ++ show i) | i &lt;- [1..n] ]</span>
<a name="line-598"></a>
<a name="line-599"></a><a name="qsymPoly"></a><span class='hs-comment'>-- |@qsymPoly n is@ is the quasi-symmetric polynomial in n variables for the indices is. (This corresponds to the</span>
<a name="line-600"></a><span class='hs-comment'>-- monomial basis for QSym.) For example, qsymPoly 3 [2,1] == x1^2*x2+x1^2*x3+x2^2*x3.</span>
<a name="line-601"></a><span class='hs-definition'>qsymPoly</span> <span class='hs-keyglyph'>::</span> <span class='hs-conid'>Int</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>GlexPoly</span> <span class='hs-conid'>Q</span> <span class='hs-conid'>String</span>
<a name="line-602"></a><span class='hs-definition'>qsymPoly</span> <span class='hs-varid'>n</span> <span class='hs-varid'>is</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sum</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>product</span> <span class='hs-layout'>(</span><span class='hs-varid'>zipWith</span> <span class='hs-layout'>(</span><span class='hs-varop'>^</span><span class='hs-layout'>)</span> <span class='hs-varid'>xs'</span> <span class='hs-varid'>is</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>xs'</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>combinationsOf</span> <span class='hs-varid'>r</span> <span class='hs-varid'>xs</span><span class='hs-keyglyph'>]</span>
<a name="line-603"></a>    <span class='hs-keyword'>where</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>glexvar</span> <span class='hs-layout'>(</span><span class='hs-str'>"x"</span> <span class='hs-varop'>++</span> <span class='hs-varid'>show</span> <span class='hs-varid'>i</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>i</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>1</span><span class='hs-keyglyph'>..</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>]</span>
<a name="line-604"></a>          <span class='hs-varid'>r</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>length</span> <span class='hs-varid'>is</span>
<a name="line-605"></a>
<a name="line-606"></a>
<a name="line-607"></a><span class='hs-comment'>-- SYM, THE HOPF ALGEBRA OF SYMMETRIC FUNCTIONS</span>
<a name="line-608"></a>
<a name="line-609"></a><a name="SymM"></a><span class='hs-comment'>-- |A type for the monomial basis for Sym, the Hopf algebra of symmetric functions, indexed by integer partitions</span>
<a name="line-610"></a><a name="SymM"></a><span class='hs-keyword'>newtype</span> <span class='hs-conid'>SymM</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>SymM</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyword'>deriving</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span><span class='hs-layout'>,</span><span class='hs-conid'>Show</span><span class='hs-layout'>)</span>
<a name="line-611"></a>
<a name="line-612"></a><a name="instance%20Ord%20SymM"></a><span class='hs-keyword'>instance</span> <span class='hs-conid'>Ord</span> <span class='hs-conid'>SymM</span> <span class='hs-keyword'>where</span>
<a name="line-613"></a>    <span class='hs-varid'>compare</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymM</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymM</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>compare</span> <span class='hs-layout'>(</span><span class='hs-varid'>sum</span> <span class='hs-varid'>xs</span><span class='hs-layout'>,</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>sum</span> <span class='hs-varid'>ys</span><span class='hs-layout'>,</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-comment'>-- note the order reversal in snd</span>
<a name="line-614"></a>
<a name="line-615"></a><a name="symM"></a><span class='hs-comment'>-- |Construct the element of Sym in the monomial basis indexed by the given integer partition</span>
<a name="line-616"></a><span class='hs-definition'>symM</span> <span class='hs-keyglyph'>::</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-conid'>Q</span> <span class='hs-conid'>SymM</span>
<a name="line-617"></a><span class='hs-definition'>symM</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>all</span> <span class='hs-layout'>(</span><span class='hs-varop'>&gt;</span><span class='hs-num'>0</span><span class='hs-layout'>)</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymM</span> <span class='hs-varop'>$</span> <span class='hs-varid'>sortDesc</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span>
<a name="line-618"></a>        <span class='hs-keyglyph'>|</span> <span class='hs-varid'>otherwise</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>error</span> <span class='hs-str'>"symM: not a partition"</span>
<a name="line-619"></a>
<a name="line-620"></a><a name="instance%20Algebra%20k%20SymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Algebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymM</span> <span class='hs-keyword'>where</span>
<a name="line-621"></a>    <span class='hs-varid'>unit</span> <span class='hs-varid'>x</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>x</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymM</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span>
<a name="line-622"></a>    <span class='hs-varid'>mult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>mult'</span> <span class='hs-keyword'>where</span>
<a name="line-623"></a>        <span class='hs-varid'>mult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymM</span> <span class='hs-varid'>lambda</span><span class='hs-layout'>,</span> <span class='hs-conid'>SymM</span> <span class='hs-varid'>mu</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymM</span> <span class='hs-varid'>nu</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>nu</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>symMult</span> <span class='hs-varid'>lambda</span> <span class='hs-varid'>mu</span><span class='hs-keyglyph'>]</span>
<a name="line-624"></a>
<a name="line-625"></a><span class='hs-comment'>-- multisetPermutations = toSet . L.permutations</span>
<a name="line-626"></a>
<a name="line-627"></a><span class='hs-comment'>-- compositionsFromPartition2 = foldl (\xss ys -&gt; concatMap (shuffles ys) xss) [[]] . L.group</span>
<a name="line-628"></a><span class='hs-comment'>-- compositionsFromPartition2 = foldl (\ls r -&gt; concat [shuffles l r | l &lt;- ls]) [[]] . L.group</span>
<a name="line-629"></a>
<a name="line-630"></a><a name="compositionsFromPartition"></a><span class='hs-comment'>-- The partition must be in either ascending or descending order (so that L.group does as expected)</span>
<a name="line-631"></a><span class='hs-definition'>compositionsFromPartition</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>foldr</span> <span class='hs-layout'>(</span><span class='hs-keyglyph'>\</span><span class='hs-varid'>l</span> <span class='hs-varid'>rs</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-varid'>concatMap</span> <span class='hs-layout'>(</span><span class='hs-varid'>shuffles</span> <span class='hs-varid'>l</span><span class='hs-layout'>)</span> <span class='hs-varid'>rs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>[]</span><span class='hs-keyglyph'>]</span> <span class='hs-varop'>.</span> <span class='hs-conid'>L</span><span class='hs-varop'>.</span><span class='hs-varid'>group</span>
<a name="line-632"></a>
<a name="line-633"></a><a name="symMult"></a><span class='hs-comment'>-- In effect, we multiply in Sym by converting to QSym, multiplying there, and converting back.</span>
<a name="line-634"></a><span class='hs-comment'>-- It would be nice to find a more direct method.</span>
<a name="line-635"></a><span class='hs-definition'>symMult</span> <span class='hs-varid'>xs</span> <span class='hs-varid'>ys</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>filter</span> <span class='hs-varid'>isWeaklyDecreasing</span> <span class='hs-varop'>$</span> <span class='hs-varid'>concat</span>
<a name="line-636"></a>    <span class='hs-keyglyph'>[</span><span class='hs-varid'>quasiShuffles</span> <span class='hs-varid'>xs'</span> <span class='hs-varid'>ys'</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>xs'</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>compositionsFromPartition</span> <span class='hs-varid'>xs</span><span class='hs-layout'>,</span> <span class='hs-varid'>ys'</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>compositionsFromPartition</span> <span class='hs-varid'>ys</span><span class='hs-keyglyph'>]</span>
<a name="line-637"></a>
<a name="line-638"></a><a name="instance%20Coalgebra%20k%20SymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Coalgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymM</span> <span class='hs-keyword'>where</span>
<a name="line-639"></a>    <span class='hs-varid'>counit</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>unwrap</span> <span class='hs-varop'>.</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>counit'</span> <span class='hs-keyword'>where</span> <span class='hs-varid'>counit'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymM</span> <span class='hs-varid'>lambda</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>if</span> <span class='hs-varid'>null</span> <span class='hs-varid'>lambda</span> <span class='hs-keyword'>then</span> <span class='hs-num'>1</span> <span class='hs-keyword'>else</span> <span class='hs-num'>0</span>
<a name="line-640"></a>    <span class='hs-varid'>comult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>comult'</span> <span class='hs-keyword'>where</span>
<a name="line-641"></a>        <span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymM</span> <span class='hs-varid'>lambda</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymM</span> <span class='hs-varid'>mu</span><span class='hs-layout'>,</span> <span class='hs-conid'>SymM</span> <span class='hs-varid'>nu</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>mu</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>toSet</span> <span class='hs-layout'>(</span><span class='hs-varid'>powersetdfs</span> <span class='hs-varid'>lambda</span><span class='hs-layout'>)</span><span class='hs-layout'>,</span> <span class='hs-keyword'>let</span> <span class='hs-varid'>nu</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>diffDesc</span> <span class='hs-varid'>lambda</span> <span class='hs-varid'>mu</span><span class='hs-keyglyph'>]</span>
<a name="line-642"></a>
<a name="line-643"></a><a name="instance%20Bialgebra%20k%20SymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Bialgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymM</span> <span class='hs-keyword'>where</span> <span class='hs-layout'>{</span><span class='hs-layout'>}</span>
<a name="line-644"></a>
<a name="line-645"></a><a name="instance%20HopfAlgebra%20k%20SymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>HopfAlgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymM</span> <span class='hs-keyword'>where</span>
<a name="line-646"></a>    <span class='hs-varid'>antipode</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>antipode'</span> <span class='hs-keyword'>where</span>
<a name="line-647"></a>        <span class='hs-varid'>antipode'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymM</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymM</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span>
<a name="line-648"></a>        <span class='hs-varid'>antipode'</span> <span class='hs-varid'>x</span> <span class='hs-keyglyph'>=</span> <span class='hs-layout'>(</span><span class='hs-varid'>negatev</span> <span class='hs-varop'>.</span> <span class='hs-varid'>mult</span> <span class='hs-varop'>.</span> <span class='hs-layout'>(</span><span class='hs-varid'>id</span> <span class='hs-varop'>`tf`</span> <span class='hs-varid'>antipode</span><span class='hs-layout'>)</span> <span class='hs-varop'>.</span> <span class='hs-varid'>removeTerm</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymM</span> <span class='hs-conid'>[]</span><span class='hs-layout'>,</span><span class='hs-varid'>x</span><span class='hs-layout'>)</span> <span class='hs-varop'>.</span> <span class='hs-varid'>comult</span> <span class='hs-varop'>.</span> <span class='hs-varid'>return</span><span class='hs-layout'>)</span> <span class='hs-varid'>x</span>
<a name="line-649"></a>
<a name="line-650"></a>
<a name="line-651"></a><a name="SymE"></a><span class='hs-comment'>-- |The elementary basis for Sym, the Hopf algebra of symmetric functions. Defined informally as</span>
<a name="line-652"></a><a name="SymE"></a><span class='hs-comment'>-- &gt; symE [n] = symM (replicate n 1)</span>
<a name="line-653"></a><a name="SymE"></a><span class='hs-comment'>-- &gt; symE lambda = product [symE [p] | p &lt;- lambda]</span>
<a name="line-654"></a><a name="SymE"></a><span class='hs-keyword'>newtype</span> <span class='hs-conid'>SymE</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>SymE</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyword'>deriving</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span><span class='hs-layout'>,</span><span class='hs-conid'>Ord</span><span class='hs-layout'>,</span><span class='hs-conid'>Show</span><span class='hs-layout'>)</span>
<a name="line-655"></a>
<a name="line-656"></a><a name="symE"></a><span class='hs-definition'>symE</span> <span class='hs-keyglyph'>::</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-conid'>Q</span> <span class='hs-conid'>SymE</span>
<a name="line-657"></a><span class='hs-definition'>symE</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>all</span> <span class='hs-layout'>(</span><span class='hs-varop'>&gt;</span><span class='hs-num'>0</span><span class='hs-layout'>)</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymE</span> <span class='hs-varop'>$</span> <span class='hs-varid'>sortDesc</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span>
<a name="line-658"></a>        <span class='hs-keyglyph'>|</span> <span class='hs-varid'>otherwise</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>error</span> <span class='hs-str'>"symE: not a partition"</span>
<a name="line-659"></a>
<a name="line-660"></a><a name="instance%20Algebra%20k%20SymE"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Algebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymE</span> <span class='hs-keyword'>where</span>
<a name="line-661"></a>    <span class='hs-varid'>unit</span> <span class='hs-varid'>x</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>x</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymE</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span>
<a name="line-662"></a>    <span class='hs-varid'>mult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-layout'>(</span><span class='hs-keyglyph'>\</span><span class='hs-layout'>(</span><span class='hs-conid'>SymE</span> <span class='hs-varid'>lambda</span><span class='hs-layout'>,</span> <span class='hs-conid'>SymE</span> <span class='hs-varid'>mu</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-varid'>return</span> <span class='hs-varop'>$</span> <span class='hs-conid'>SymE</span> <span class='hs-varop'>$</span> <span class='hs-varid'>multisetSumDesc</span> <span class='hs-varid'>lambda</span> <span class='hs-varid'>mu</span><span class='hs-layout'>)</span>
<a name="line-663"></a>
<a name="line-664"></a><a name="instance%20Coalgebra%20k%20SymE"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Coalgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymE</span> <span class='hs-keyword'>where</span>
<a name="line-665"></a>    <span class='hs-varid'>counit</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>unwrap</span> <span class='hs-varop'>.</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>counit'</span> <span class='hs-keyword'>where</span> <span class='hs-varid'>counit'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymE</span> <span class='hs-varid'>lambda</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>if</span> <span class='hs-varid'>null</span> <span class='hs-varid'>lambda</span> <span class='hs-keyword'>then</span> <span class='hs-num'>1</span> <span class='hs-keyword'>else</span> <span class='hs-num'>0</span>
<a name="line-666"></a>    <span class='hs-varid'>comult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>comult'</span> <span class='hs-keyword'>where</span>
<a name="line-667"></a>        <span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymE</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-varid'>e</span> <span class='hs-varid'>i</span><span class='hs-layout'>,</span> <span class='hs-varid'>e</span> <span class='hs-layout'>(</span><span class='hs-varid'>n</span><span class='hs-comment'>-</span><span class='hs-varid'>i</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>i</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>0</span><span class='hs-keyglyph'>..</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>]</span>
<a name="line-668"></a>        <span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymE</span> <span class='hs-varid'>lambda</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>product</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymE</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>n</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>lambda</span><span class='hs-keyglyph'>]</span>
<a name="line-669"></a>        <span class='hs-varid'>e</span> <span class='hs-num'>0</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>SymE</span> <span class='hs-conid'>[]</span>
<a name="line-670"></a>        <span class='hs-varid'>e</span> <span class='hs-varid'>i</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>SymE</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>i</span><span class='hs-keyglyph'>]</span>
<a name="line-671"></a>
<a name="line-672"></a><a name="instance%20Bialgebra%20k%20SymE"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Bialgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymE</span> <span class='hs-keyword'>where</span> <span class='hs-layout'>{</span><span class='hs-layout'>}</span>
<a name="line-673"></a>
<a name="line-674"></a><a name="symEtoM"></a><span class='hs-comment'>-- |Convert from the elementary to the monomial basis of Sym</span>
<a name="line-675"></a><span class='hs-definition'>symEtoM</span> <span class='hs-keyglyph'>::</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymE</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymM</span>
<a name="line-676"></a><span class='hs-definition'>symEtoM</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>symEtoM'</span> <span class='hs-keyword'>where</span>
<a name="line-677"></a>    <span class='hs-varid'>symEtoM'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymE</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymM</span> <span class='hs-layout'>(</span><span class='hs-varid'>replicate</span> <span class='hs-varid'>n</span> <span class='hs-num'>1</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span>
<a name="line-678"></a>    <span class='hs-varid'>symEtoM'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymE</span> <span class='hs-varid'>lambda</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>product</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>symEtoM'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymE</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>p</span><span class='hs-keyglyph'>]</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>p</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>lambda</span><span class='hs-keyglyph'>]</span>
<a name="line-679"></a>
<a name="line-680"></a>
<a name="line-681"></a><a name="SymH"></a><span class='hs-comment'>-- |The complete basis for Sym, the Hopf algebra of symmetric functions. Defined informally as</span>
<a name="line-682"></a><a name="SymH"></a><span class='hs-comment'>-- &gt; symH [n] = sum [symM lambda | lambda &lt;- integerPartitions n] -- == all monomials of weight n</span>
<a name="line-683"></a><a name="SymH"></a><span class='hs-comment'>-- &gt; symH lambda = product [symH [p] | p &lt;- lambda]</span>
<a name="line-684"></a><a name="SymH"></a><span class='hs-keyword'>newtype</span> <span class='hs-conid'>SymH</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>SymH</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyword'>deriving</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span><span class='hs-layout'>,</span><span class='hs-conid'>Ord</span><span class='hs-layout'>,</span><span class='hs-conid'>Show</span><span class='hs-layout'>)</span>
<a name="line-685"></a>
<a name="line-686"></a><a name="symH"></a><span class='hs-definition'>symH</span> <span class='hs-keyglyph'>::</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-conid'>Q</span> <span class='hs-conid'>SymH</span>
<a name="line-687"></a><span class='hs-definition'>symH</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>all</span> <span class='hs-layout'>(</span><span class='hs-varop'>&gt;</span><span class='hs-num'>0</span><span class='hs-layout'>)</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymH</span> <span class='hs-varop'>$</span> <span class='hs-varid'>sortDesc</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span>
<a name="line-688"></a>        <span class='hs-keyglyph'>|</span> <span class='hs-varid'>otherwise</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>error</span> <span class='hs-str'>"symH: not a partition"</span>
<a name="line-689"></a>
<a name="line-690"></a><a name="instance%20Algebra%20k%20SymH"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Algebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymH</span> <span class='hs-keyword'>where</span>
<a name="line-691"></a>    <span class='hs-varid'>unit</span> <span class='hs-varid'>x</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>x</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymH</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span>
<a name="line-692"></a>    <span class='hs-varid'>mult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-layout'>(</span><span class='hs-keyglyph'>\</span><span class='hs-layout'>(</span><span class='hs-conid'>SymH</span> <span class='hs-varid'>lambda</span><span class='hs-layout'>,</span> <span class='hs-conid'>SymH</span> <span class='hs-varid'>mu</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-varid'>return</span> <span class='hs-varop'>$</span> <span class='hs-conid'>SymH</span> <span class='hs-varop'>$</span> <span class='hs-varid'>multisetSumDesc</span> <span class='hs-varid'>lambda</span> <span class='hs-varid'>mu</span><span class='hs-layout'>)</span>
<a name="line-693"></a>
<a name="line-694"></a><a name="instance%20Coalgebra%20k%20SymH"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Coalgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymH</span> <span class='hs-keyword'>where</span>
<a name="line-695"></a>    <span class='hs-varid'>counit</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>unwrap</span> <span class='hs-varop'>.</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>counit'</span> <span class='hs-keyword'>where</span> <span class='hs-varid'>counit'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymH</span> <span class='hs-varid'>lambda</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>if</span> <span class='hs-varid'>null</span> <span class='hs-varid'>lambda</span> <span class='hs-keyword'>then</span> <span class='hs-num'>1</span> <span class='hs-keyword'>else</span> <span class='hs-num'>0</span>
<a name="line-696"></a>    <span class='hs-varid'>comult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>comult'</span> <span class='hs-keyword'>where</span>
<a name="line-697"></a>        <span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymH</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-varid'>h</span> <span class='hs-varid'>i</span><span class='hs-layout'>,</span> <span class='hs-varid'>h</span> <span class='hs-layout'>(</span><span class='hs-varid'>n</span><span class='hs-comment'>-</span><span class='hs-varid'>i</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>i</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>0</span><span class='hs-keyglyph'>..</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>]</span>
<a name="line-698"></a>        <span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymH</span> <span class='hs-varid'>lambda</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>product</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymH</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>n</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>lambda</span><span class='hs-keyglyph'>]</span>
<a name="line-699"></a>        <span class='hs-varid'>h</span> <span class='hs-num'>0</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>SymH</span> <span class='hs-conid'>[]</span>
<a name="line-700"></a>        <span class='hs-varid'>h</span> <span class='hs-varid'>i</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>SymH</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>i</span><span class='hs-keyglyph'>]</span>
<a name="line-701"></a>
<a name="line-702"></a><a name="instance%20Bialgebra%20k%20SymH"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Bialgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymH</span> <span class='hs-keyword'>where</span> <span class='hs-layout'>{</span><span class='hs-layout'>}</span>
<a name="line-703"></a>
<a name="line-704"></a><a name="symHtoM"></a><span class='hs-comment'>-- |Convert from the complete to the monomial basis of Sym</span>
<a name="line-705"></a><span class='hs-definition'>symHtoM</span> <span class='hs-keyglyph'>::</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymH</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymM</span>
<a name="line-706"></a><span class='hs-definition'>symHtoM</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>symHtoM'</span> <span class='hs-keyword'>where</span>
<a name="line-707"></a>    <span class='hs-varid'>symHtoM'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymH</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymM</span> <span class='hs-varid'>mu</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>mu</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>integerPartitions</span> <span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span>
<a name="line-708"></a>    <span class='hs-varid'>symHtoM'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymH</span> <span class='hs-varid'>lambda</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>product</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>symHtoM'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymH</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>p</span><span class='hs-keyglyph'>]</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>p</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>lambda</span><span class='hs-keyglyph'>]</span>
<a name="line-709"></a>
<a name="line-710"></a>
<a name="line-711"></a><span class='hs-comment'>-- NSYM, THE HOPF ALGEBRA OF NON-COMMUTATIVE SYMMETRIC FUNCTIONS</span>
<a name="line-712"></a>
<a name="line-713"></a><a name="NSym"></a><span class='hs-comment'>-- |A basis for NSym, the Hopf algebra of non-commutative symmetric functions, indexed by compositions</span>
<a name="line-714"></a><a name="NSym"></a><span class='hs-keyword'>newtype</span> <span class='hs-conid'>NSym</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>NSym</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyword'>deriving</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span><span class='hs-layout'>,</span><span class='hs-conid'>Ord</span><span class='hs-layout'>,</span><span class='hs-conid'>Show</span><span class='hs-layout'>)</span>
<a name="line-715"></a>
<a name="line-716"></a><a name="nsym"></a><span class='hs-definition'>nsym</span> <span class='hs-keyglyph'>::</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>Int</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-conid'>Q</span> <span class='hs-conid'>NSym</span>
<a name="line-717"></a><span class='hs-definition'>nsym</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>NSym</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span>
<a name="line-718"></a><span class='hs-definition'>nsym</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>all</span> <span class='hs-layout'>(</span><span class='hs-varop'>&gt;</span><span class='hs-num'>0</span><span class='hs-layout'>)</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>NSym</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span>
<a name="line-719"></a>        <span class='hs-keyglyph'>|</span> <span class='hs-varid'>otherwise</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>error</span> <span class='hs-str'>"nsym: not a composition"</span>
<a name="line-720"></a>
<a name="line-721"></a><a name="instance%20Algebra%20k%20NSym"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Algebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>NSym</span> <span class='hs-keyword'>where</span>
<a name="line-722"></a>    <span class='hs-varid'>unit</span> <span class='hs-varid'>x</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>x</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>NSym</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span>
<a name="line-723"></a>    <span class='hs-varid'>mult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>mult'</span> <span class='hs-keyword'>where</span>
<a name="line-724"></a>        <span class='hs-varid'>mult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>NSym</span> <span class='hs-varid'>xs</span><span class='hs-layout'>,</span> <span class='hs-conid'>NSym</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-varop'>$</span> <span class='hs-conid'>NSym</span> <span class='hs-varop'>$</span> <span class='hs-varid'>xs</span> <span class='hs-varop'>++</span> <span class='hs-varid'>ys</span>
<a name="line-725"></a>
<a name="line-726"></a><a name="instance%20Coalgebra%20k%20NSym"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Coalgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>NSym</span> <span class='hs-keyword'>where</span>
<a name="line-727"></a>    <span class='hs-varid'>counit</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>unwrap</span> <span class='hs-varop'>.</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>counit'</span> <span class='hs-keyword'>where</span> <span class='hs-varid'>counit'</span> <span class='hs-layout'>(</span><span class='hs-conid'>NSym</span> <span class='hs-varid'>zs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>if</span> <span class='hs-varid'>null</span> <span class='hs-varid'>zs</span> <span class='hs-keyword'>then</span> <span class='hs-num'>1</span> <span class='hs-keyword'>else</span> <span class='hs-num'>0</span>
<a name="line-728"></a>    <span class='hs-varid'>comult</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>comult'</span> <span class='hs-keyword'>where</span>
<a name="line-729"></a>        <span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>NSym</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-varid'>z</span> <span class='hs-varid'>i</span><span class='hs-layout'>,</span> <span class='hs-varid'>z</span> <span class='hs-layout'>(</span><span class='hs-varid'>n</span><span class='hs-comment'>-</span><span class='hs-varid'>i</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>i</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>0</span><span class='hs-keyglyph'>..</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>]</span>
<a name="line-730"></a>        <span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>NSym</span> <span class='hs-varid'>zs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>product</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>comult'</span> <span class='hs-layout'>(</span><span class='hs-conid'>NSym</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>n</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>zs</span><span class='hs-keyglyph'>]</span>
<a name="line-731"></a>        <span class='hs-varid'>z</span> <span class='hs-num'>0</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>NSym</span> <span class='hs-conid'>[]</span>
<a name="line-732"></a>        <span class='hs-varid'>z</span> <span class='hs-varid'>i</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>NSym</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>i</span><span class='hs-keyglyph'>]</span>
<a name="line-733"></a>
<a name="line-734"></a><a name="instance%20Bialgebra%20k%20NSym"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Bialgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>NSym</span> <span class='hs-keyword'>where</span> <span class='hs-layout'>{</span><span class='hs-layout'>}</span>
<a name="line-735"></a>
<a name="line-736"></a><a name="instance%20HopfAlgebra%20k%20NSym"></a><span class='hs-comment'>-- Hazewinkel et al p233</span>
<a name="line-737"></a><a name="instance%20HopfAlgebra%20k%20NSym"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>HopfAlgebra</span> <span class='hs-varid'>k</span> <span class='hs-conid'>NSym</span> <span class='hs-keyword'>where</span>
<a name="line-738"></a>    <span class='hs-varid'>antipode</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>antipode'</span> <span class='hs-keyword'>where</span>
<a name="line-739"></a>        <span class='hs-varid'>antipode'</span> <span class='hs-layout'>(</span><span class='hs-conid'>NSym</span> <span class='hs-varid'>alpha</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-layout'>(</span><span class='hs-comment'>-</span><span class='hs-num'>1</span><span class='hs-layout'>)</span><span class='hs-varop'>^</span><span class='hs-varid'>length</span> <span class='hs-varid'>beta</span> <span class='hs-varop'>*&gt;</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>NSym</span> <span class='hs-varid'>beta</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>beta</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>refinements</span> <span class='hs-layout'>(</span><span class='hs-varid'>reverse</span> <span class='hs-varid'>alpha</span><span class='hs-layout'>)</span><span class='hs-keyglyph'>]</span>
<a name="line-740"></a>
<a name="line-741"></a>
<a name="line-742"></a>
<a name="line-743"></a><span class='hs-comment'>-- MAPS BETWEEN (POSETS AND) HOPF ALGEBRAS</span>
<a name="line-744"></a>
<a name="line-745"></a><a name="descendingTree"></a><span class='hs-comment'>-- A descending tree is one in which a child is always less than a parent.</span>
<a name="line-746"></a><span class='hs-definition'>descendingTree</span> <span class='hs-conid'>[]</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>E</span>
<a name="line-747"></a><span class='hs-definition'>descendingTree</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>x</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>T</span> <span class='hs-conid'>E</span> <span class='hs-varid'>x</span> <span class='hs-conid'>E</span>
<a name="line-748"></a><span class='hs-definition'>descendingTree</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-varid'>x</span> <span class='hs-varid'>r</span>
<a name="line-749"></a>    <span class='hs-keyword'>where</span> <span class='hs-varid'>x</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>maximum</span> <span class='hs-varid'>xs</span>
<a name="line-750"></a>          <span class='hs-layout'>(</span><span class='hs-varid'>ls</span><span class='hs-layout'>,</span><span class='hs-keyword'>_</span><span class='hs-conop'>:</span><span class='hs-varid'>rs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>L</span><span class='hs-varop'>.</span><span class='hs-varid'>break</span> <span class='hs-layout'>(</span><span class='hs-varop'>==</span> <span class='hs-varid'>x</span><span class='hs-layout'>)</span> <span class='hs-varid'>xs</span>
<a name="line-751"></a>          <span class='hs-varid'>l</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>descendingTree</span> <span class='hs-varid'>ls</span>
<a name="line-752"></a>          <span class='hs-varid'>r</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>descendingTree</span> <span class='hs-varid'>rs</span>
<a name="line-753"></a><span class='hs-comment'>-- This is a bijection from permutations to "ordered trees".</span>
<a name="line-754"></a><span class='hs-comment'>-- It is order-preserving on trees with the same nodecount.</span>
<a name="line-755"></a><span class='hs-comment'>-- We can recover the permutation by reading the node labels in infix order.</span>
<a name="line-756"></a><span class='hs-comment'>-- This is the map called lambda in Loday.pdf</span>
<a name="line-757"></a>
<a name="line-758"></a>
<a name="line-759"></a><a name="descendingTreeMap"></a><span class='hs-comment'>-- |Given a permutation p of [1..n], we can construct a tree (the descending tree of p) as follows:</span>
<a name="line-760"></a><span class='hs-comment'>--</span>
<a name="line-761"></a><span class='hs-comment'>-- * Split the permutation as p = ls ++ [n] ++ rs</span>
<a name="line-762"></a><span class='hs-comment'>--</span>
<a name="line-763"></a><span class='hs-comment'>-- * Place n at the root of the tree, and recursively place the descending trees of ls and rs as the left and right children of the root</span>
<a name="line-764"></a><span class='hs-comment'>--</span>
<a name="line-765"></a><span class='hs-comment'>-- * To bottom out the recursion, the descending tree of the empty permutation is of course the empty tree</span>
<a name="line-766"></a><span class='hs-comment'>--</span>
<a name="line-767"></a><span class='hs-comment'>-- This map between bases SSymF -&gt; YSymF turns out to induce a morphism of Hopf algebras.</span>
<a name="line-768"></a><span class='hs-definition'>descendingTreeMap</span> <span class='hs-keyglyph'>::</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymF</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-conid'>()</span><span class='hs-layout'>)</span>
<a name="line-769"></a><span class='hs-definition'>descendingTreeMap</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>nf</span> <span class='hs-varop'>.</span> <span class='hs-varid'>fmap</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-varop'>.</span> <span class='hs-varid'>shape</span> <span class='hs-varop'>.</span>  <span class='hs-varid'>descendingTree'</span><span class='hs-layout'>)</span>
<a name="line-770"></a>    <span class='hs-keyword'>where</span> <span class='hs-varid'>descendingTree'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>descendingTree</span> <span class='hs-varid'>xs</span>
<a name="line-771"></a><span class='hs-comment'>-- This is the map called Lambda in Loday.pdf, or tau in MSym.pdf</span>
<a name="line-772"></a><span class='hs-comment'>-- It is an algebra morphism.</span>
<a name="line-773"></a>
<a name="line-774"></a><span class='hs-comment'>-- One of the ideas in the MSym paper is to look at the intermediate result (fmap descendingTree' x),</span>
<a name="line-775"></a><span class='hs-comment'>-- which is an "ordered tree", and consider the map as factored through this</span>
<a name="line-776"></a>
<a name="line-777"></a><span class='hs-comment'>-- The map is surjective but not injective. The fibers tau^-1(t) are intervals in the weak order on permutations</span>
<a name="line-778"></a>
<a name="line-779"></a><a name="minPerm"></a><span class='hs-comment'>-- "inverse" for descendingTree</span>
<a name="line-780"></a><span class='hs-comment'>-- These are the maps called gamma in Loday.pdf</span>
<a name="line-781"></a><span class='hs-comment'>-- or are they? - these give the min and max inverse images in the lexicographic order, rather than the weak order?</span>
<a name="line-782"></a><span class='hs-definition'>minPerm</span> <span class='hs-varid'>t</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>minPerm'</span> <span class='hs-layout'>(</span><span class='hs-varid'>lrCountTree</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span>
<a name="line-783"></a>    <span class='hs-keyword'>where</span> <span class='hs-varid'>minPerm'</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>[]</span>
<a name="line-784"></a>          <span class='hs-varid'>minPerm'</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-layout'>(</span><span class='hs-varid'>lc</span><span class='hs-layout'>,</span><span class='hs-varid'>rc</span><span class='hs-layout'>)</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>minPerm'</span> <span class='hs-varid'>l</span> <span class='hs-varop'>++</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>lc</span><span class='hs-varop'>+</span><span class='hs-varid'>rc</span><span class='hs-varop'>+</span><span class='hs-num'>1</span><span class='hs-keyglyph'>]</span> <span class='hs-varop'>++</span> <span class='hs-varid'>map</span> <span class='hs-layout'>(</span><span class='hs-varop'>+</span><span class='hs-varid'>lc</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>minPerm'</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span>
<a name="line-785"></a>
<a name="line-786"></a><a name="maxPerm"></a><span class='hs-definition'>maxPerm</span> <span class='hs-varid'>t</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>maxPerm'</span> <span class='hs-layout'>(</span><span class='hs-varid'>lrCountTree</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span>
<a name="line-787"></a>    <span class='hs-keyword'>where</span> <span class='hs-varid'>maxPerm'</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>[]</span>
<a name="line-788"></a>          <span class='hs-varid'>maxPerm'</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-layout'>(</span><span class='hs-varid'>lc</span><span class='hs-layout'>,</span><span class='hs-varid'>rc</span><span class='hs-layout'>)</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>map</span> <span class='hs-layout'>(</span><span class='hs-varop'>+</span><span class='hs-varid'>rc</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>maxPerm'</span> <span class='hs-varid'>l</span><span class='hs-layout'>)</span> <span class='hs-varop'>++</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>lc</span><span class='hs-varop'>+</span><span class='hs-varid'>rc</span><span class='hs-varop'>+</span><span class='hs-num'>1</span><span class='hs-keyglyph'>]</span> <span class='hs-varop'>++</span> <span class='hs-varid'>maxPerm'</span> <span class='hs-varid'>r</span>
<a name="line-789"></a>
<a name="line-790"></a>
<a name="line-791"></a><a name="leftLeafComposition"></a><span class='hs-comment'>-- The composition of [1..n] obtained by treating each left-facing leaf as a cut</span>
<a name="line-792"></a><span class='hs-comment'>-- Specifically, we visit the nodes in infix order, cutting after a node if it does not have an E as its right child</span>
<a name="line-793"></a><span class='hs-comment'>-- This is the map called L in Loday.pdf</span>
<a name="line-794"></a><span class='hs-definition'>leftLeafComposition</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>[]</span>
<a name="line-795"></a><span class='hs-definition'>leftLeafComposition</span> <span class='hs-varid'>t</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>cuts</span> <span class='hs-varop'>$</span> <span class='hs-varid'>tail</span> <span class='hs-varop'>$</span> <span class='hs-varid'>leftLeafs</span> <span class='hs-varid'>t</span>
<a name="line-796"></a>    <span class='hs-keyword'>where</span> <span class='hs-varid'>leftLeafs</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-varid'>x</span> <span class='hs-conid'>E</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>leftLeafs</span> <span class='hs-varid'>l</span> <span class='hs-varop'>++</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>False</span><span class='hs-keyglyph'>]</span>
<a name="line-797"></a>          <span class='hs-varid'>leftLeafs</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-varid'>x</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>leftLeafs</span> <span class='hs-varid'>l</span> <span class='hs-varop'>++</span> <span class='hs-varid'>leftLeafs</span> <span class='hs-varid'>r</span>
<a name="line-798"></a>          <span class='hs-varid'>leftLeafs</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>True</span><span class='hs-keyglyph'>]</span>
<a name="line-799"></a>          <span class='hs-varid'>cuts</span> <span class='hs-varid'>bs</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>case</span> <span class='hs-varid'>break</span> <span class='hs-varid'>id</span> <span class='hs-varid'>bs</span> <span class='hs-keyword'>of</span>
<a name="line-800"></a>                    <span class='hs-layout'>(</span><span class='hs-varid'>ls</span><span class='hs-layout'>,</span><span class='hs-varid'>r</span><span class='hs-conop'>:</span><span class='hs-varid'>rs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-layout'>(</span><span class='hs-varid'>length</span> <span class='hs-varid'>ls</span> <span class='hs-varop'>+</span> <span class='hs-num'>1</span><span class='hs-layout'>)</span> <span class='hs-conop'>:</span> <span class='hs-varid'>cuts</span> <span class='hs-varid'>rs</span>
<a name="line-801"></a>                    <span class='hs-layout'>(</span><span class='hs-varid'>ls</span><span class='hs-layout'>,</span><span class='hs-conid'>[]</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>length</span> <span class='hs-varid'>ls</span><span class='hs-keyglyph'>]</span>
<a name="line-802"></a>
<a name="line-803"></a><a name="leftLeafComposition'"></a><span class='hs-definition'>leftLeafComposition'</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>QSymF</span> <span class='hs-layout'>(</span><span class='hs-varid'>leftLeafComposition</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span>
<a name="line-804"></a>
<a name="line-805"></a><a name="leftLeafCompositionMap"></a><span class='hs-comment'>-- |A Hopf algebra morphism from YSymF to QSymF</span>
<a name="line-806"></a><span class='hs-definition'>leftLeafCompositionMap</span> <span class='hs-keyglyph'>::</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymF</span> <span class='hs-varid'>a</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>QSymF</span>
<a name="line-807"></a><span class='hs-definition'>leftLeafCompositionMap</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>nf</span> <span class='hs-varop'>.</span> <span class='hs-varid'>fmap</span> <span class='hs-varid'>leftLeafComposition'</span>
<a name="line-808"></a>
<a name="line-809"></a>
<a name="line-810"></a><a name="descents"></a><span class='hs-comment'>-- The descent set of a permutation is [i | x_i &gt; x_i+1], where we start the indexing from 1</span>
<a name="line-811"></a><span class='hs-definition'>descents</span> <span class='hs-conid'>[]</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>[]</span>
<a name="line-812"></a><span class='hs-definition'>descents</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>map</span> <span class='hs-layout'>(</span><span class='hs-varop'>+</span><span class='hs-num'>1</span><span class='hs-layout'>)</span> <span class='hs-varop'>$</span> <span class='hs-conid'>L</span><span class='hs-varop'>.</span><span class='hs-varid'>elemIndices</span> <span class='hs-conid'>True</span> <span class='hs-varop'>$</span> <span class='hs-varid'>zipWith</span> <span class='hs-layout'>(</span><span class='hs-varop'>&gt;</span><span class='hs-layout'>)</span> <span class='hs-varid'>xs</span> <span class='hs-layout'>(</span><span class='hs-varid'>tail</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span>
<a name="line-813"></a>
<a name="line-814"></a><a name="descentComposition"></a><span class='hs-comment'>-- The composition of [1..n] obtained by treating each descent as a cut</span>
<a name="line-815"></a><span class='hs-definition'>descentComposition</span> <span class='hs-conid'>[]</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>[]</span>
<a name="line-816"></a><span class='hs-definition'>descentComposition</span> <span class='hs-varid'>xs</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>descComp</span> <span class='hs-num'>0</span> <span class='hs-varid'>xs</span> <span class='hs-keyword'>where</span>
<a name="line-817"></a>    <span class='hs-varid'>descComp</span> <span class='hs-varid'>c</span> <span class='hs-layout'>(</span><span class='hs-varid'>x1</span><span class='hs-conop'>:</span><span class='hs-varid'>x2</span><span class='hs-conop'>:</span><span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>if</span> <span class='hs-varid'>x1</span> <span class='hs-varop'>&lt;</span> <span class='hs-varid'>x2</span> <span class='hs-keyword'>then</span> <span class='hs-varid'>descComp</span> <span class='hs-layout'>(</span><span class='hs-varid'>c</span><span class='hs-varop'>+</span><span class='hs-num'>1</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-varid'>x2</span><span class='hs-conop'>:</span><span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyword'>else</span> <span class='hs-layout'>(</span><span class='hs-varid'>c</span><span class='hs-varop'>+</span><span class='hs-num'>1</span><span class='hs-layout'>)</span> <span class='hs-conop'>:</span> <span class='hs-varid'>descComp</span> <span class='hs-num'>0</span> <span class='hs-layout'>(</span><span class='hs-varid'>x2</span><span class='hs-conop'>:</span><span class='hs-varid'>xs</span><span class='hs-layout'>)</span>
<a name="line-818"></a>    <span class='hs-varid'>descComp</span> <span class='hs-varid'>c</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>x</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>c</span><span class='hs-varop'>+</span><span class='hs-num'>1</span><span class='hs-keyglyph'>]</span>
<a name="line-819"></a>
<a name="line-820"></a><a name="descentMap"></a><span class='hs-comment'>-- |Given a permutation of [1..n], its descents are those positions where the next number is less than the previous number.</span>
<a name="line-821"></a><span class='hs-comment'>-- For example, the permutation [2,3,5,1,6,4] has descents from 5 to 1 and from 6 to 4. The descents can be regarded as cutting</span>
<a name="line-822"></a><span class='hs-comment'>-- the permutation sequence into segments - 235-16-4 - and by counting the lengths of the segments, we get a composition 3+2+1.</span>
<a name="line-823"></a><span class='hs-comment'>-- This map between bases SSymF -&gt; QSymF turns out to induce a morphism of Hopf algebras.</span>
<a name="line-824"></a><span class='hs-definition'>descentMap</span> <span class='hs-keyglyph'>::</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SSymF</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>QSymF</span>
<a name="line-825"></a><span class='hs-definition'>descentMap</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>nf</span> <span class='hs-varop'>.</span> <span class='hs-varid'>fmap</span> <span class='hs-layout'>(</span><span class='hs-keyglyph'>\</span><span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>QSymF</span> <span class='hs-layout'>(</span><span class='hs-varid'>descentComposition</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span><span class='hs-layout'>)</span>
<a name="line-826"></a><span class='hs-comment'>-- descentMap == leftLeafCompositionMap . descendingTreeMap</span>
<a name="line-827"></a>
<a name="line-828"></a><a name="underComposition"></a><span class='hs-definition'>underComposition</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymF</span> <span class='hs-varid'>ps</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>foldr</span> <span class='hs-varid'>under</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-conid'>[]</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>[</span><span class='hs-conid'>SSymF</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>1</span><span class='hs-keyglyph'>..</span><span class='hs-varid'>p</span><span class='hs-keyglyph'>]</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>p</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>ps</span><span class='hs-keyglyph'>]</span>
<a name="line-829"></a>    <span class='hs-keyword'>where</span> <span class='hs-varid'>under</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-varid'>ys</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-keyword'>let</span> <span class='hs-varid'>q</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>length</span> <span class='hs-varid'>ys</span>
<a name="line-830"></a>                                            <span class='hs-varid'>zs</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>map</span> <span class='hs-layout'>(</span><span class='hs-varop'>+</span><span class='hs-varid'>q</span><span class='hs-layout'>)</span> <span class='hs-varid'>xs</span> <span class='hs-varop'>++</span> <span class='hs-varid'>ys</span> <span class='hs-comment'>-- so it has a global descent at the split</span>
<a name="line-831"></a>                                        <span class='hs-keyword'>in</span> <span class='hs-conid'>SSymF</span> <span class='hs-varid'>zs</span>
<a name="line-832"></a><span class='hs-comment'>-- This is a poset morphism (indeed, it forms a Galois connection with descentComposition)</span>
<a name="line-833"></a><span class='hs-comment'>-- but it does not extend to a Hopf algebra morphism.</span>
<a name="line-834"></a><span class='hs-comment'>-- (It does extend to a coalgebra morphism.)</span>
<a name="line-835"></a><span class='hs-comment'>-- (It is picking the maximum permutation having a given descent composition,</span>
<a name="line-836"></a><span class='hs-comment'>-- so there's an element of arbitrariness to it.)</span>
<a name="line-837"></a><span class='hs-comment'>-- This is the map called Z (Zeta?) in Loday.pdf</span>
<a name="line-838"></a>
<a name="line-839"></a><span class='hs-comment'>{-
<a name="line-840"></a>-- This is O(n^2), whereas an O(n) implementation should be possible
<a name="line-841"></a>-- Also, we would really like the associated composition (obtained by treating each global descent as a cut)?
<a name="line-842"></a>globalDescents xs = globalDescents' 0 [] xs
<a name="line-843"></a>    where globalDescents' i ls (r:rs) = (if minimum (infinity:ls) &gt; maximum (0:r:rs) then [i] else [])
<a name="line-844"></a>                                     ++ globalDescents' (i+1) (r:ls) rs
<a name="line-845"></a>          globalDescents' n _ [] = [n]
<a name="line-846"></a>          infinity = maxBound :: Int
<a name="line-847"></a>-- The idea is that this leads to a map from SSymM to QSymM
<a name="line-848"></a>
<a name="line-849"></a>globalDescentComposition [] = []
<a name="line-850"></a>globalDescentComposition (x:xs) = globalDescents' 1 x xs
<a name="line-851"></a>    where globalDescents' i minl (r:rs) = if minl &gt; maximum (r:rs)
<a name="line-852"></a>                                          then i : globalDescents' 1 r rs
<a name="line-853"></a>                                          else globalDescents' (i+1) r rs
<a name="line-854"></a>          globalDescents' i _ [] = [i]
<a name="line-855"></a>
<a name="line-856"></a>globalDescentMap :: (Eq k, Num k) =&gt; Vect k SSymM -&gt; Vect k QSymM
<a name="line-857"></a>globalDescentMap = nf . fmap (\(SSymM xs) -&gt; QSymM (globalDescentComposition xs))
<a name="line-858"></a>-}</span>
<a name="line-859"></a>
<a name="line-860"></a><a name="under"></a><span class='hs-comment'>-- A multiplication operation on trees</span>
<a name="line-861"></a><span class='hs-comment'>-- (Connected with their being cofree)</span>
<a name="line-862"></a><span class='hs-comment'>-- (intended to be used as infix)</span>
<a name="line-863"></a><span class='hs-definition'>under</span> <span class='hs-conid'>E</span> <span class='hs-varid'>t</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>t</span>
<a name="line-864"></a><span class='hs-definition'>under</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-varid'>x</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span> <span class='hs-varid'>t</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-varid'>x</span> <span class='hs-layout'>(</span><span class='hs-varid'>under</span> <span class='hs-varid'>r</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span>
<a name="line-865"></a>
<a name="line-866"></a><a name="isUnderIrreducible"></a><span class='hs-definition'>isUnderIrreducible</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-varid'>x</span> <span class='hs-conid'>E</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>True</span>
<a name="line-867"></a><span class='hs-definition'>isUnderIrreducible</span> <span class='hs-keyword'>_</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>False</span>
<a name="line-868"></a>
<a name="line-869"></a><a name="underDecomposition"></a><span class='hs-definition'>underDecomposition</span> <span class='hs-layout'>(</span><span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-varid'>x</span> <span class='hs-varid'>r</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>T</span> <span class='hs-varid'>l</span> <span class='hs-varid'>x</span> <span class='hs-conid'>E</span> <span class='hs-conop'>:</span> <span class='hs-varid'>underDecomposition</span> <span class='hs-varid'>r</span>
<a name="line-870"></a><span class='hs-definition'>underDecomposition</span> <span class='hs-conid'>E</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>[]</span>
<a name="line-871"></a>
<a name="line-872"></a>
<a name="line-873"></a><a name="ysymmToSh"></a><span class='hs-comment'>-- GHC7.4.1 doesn't like the following type signature - a bug.</span>
<a name="line-874"></a><span class='hs-comment'>-- ysymmToSh :: (Eq k, Num k) =&gt; Vect k (YSymM) =&gt; Vect k (Shuffle (PBT ()))</span>
<a name="line-875"></a><span class='hs-definition'>ysymmToSh</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>fmap</span> <span class='hs-varid'>ysymmToSh'</span>
<a name="line-876"></a>    <span class='hs-keyword'>where</span> <span class='hs-varid'>ysymmToSh'</span> <span class='hs-layout'>(</span><span class='hs-conid'>YSymM</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-conid'>Sh</span> <span class='hs-layout'>(</span><span class='hs-varid'>underDecomposition</span> <span class='hs-varid'>t</span><span class='hs-layout'>)</span>
<a name="line-877"></a><span class='hs-comment'>-- This is a coalgebra morphism (but not an algebra morphism)</span>
<a name="line-878"></a><span class='hs-comment'>-- It shows that YSym is co-free</span>
<a name="line-879"></a><span class='hs-comment'>{-
<a name="line-880"></a>-- This one not working yet - perhaps it needs an nf, or to go via S/YSymF, or ...
<a name="line-881"></a>ssymmToSh = nf . fmap ssymmToSh'
<a name="line-882"></a>    where ssymmToSh' (SSymM xs) = (Sh . underDecomposition . shape . descendingTree) xs
<a name="line-883"></a>-}</span>
<a name="line-884"></a>
<a name="line-885"></a><a name="symToQSymM"></a><span class='hs-comment'>-- |The injection of Sym into QSym (defined over the monomial basis)</span>
<a name="line-886"></a><span class='hs-definition'>symToQSymM</span> <span class='hs-keyglyph'>::</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymM</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>QSymM</span>
<a name="line-887"></a><span class='hs-definition'>symToQSymM</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>symToQSymM'</span> <span class='hs-keyword'>where</span>
<a name="line-888"></a>    <span class='hs-varid'>symToQSymM'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymM</span> <span class='hs-varid'>ps</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>sumv</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>QSymM</span> <span class='hs-varid'>c</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>c</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>compositionsFromPartition</span> <span class='hs-varid'>ps</span><span class='hs-keyglyph'>]</span>
<a name="line-889"></a>
<a name="line-890"></a><a name="nsymToSymH"></a><span class='hs-comment'>-- We could equally well send NSym -&gt; SymE, since the algebra and coalgebra definitions for SymE and SymH are exactly analogous.</span>
<a name="line-891"></a><span class='hs-comment'>-- However, NSym -&gt; SymH is more natural, since it is consistent with the duality pairings below.</span>
<a name="line-892"></a><span class='hs-comment'>-- eg Hazewinkel 238ff</span>
<a name="line-893"></a><span class='hs-comment'>-- (Why do SymE and SymH have the same definitions? They're not dual bases. It's because of the Wronski relations.)</span>
<a name="line-894"></a><span class='hs-comment'>-- |A surjection of NSym onto Sym (defined over the complete basis)</span>
<a name="line-895"></a><span class='hs-definition'>nsymToSymH</span> <span class='hs-keyglyph'>::</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>NSym</span> <span class='hs-keyglyph'>-&gt;</span> <span class='hs-conid'>Vect</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymH</span>
<a name="line-896"></a><span class='hs-definition'>nsymToSymH</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>nsymToSym'</span> <span class='hs-keyword'>where</span>
<a name="line-897"></a>    <span class='hs-varid'>nsymToSym'</span> <span class='hs-layout'>(</span><span class='hs-conid'>NSym</span> <span class='hs-varid'>zs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymH</span> <span class='hs-varop'>$</span> <span class='hs-varid'>sortDesc</span> <span class='hs-varid'>zs</span><span class='hs-layout'>)</span>
<a name="line-898"></a>
<a name="line-899"></a><a name="nsymToSSym"></a><span class='hs-comment'>-- The Hopf algebra morphism NSym -&gt; Sym factors through NSym -&gt; SSym -&gt; YSym -&gt; Sym (contained in QSym)</span>
<a name="line-900"></a><span class='hs-comment'>-- (?? This map NSym -&gt; SSym is the dual of the descent map SSym -&gt; QSym ??)</span>
<a name="line-901"></a><span class='hs-comment'>-- (Loday.pdf, p30)</span>
<a name="line-902"></a><span class='hs-comment'>-- (See also Hazewinkel p267-9)</span>
<a name="line-903"></a><span class='hs-definition'>nsymToSSym</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>nsymToSSym'</span> <span class='hs-keyword'>where</span>
<a name="line-904"></a>    <span class='hs-varid'>nsymToSSym'</span> <span class='hs-layout'>(</span><span class='hs-conid'>NSym</span> <span class='hs-varid'>xs</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>product</span> <span class='hs-keyglyph'>[</span><span class='hs-varid'>return</span> <span class='hs-layout'>(</span><span class='hs-conid'>SSymF</span> <span class='hs-keyglyph'>[</span><span class='hs-num'>1</span><span class='hs-keyglyph'>..</span><span class='hs-varid'>n</span><span class='hs-keyglyph'>]</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>|</span> <span class='hs-varid'>n</span> <span class='hs-keyglyph'>&lt;-</span> <span class='hs-varid'>xs</span><span class='hs-keyglyph'>]</span>
<a name="line-905"></a>
<a name="line-906"></a>
<a name="line-907"></a><a name="instance%20HasPairing%20k%20SymH%20SymM"></a><span class='hs-comment'>-- |A duality pairing between the complete and monomial bases of Sym, showing that Sym is self-dual.</span>
<a name="line-908"></a><a name="instance%20HasPairing%20k%20SymH%20SymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>HasPairing</span> <span class='hs-varid'>k</span> <span class='hs-conid'>SymH</span> <span class='hs-conid'>SymM</span> <span class='hs-keyword'>where</span>
<a name="line-909"></a>    <span class='hs-varid'>pairing</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>pairing'</span> <span class='hs-keyword'>where</span>
<a name="line-910"></a>        <span class='hs-varid'>pairing'</span> <span class='hs-layout'>(</span><span class='hs-conid'>SymH</span> <span class='hs-varid'>alpha</span><span class='hs-layout'>,</span> <span class='hs-conid'>SymM</span> <span class='hs-varid'>beta</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>delta</span> <span class='hs-varid'>alpha</span> <span class='hs-varid'>beta</span> <span class='hs-comment'>-- Kronecker delta</span>
<a name="line-911"></a><span class='hs-comment'>-- Hazewinkel p178</span>
<a name="line-912"></a><span class='hs-comment'>-- Actually to show duality you would need to show that the map SymH -&gt; SymM*, v -&gt; &lt;v,.&gt; is onto</span>
<a name="line-913"></a>
<a name="line-914"></a><a name="instance%20HasPairing%20k%20NSym%20QSymM"></a><span class='hs-comment'>-- |A duality pairing between NSym and QSymM (monomial basis), showing that NSym and QSym are dual.</span>
<a name="line-915"></a><a name="instance%20HasPairing%20k%20NSym%20QSymM"></a><span class='hs-keyword'>instance</span> <span class='hs-layout'>(</span><span class='hs-conid'>Eq</span> <span class='hs-varid'>k</span><span class='hs-layout'>,</span> <span class='hs-conid'>Num</span> <span class='hs-varid'>k</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=&gt;</span> <span class='hs-conid'>HasPairing</span> <span class='hs-varid'>k</span> <span class='hs-conid'>NSym</span> <span class='hs-conid'>QSymM</span> <span class='hs-keyword'>where</span>
<a name="line-916"></a>    <span class='hs-varid'>pairing</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>linear</span> <span class='hs-varid'>pairing'</span> <span class='hs-keyword'>where</span>
<a name="line-917"></a>        <span class='hs-varid'>pairing'</span> <span class='hs-layout'>(</span><span class='hs-conid'>NSym</span> <span class='hs-varid'>alpha</span><span class='hs-layout'>,</span> <span class='hs-conid'>QSymM</span> <span class='hs-varid'>beta</span><span class='hs-layout'>)</span> <span class='hs-keyglyph'>=</span> <span class='hs-varid'>delta</span> <span class='hs-varid'>alpha</span> <span class='hs-varid'>beta</span> <span class='hs-comment'>-- Kronecker delta</span>
<a name="line-918"></a><span class='hs-comment'>-- Hazewinkel p236-7</span>
<a name="line-919"></a><span class='hs-comment'>-- Actually to show duality you would need to show that the map NSym -&gt; QSymM*, v -&gt; &lt;v,.&gt; is onto</span>
<a name="line-920"></a>
</pre></body>
</html>