This file is indexed.

/usr/include/dune/localfunctions/common/localbasis.hh is in libdune-localfunctions-dev 2.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_LOCALBASIS_HH
#define DUNE_LOCALBASIS_HH

#include <iostream>
#include <vector>

#include <dune/common/fvector.hh>

namespace Dune
{

  /**@ingroup LocalBasisInterface
         \brief Type traits for LocalBasisVirtualInterface

         A shape function is a function
         \f[ \hat\phi : \mbox{IR}^n \to \mbox{IR}^m. \f]
         This traits class holds information how the signature of this
         function is represented in C++ types.

         This is just a convenience class for supplying traits to the
         LocalBasisVirtualInterface and its implementations.

         \tparam DF Type to represent the field in the domain.
         \tparam n  Dimension of the domain.
         \tparam D  Type to represent the domain, allows random access.
         \tparam RF Type to represent the field in the range.
         \tparam m  Dimension of the range.
         \tparam R  Type to represent the range, allows random access.
         \tparam J  Type to represent the Jacobian, allows random access.
         \tparam dorder Maximal order of implemented partial derivatives

         \nosubgrouping
   */
  template<class DF, int n, class D, class RF, int m, class R, class J, int dorder=0>
  struct LocalBasisTraits
  {
    //! \brief Export type for domain field
    typedef DF DomainFieldType;

    //! \brief Enum for domain dimension
    enum {
      //! \brief dimension of the domain
      dimDomain = n
    };

    //! \brief domain type
    typedef D DomainType;

    //! \brief Export type for range field
    typedef RF RangeFieldType;

    //! \brief Enum for range dimension
    enum {
      //! \brief dimension of the range
      dimRange = m
    };

    //! \brief range type
    typedef R RangeType;

    /** \brief Type to represent derivative

            When \f$ \hat\phi : \mbox{IR}^n \to \mbox{IR}^m \f$ then JacobianType
            is an 2D-array of m x n components where entry J[i][j] contains
            the derivative  \f$\partial_j \hat\phi_i \f$.
     */
    typedef J JacobianType;

    //! \brief Enum for differentiability order
    enum {
      //! \brief number of partial derivatives supported
      diffOrder=dorder
    };
  };


  /**@ingroup LocalBasisInterface
         \brief Type traits for LocalBasisInterface

         A shape function is a function
         \f[ \hat\phi : \mbox{IR}^n \to \mbox{IR}^m. \f]
         This traits class holds information how the signature of this
         function is represented in C++ types.

         This is just a convenience class for supplying traits to the
         C0LocalBasisInterface.

         \tparam DF Type to represent the field in the domain.
         \tparam n  Dimension of the domain.
         \tparam D  Type to represent the domain, allows random access.
         \tparam RF Type to represent the field in the range.
         \tparam m  Dimension of the range.
         \tparam R  Type to represent the range, allows random access.

         \nosubgrouping
   */
  template<class DF, int n, class D, class RF, int m, class R>
  struct C0LocalBasisTraits
  {
    //! \brief Export type for domain field
    typedef DF DomainFieldType;

    //! \brief Enum for domain dimension
    enum {
      //! \brief dimension of the domain
      dimDomain = n
    };

    //! \brief domain type
    typedef D DomainType;

    //! \brief Export type for range field
    typedef RF RangeFieldType;

    //! \brief Enum for range dimension
    enum {
      //! \brief dimension of the range
      dimRange = m
    };

    //! \brief range type
    typedef R RangeType;

    //! \brief Enum for differentiability order
    enum {
      //! \brief number of derivatives supported
      diffOrder=0
    };
  };


  /**@ingroup LocalBasisInterface
         \brief Type traits for C1LocalBasisInterface

         Extends the traits class LocalBasisTraits for differentiable
         shape functions.

         \tparam DF Type to represent the field in the domain.
         \tparam n  Dimension of the domain.
         \tparam D  Type to represent the domain, allows random access.
         \tparam RF Type to represent the field in the range.
         \tparam m  Dimension of the range.
         \tparam R  Type to represent the range, allows random access.
         \tparam J  Type to represent the Jacobian, allows random access.

         \nosubgrouping
   */
  template<class DF, int n, class D, class RF, int m, class R, class J>
  struct C1LocalBasisTraits : public C0LocalBasisTraits<DF,n,D,RF,m,R>
  {
    /** \brief Type to represent derivative

            When \f$ \hat\phi : \mbox{IR}^n \to \mbox{IR}^m \f$ then JacobianType
            is an 2D-array of m x n components where entry J[i][j] contains
            the derivative  \f$\partial_j \hat\phi_i \f$.
     */
    typedef J JacobianType;

    //! \brief Enum for differentiability order
    enum {
      //! \brief number of derivatives supported
      diffOrder=1
    };
  };

  template<class DF, int n, class D, class RF, int m, class R, class J, int dorder>
  struct CkLocalBasisTraits : public C1LocalBasisTraits<DF,n,D,RF,m,R,J>
  {
    //! \brief Enum for differentiability order
    enum {
      //! \brief number of derivatives supported
      diffOrder=dorder
    };
  };

}
#endif