/usr/include/dune/localfunctions/lagrange/equidistantpoints.hh is in libdune-localfunctions-dev 2.5.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 | #ifndef DUNE_LOCALFUNCTIONS_LAGRANGE_EQUIDISTANTPOINTS_HH
#define DUNE_LOCALFUNCTIONS_LAGRANGE_EQUIDISTANTPOINTS_HH
#include <cstddef>
#include <algorithm>
#include <vector>
#include <dune/geometry/referenceelements.hh>
#include <dune/geometry/type.hh>
#include <dune/localfunctions/lagrange/emptypoints.hh>
#include <dune/localfunctions/utility/field.hh>
namespace Dune
{
// numLagrangePoints
// -----------------
inline std::size_t numLagrangePoints ( unsigned int topologyId, int dim, unsigned int order )
{
assert( topologyId < Impl::numTopologies( dim ) );
if( dim > 0 )
{
const unsigned int baseId = Impl::baseTopologyId( topologyId, dim );
if( Impl::isPyramid( topologyId, dim ) )
{
std::size_t size = 0;
for( unsigned int o = 0; o <= order; ++o )
size += numLagrangePoints( baseId, dim-1, o );
return size;
}
else
return numLagrangePoints( baseId, dim-1, order ) * (order+1);
}
else
return 1;
}
// equidistantLagrangePoints
// -------------------------
template< class ct, unsigned int cdim >
inline static unsigned int equidistantLagrangePoints ( unsigned int topologyId, unsigned int dim, unsigned int codim, unsigned int order, unsigned int *count, LagrangePoint< ct, cdim > *points )
{
assert( (0 <= codim) && (codim <= dim) && (dim <= cdim) );
assert( topologyId < Impl::numTopologies( dim ) );
if( dim > 0 )
{
const unsigned int baseId = Impl::baseTopologyId( topologyId, dim );
const unsigned int numBaseN = (codim < dim ? Impl::size( baseId, dim-1, codim ) : 0);
const unsigned int numBaseM = (codim > 0 ? Impl::size( baseId, dim-1, codim-1 ) : 0);
if( Impl::isPrism( topologyId, dim ) )
{
unsigned int size = 0;
if( codim < dim )
{
for( unsigned int i = 1; i < order; ++i )
{
const unsigned int n = equidistantLagrangePoints( baseId, dim-1, codim, order, count, points );
for( unsigned int j = 0; j < n; ++j )
{
LocalKey &key = points->localKey_;
key = LocalKey( key.subEntity(), codim, key.index() );
points->point_[ dim-1 ] = ct( i ) / ct( order );
++points;
}
size += n;
}
}
if( codim > 0 )
{
const unsigned int n = equidistantLagrangePoints( baseId, dim-1, codim-1, order, count+numBaseN, points );
for( unsigned int j = 0; j < n; ++j )
{
LocalKey &key = points[ j ].localKey_;
key = LocalKey( key.subEntity() + numBaseN, codim, key.index() );
points[ j + n ].point_ = points[ j ].point_;
points[ j + n ].point_[ dim-1 ] = ct( 1 );
points[ j + n ].localKey_ = LocalKey( key.subEntity() + numBaseM, codim, key.index() );
++count[ key.subEntity() + numBaseM ];
}
size += 2*n;
}
return size;
}
else
{
unsigned int size = (codim > 0 ? equidistantLagrangePoints( baseId, dim-1, codim-1, order, count, points ) : 0);
LagrangePoint< ct, cdim > *const end = points + size;
for( ; points != end; ++points )
points->localKey_ = LocalKey( points->localKey_.subEntity(), codim, points->localKey_.index() );
if( codim < dim )
{
for( unsigned int i = order-1; i > 0; --i )
{
const unsigned int n = equidistantLagrangePoints( baseId, dim-1, codim, i, count+numBaseM, points );
LagrangePoint< ct, cdim > *const end = points + n;
for( ; points != end; ++points )
{
points->localKey_ = LocalKey( points->localKey_.subEntity()+numBaseM, codim, points->localKey_.index() );
for( unsigned int j = 0; j < dim-1; ++j )
points->point_[ j ] *= ct( i ) / ct( order );
points->point_[ dim-1 ] = ct( order - i ) / ct( order );
}
size += n;
}
}
else
{
points->localKey_ = LocalKey( numBaseM, dim, count[ numBaseM ]++ );
points->point_ = 0;
points->point_[ dim-1 ] = ct( 1 );
++size;
}
return size;
}
}
else
{
points->localKey_ = LocalKey( 0, 0, count[ 0 ]++ );
points->point_ = 0;
return 1;
}
}
// EquidistantPointSet
// -------------------
template< class F, unsigned int dim >
class EquidistantPointSet
: public EmptyPointSet< F, dim >
{
typedef EmptyPointSet< F, dim > Base;
public:
static const unsigned int dimension = dim;
using Base::order;
EquidistantPointSet ( unsigned int order ) : Base( order ) {}
void build ( GeometryType gt )
{
assert( gt.dim() == dimension );
points_.resize( numLagrangePoints( gt.id(), dimension, order() ) );
typename Base::LagrangePoint *p = points_.data();
std::vector< unsigned int > count;
for( unsigned int mydim = 0; mydim <= dimension; ++mydim )
{
count.resize( Impl::size( gt.id(), dimension, dimension-mydim ) );
std::fill( count.begin(), count.end(), 0u );
p += equidistantLagrangePoints( gt.id(), dimension, dimension-mydim, order(), count.data(), p );
}
}
template< class T >
bool build ()
{
build( GeometryType( T() ) );
return true;
}
template< class T >
static bool supports ( unsigned int order ) { return true; }
private:
using Base::points_;
};
} // namespace Dune
#endif // #ifndef DUNE_LOCALFUNCTIONS_LAGRANGE_EQUIDISTANTPOINTS_HH
|