This file is indexed.

/usr/include/dune/localfunctions/lagrange/equidistantpoints.hh is in libdune-localfunctions-dev 2.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#ifndef DUNE_LOCALFUNCTIONS_LAGRANGE_EQUIDISTANTPOINTS_HH
#define DUNE_LOCALFUNCTIONS_LAGRANGE_EQUIDISTANTPOINTS_HH

#include <cstddef>

#include <algorithm>
#include <vector>

#include <dune/geometry/referenceelements.hh>
#include <dune/geometry/type.hh>

#include <dune/localfunctions/lagrange/emptypoints.hh>
#include <dune/localfunctions/utility/field.hh>

namespace Dune
{

  // numLagrangePoints
  // -----------------

  inline std::size_t numLagrangePoints ( unsigned int topologyId, int dim, unsigned int order )
  {
    assert( topologyId < Impl::numTopologies( dim ) );

    if( dim > 0 )
    {
      const unsigned int baseId = Impl::baseTopologyId( topologyId, dim );
      if( Impl::isPyramid( topologyId, dim ) )
      {
        std::size_t size = 0;
        for( unsigned int o = 0; o <= order; ++o )
          size += numLagrangePoints( baseId, dim-1, o );
        return size;
      }
      else
        return numLagrangePoints( baseId, dim-1, order ) * (order+1);
    }
    else
      return 1;
  }



  // equidistantLagrangePoints
  // -------------------------

  template< class ct, unsigned int cdim >
  inline static unsigned int equidistantLagrangePoints ( unsigned int topologyId, unsigned int dim, unsigned int codim, unsigned int order, unsigned int *count, LagrangePoint< ct, cdim > *points )
  {
    assert( (0 <= codim) && (codim <= dim) && (dim <= cdim) );
    assert( topologyId < Impl::numTopologies( dim ) );

    if( dim > 0 )
    {
      const unsigned int baseId = Impl::baseTopologyId( topologyId, dim );
      const unsigned int numBaseN = (codim < dim ? Impl::size( baseId, dim-1, codim ) : 0);
      const unsigned int numBaseM = (codim > 0 ? Impl::size( baseId, dim-1, codim-1 ) : 0);

      if( Impl::isPrism( topologyId, dim ) )
      {
        unsigned int size = 0;
        if( codim < dim )
        {
          for( unsigned int i = 1; i < order; ++i )
          {
            const unsigned int n = equidistantLagrangePoints( baseId, dim-1, codim, order, count, points );
            for( unsigned int j = 0; j < n; ++j )
            {
              LocalKey &key = points->localKey_;
              key = LocalKey( key.subEntity(), codim, key.index() );
              points->point_[ dim-1 ] = ct( i ) / ct( order );
              ++points;
            }
            size += n;
          }
        }

        if( codim > 0 )
        {
          const unsigned int n = equidistantLagrangePoints( baseId, dim-1, codim-1, order, count+numBaseN, points );
          for( unsigned int j = 0; j < n; ++j )
          {
            LocalKey &key = points[ j ].localKey_;
            key = LocalKey( key.subEntity() + numBaseN, codim, key.index() );

            points[ j + n ].point_ = points[ j ].point_;
            points[ j + n ].point_[ dim-1 ] = ct( 1 );
            points[ j + n ].localKey_ = LocalKey( key.subEntity() + numBaseM, codim, key.index() );
            ++count[ key.subEntity() + numBaseM ];
          }
          size += 2*n;
        }

        return size;
      }
      else
      {
        unsigned int size = (codim > 0 ? equidistantLagrangePoints( baseId, dim-1, codim-1, order, count, points ) : 0);
        LagrangePoint< ct, cdim > *const end = points + size;
        for( ; points != end; ++points )
          points->localKey_ = LocalKey( points->localKey_.subEntity(), codim, points->localKey_.index() );

        if( codim < dim )
        {
          for( unsigned int i = order-1; i > 0; --i )
          {
            const unsigned int n = equidistantLagrangePoints( baseId, dim-1, codim, i, count+numBaseM, points );
            LagrangePoint< ct, cdim > *const end = points + n;
            for( ; points != end; ++points )
            {
              points->localKey_ = LocalKey( points->localKey_.subEntity()+numBaseM, codim, points->localKey_.index() );
              for( unsigned int j = 0; j < dim-1; ++j )
                points->point_[ j ] *= ct( i ) / ct( order );
              points->point_[ dim-1 ] = ct( order - i ) / ct( order );
            }
            size += n;
          }
        }
        else
        {
          points->localKey_ = LocalKey( numBaseM, dim, count[ numBaseM ]++ );
          points->point_ = 0;
          points->point_[ dim-1 ] = ct( 1 );
          ++size;
        }

        return size;
      }
    }
    else
    {
      points->localKey_ = LocalKey( 0, 0, count[ 0 ]++ );
      points->point_ = 0;
      return 1;
    }
  }



  // EquidistantPointSet
  // -------------------

  template< class F, unsigned int dim >
  class EquidistantPointSet
    : public EmptyPointSet< F, dim >
  {
    typedef EmptyPointSet< F, dim > Base;

  public:
    static const unsigned int dimension = dim;

    using Base::order;

    EquidistantPointSet ( unsigned int order ) : Base( order ) {}

    void build ( GeometryType gt )
    {
      assert( gt.dim() == dimension );
      points_.resize( numLagrangePoints( gt.id(), dimension, order() ) );

      typename Base::LagrangePoint *p = points_.data();
      std::vector< unsigned int > count;
      for( unsigned int mydim = 0; mydim <= dimension; ++mydim )
      {
        count.resize( Impl::size( gt.id(), dimension, dimension-mydim ) );
        std::fill( count.begin(), count.end(), 0u );
        p += equidistantLagrangePoints( gt.id(), dimension, dimension-mydim, order(), count.data(), p );
      }
    }

    template< class T >
    bool build ()
    {
      build( GeometryType( T() ) );
      return true;
    }

    template< class T >
    static bool supports ( unsigned int order ) { return true; }

  private:
    using Base::points_;
  };

} // namespace Dune

#endif // #ifndef DUNE_LOCALFUNCTIONS_LAGRANGE_EQUIDISTANTPOINTS_HH