This file is indexed.

/usr/include/dune/localfunctions/test/test-fe.hh is in libdune-localfunctions-dev 2.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:

// This header is not part of the official Dune API and might be subject
// to change.  You can use this header to test external finite element
// implementations, but be warned that your tests might break with future
// Dune versions.

#ifndef DUNE_LOCALFUNCTIONS_TEST_TEST_FE_HH
#define DUNE_LOCALFUNCTIONS_TEST_TEST_FE_HH

#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <dune/common/classname.hh>
#include <dune/common/fmatrix.hh>

#include <dune/geometry/quadraturerules.hh>

// This class defines a local finite element function.
// It is determined by a local finite element and
// representing the local basis and a coefficient vector.
// This provides the evaluate method needed by the interpolate()
// method.
template<class FE>
class FEFunction {
  typedef typename FE::Traits::Basis::Traits::DomainLocal DomainLocal;
  typedef typename FE::Traits::Basis::Traits::Range Range;

  const FE& fe;

public:
  typedef typename FE::Traits::Basis::Traits::RangeField CT;

  std::vector<CT> coeff;

  FEFunction(const FE& fe_) : fe(fe_) { resetCoefficients(); }

  void resetCoefficients() {
    coeff.resize(fe.basis().size());
    for(std::size_t i=0; i<coeff.size(); ++i)
      coeff[i] = 0;
  }

  void setRandom(double max) {
    coeff.resize(fe.basis().size());
    for(std::size_t i=0; i<coeff.size(); ++i)
      coeff[i] = ((1.0*std::rand()) / RAND_MAX - 0.5)*2.0*max;
  }

  void evaluate (const DomainLocal& x, Range& y) const {
    std::vector<Range> yy;
    fe.basis().evaluateFunction(x, yy);

    y = 0.0;
    for (std::size_t i=0; i<yy.size(); ++i)
      y.axpy(coeff[i], yy[i]);
  }
};


// Check if interpolation is consistent with basis evaluation.
/**
 * This test generates a local coefficient vector with random values from a
 * certain range (-100..100).  It then uses the basis to wrap this coeffient
 * vector into an element-local discrete function.  This is then interpolated
 * into another coefficient vector using the interpolation of the finite
 * element.  The two coefficient vectors are then compared.
 *
 * \param FE  The finite element to check
 * \param eps Tolerance when comparing floating-point values
 * \param n   Number of times to run the check.
 */
template<class FE>
bool testInterpolation(const FE& fe, double eps, int n=5)
{
  bool success = true;
  FEFunction<FE> f(fe);

  std::vector<typename FEFunction<FE>::CT> coeff;
  for(int i=0; i<n && success; ++i) {
    // Set random coefficient vector
    f.setRandom(100);

    // Compute interpolation weights
    fe.interpolation().interpolate(f, coeff);

    // Check size of weight vector
    if (coeff.size() != fe.basis().size()) {
      std::cout << "Bug in LocalInterpolation for finite element type "
                << Dune::className<FE>() << ":" << std::endl;
      std::cout << "    Interpolation vector has size " << coeff.size()
                << std::endl;
      std::cout << "    Basis has size " << fe.basis().size() << std::endl;
      std::cout << std::endl;
      success = false;

      // skip rest of loop since that depends on matching sizes
      continue;
    }

    // Check if interpolation weights are equal to coefficients
    for(std::size_t j=0; j<coeff.size() && success; ++j) {
      if ( std::abs(coeff[j]-f.coeff[j]) >
           eps*(std::max(std::abs(f.coeff[j]), 1.0)) )
      {
        std::cout << std::setprecision(16);
        std::cout << "Bug in LocalInterpolation for finite element type "
                  << Dune::className<FE>() << ":" << std::endl;
        std::cout << "    Interpolation weight " << j << " differs by "
                  << std::abs(coeff[j]-f.coeff[j]) << " from coefficient of "
                  << "linear combination." << std::endl;
        std::cout << std::endl;
        success = false;
      }
    }
  }
  return success;
}

// check whether Jacobian agrees with FD approximation
/**
 * \param geo   The geometry the finite element is tested on.
 * \param fe    The finite element to test.
 * \param eps   Tolerance for comparing floating-point values.  When comparing
 *              numerical derivatives, this is divided by \c delta to yield an
 *              even bigger tolerance.
 * \param delta Stepsize to use when doing numerical derivatives.
 * \param order The Jacobian is checked at a number of quadrature points.
 *              This parameter determines the order of the quatrature rule
 *              used to obtain the quadrature points.
 */
template<class Geo, class FE>
bool testJacobian(const Geo &geo, const FE& fe, double eps, double delta,
                  std::size_t order = 2)
{
  typedef typename FE::Traits::Basis Basis;

  typedef typename Basis::Traits::DomainField DF;
  static const std::size_t dimDLocal = Basis::Traits::dimDomainLocal;
  typedef typename Basis::Traits::DomainLocal DomainLocal;
  static const std::size_t dimDGlobal = Basis::Traits::dimDomainGlobal;

  static const std::size_t dimR = Basis::Traits::dimRange;
  typedef typename Basis::Traits::Range Range;

  typedef typename Basis::Traits::Jacobian Jacobian;

  bool success = true;

  // ////////////////////////////////////////////////////////////
  //   Check the partial derivatives by comparing them
  //   to finite difference approximations
  // ////////////////////////////////////////////////////////////

  // A set of test points
  const Dune::QuadratureRule<DF, dimDLocal> quad =
    Dune::QuadratureRules<DF, dimDLocal>::rule(fe.type(),order);

  // Loop over all quadrature points
  for (std::size_t i=0; i < quad.size(); i++) {

    // Get a test point
    const DomainLocal& testPoint = quad[i].position();

    // Get the shape function derivatives there
    std::vector<Jacobian> jacobians;
    fe.basis().evaluateJacobian(testPoint, jacobians);
    if(jacobians.size() != fe.basis().size()) {
      std::cout << "Bug in evaluateJacobianGlobal() for finite element type "
                << Dune::className<FE>() << ":" << std::endl;
      std::cout << "    Jacobian vector has size " << jacobians.size()
                << std::endl;
      std::cout << "    Basis has size " << fe.basis().size() << std::endl;
      std::cout << std::endl;
      return false;
    }

    Dune::FieldMatrix<DF, dimDLocal, dimDGlobal> geoJT =
      geo.jacobianTransposed(testPoint);

    // Loop over all shape functions in this set
    for (std::size_t j=0; j<fe.basis().size(); ++j) {

      // basis.evaluateJacobian returns global derivatives, however we can
      // only do local derivatives, so transform the derivatives back into
      // local coordinates
      Dune::FieldMatrix<double, dimR, dimDLocal> localJacobian(0);
      for(std::size_t k = 0; k < dimR; ++k)
        for(std::size_t l = 0; l < dimDGlobal; ++l)
          for(std::size_t m = 0; m < dimDLocal; ++m)
            localJacobian[k][m] += jacobians[j][k][l] * geoJT[m][l];

      // Loop over all local directions
      for (std::size_t m = 0; m < dimDLocal; ++m) {

        // Compute an approximation to the derivative by finite differences
        DomainLocal upPos   = testPoint;
        DomainLocal downPos = testPoint;

        upPos[m]   += delta;
        downPos[m] -= delta;

        std::vector<Range> upValues, downValues;

        fe.basis().evaluateFunction(upPos,   upValues);
        fe.basis().evaluateFunction(downPos, downValues);

        //Loop over all components
        for(std::size_t k = 0; k < dimR; ++k) {

          // The current partial derivative, just for ease of notation
          double derivative = localJacobian[k][m];

          double finiteDiff = (upValues[j][k] - downValues[j][k]) / (2*delta);

          // Check
          if ( std::abs(derivative-finiteDiff) >
               eps/delta*(std::max(std::abs(finiteDiff), 1.0)) )
          {
            std::cout << std::setprecision(16);
            std::cout << "Bug in evaluateJacobian() for finite element type "
                      << Dune::className<FE>() << ":" << std::endl;
            std::cout << "    Shape function derivative does not agree with "
                      << "FD approximation" << std::endl;
            std::cout << "    Shape function " << j << " component " << k
                      << " at position " << testPoint << ": derivative in "
                      << "local direction " << m << " is "
                      << derivative << ", but " << finiteDiff << " is "
                      << "expected." << std::endl;
            std::cout << std::endl;
            success = false;
          }
        } //Loop over all components
      } // Loop over all local directions
    } // Loop over all shape functions in this set
  } // Loop over all quadrature points

  return success;
}

// call tests for given finite element
template<class Geo, class FE>
bool testFE(const Geo &geo, const FE& fe, double eps, double delta,
            unsigned order = 2)
{
  bool success = true;

  success = testInterpolation(fe, eps) and success;
  success = testJacobian(geo, fe, eps, delta, order) and success;

  return success;
}

#endif // DUNE_LOCALFUNCTIONS_TEST_TEST_FE_HH