/usr/s390x-linux-gnu/include/bits/mathcalls.h is in libc6-dev-s390x-cross 2.27-3ubuntu1cross1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 | /* Prototype declarations for math functions; helper file for <math.h>.
Copyright (C) 1996-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/* NOTE: Because of the special way this file is used by <math.h>, this
file must NOT be protected from multiple inclusion as header files
usually are.
This file provides prototype declarations for the math functions.
Most functions are declared using the macro:
__MATHCALL (NAME,[_r], (ARGS...));
This means there is a function `NAME' returning `double' and a function
`NAMEf' returning `float'. Each place `_Mdouble_' appears in the
prototype, that is actually `double' in the prototype for `NAME' and
`float' in the prototype for `NAMEf'. Reentrant variant functions are
called `NAME_r' and `NAMEf_r'.
Functions returning other types like `int' are declared using the macro:
__MATHDECL (TYPE, NAME,[_r], (ARGS...));
This is just like __MATHCALL but for a function returning `TYPE'
instead of `_Mdouble_'. In all of these cases, there is still
both a `NAME' and a `NAMEf' that takes `float' arguments.
Note that there must be no whitespace before the argument passed for
NAME, to make token pasting work with -traditional. */
#ifndef _MATH_H
# error "Never include <bits/mathcalls.h> directly; include <math.h> instead."
#endif
/* Trigonometric functions. */
/* Arc cosine of X. */
__MATHCALL (acos,, (_Mdouble_ __x));
/* Arc sine of X. */
__MATHCALL (asin,, (_Mdouble_ __x));
/* Arc tangent of X. */
__MATHCALL (atan,, (_Mdouble_ __x));
/* Arc tangent of Y/X. */
__MATHCALL (atan2,, (_Mdouble_ __y, _Mdouble_ __x));
/* Cosine of X. */
__MATHCALL_VEC (cos,, (_Mdouble_ __x));
/* Sine of X. */
__MATHCALL_VEC (sin,, (_Mdouble_ __x));
/* Tangent of X. */
__MATHCALL (tan,, (_Mdouble_ __x));
/* Hyperbolic functions. */
/* Hyperbolic cosine of X. */
__MATHCALL (cosh,, (_Mdouble_ __x));
/* Hyperbolic sine of X. */
__MATHCALL (sinh,, (_Mdouble_ __x));
/* Hyperbolic tangent of X. */
__MATHCALL (tanh,, (_Mdouble_ __x));
#ifdef __USE_GNU
/* Cosine and sine of X. */
__MATHDECL_VEC (void,sincos,,
(_Mdouble_ __x, _Mdouble_ *__sinx, _Mdouble_ *__cosx));
#endif
#if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
/* Hyperbolic arc cosine of X. */
__MATHCALL (acosh,, (_Mdouble_ __x));
/* Hyperbolic arc sine of X. */
__MATHCALL (asinh,, (_Mdouble_ __x));
/* Hyperbolic arc tangent of X. */
__MATHCALL (atanh,, (_Mdouble_ __x));
#endif
/* Exponential and logarithmic functions. */
/* Exponential function of X. */
__MATHCALL_VEC (exp,, (_Mdouble_ __x));
/* Break VALUE into a normalized fraction and an integral power of 2. */
__MATHCALL (frexp,, (_Mdouble_ __x, int *__exponent));
/* X times (two to the EXP power). */
__MATHCALL (ldexp,, (_Mdouble_ __x, int __exponent));
/* Natural logarithm of X. */
__MATHCALL_VEC (log,, (_Mdouble_ __x));
/* Base-ten logarithm of X. */
__MATHCALL (log10,, (_Mdouble_ __x));
/* Break VALUE into integral and fractional parts. */
__MATHCALL (modf,, (_Mdouble_ __x, _Mdouble_ *__iptr)) __nonnull ((2));
#if __GLIBC_USE (IEC_60559_FUNCS_EXT)
/* Compute exponent to base ten. */
__MATHCALL (exp10,, (_Mdouble_ __x));
#endif
#if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
/* Return exp(X) - 1. */
__MATHCALL (expm1,, (_Mdouble_ __x));
/* Return log(1 + X). */
__MATHCALL (log1p,, (_Mdouble_ __x));
/* Return the base 2 signed integral exponent of X. */
__MATHCALL (logb,, (_Mdouble_ __x));
#endif
#ifdef __USE_ISOC99
/* Compute base-2 exponential of X. */
__MATHCALL (exp2,, (_Mdouble_ __x));
/* Compute base-2 logarithm of X. */
__MATHCALL (log2,, (_Mdouble_ __x));
#endif
/* Power functions. */
/* Return X to the Y power. */
__MATHCALL_VEC (pow,, (_Mdouble_ __x, _Mdouble_ __y));
/* Return the square root of X. */
__MATHCALL (sqrt,, (_Mdouble_ __x));
#if defined __USE_XOPEN || defined __USE_ISOC99
/* Return `sqrt(X*X + Y*Y)'. */
__MATHCALL (hypot,, (_Mdouble_ __x, _Mdouble_ __y));
#endif
#if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
/* Return the cube root of X. */
__MATHCALL (cbrt,, (_Mdouble_ __x));
#endif
/* Nearest integer, absolute value, and remainder functions. */
/* Smallest integral value not less than X. */
__MATHCALLX (ceil,, (_Mdouble_ __x), (__const__));
/* Absolute value of X. */
__MATHCALLX (fabs,, (_Mdouble_ __x), (__const__));
/* Largest integer not greater than X. */
__MATHCALLX (floor,, (_Mdouble_ __x), (__const__));
/* Floating-point modulo remainder of X/Y. */
__MATHCALL (fmod,, (_Mdouble_ __x, _Mdouble_ __y));
#ifdef __USE_MISC
# if ((!defined __cplusplus \
|| __cplusplus < 201103L /* isinf conflicts with C++11. */ \
|| __MATH_DECLARING_DOUBLE == 0)) /* isinff or isinfl don't. */ \
&& !__MATH_DECLARING_FLOATN
/* Return 0 if VALUE is finite or NaN, +1 if it
is +Infinity, -1 if it is -Infinity. */
__MATHDECL_1 (int,isinf,, (_Mdouble_ __value)) __attribute__ ((__const__));
# endif
# if !__MATH_DECLARING_FLOATN
/* Return nonzero if VALUE is finite and not NaN. */
__MATHDECL_1 (int,finite,, (_Mdouble_ __value)) __attribute__ ((__const__));
/* Return the remainder of X/Y. */
__MATHCALL (drem,, (_Mdouble_ __x, _Mdouble_ __y));
/* Return the fractional part of X after dividing out `ilogb (X)'. */
__MATHCALL (significand,, (_Mdouble_ __x));
# endif
#endif /* Use misc. */
#ifdef __USE_ISOC99
/* Return X with its signed changed to Y's. */
__MATHCALLX (copysign,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
#endif
#ifdef __USE_ISOC99
/* Return representation of qNaN for double type. */
__MATHCALLX (nan,, (const char *__tagb), (__const__));
#endif
#if defined __USE_MISC || (defined __USE_XOPEN && !defined __USE_XOPEN2K)
# if ((!defined __cplusplus \
|| __cplusplus < 201103L /* isnan conflicts with C++11. */ \
|| __MATH_DECLARING_DOUBLE == 0)) /* isnanf or isnanl don't. */ \
&& !__MATH_DECLARING_FLOATN
/* Return nonzero if VALUE is not a number. */
__MATHDECL_1 (int,isnan,, (_Mdouble_ __value)) __attribute__ ((__const__));
# endif
#endif
#if defined __USE_MISC || (defined __USE_XOPEN && __MATH_DECLARING_DOUBLE)
/* Bessel functions. */
__MATHCALL (j0,, (_Mdouble_));
__MATHCALL (j1,, (_Mdouble_));
__MATHCALL (jn,, (int, _Mdouble_));
__MATHCALL (y0,, (_Mdouble_));
__MATHCALL (y1,, (_Mdouble_));
__MATHCALL (yn,, (int, _Mdouble_));
#endif
#if defined __USE_XOPEN || defined __USE_ISOC99
/* Error and gamma functions. */
__MATHCALL (erf,, (_Mdouble_));
__MATHCALL (erfc,, (_Mdouble_));
__MATHCALL (lgamma,, (_Mdouble_));
#endif
#ifdef __USE_ISOC99
/* True gamma function. */
__MATHCALL (tgamma,, (_Mdouble_));
#endif
#if defined __USE_MISC || (defined __USE_XOPEN && !defined __USE_XOPEN2K)
# if !__MATH_DECLARING_FLOATN
/* Obsolete alias for `lgamma'. */
__MATHCALL (gamma,, (_Mdouble_));
# endif
#endif
#ifdef __USE_MISC
/* Reentrant version of lgamma. This function uses the global variable
`signgam'. The reentrant version instead takes a pointer and stores
the value through it. */
__MATHCALL (lgamma,_r, (_Mdouble_, int *__signgamp));
#endif
#if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
/* Return the integer nearest X in the direction of the
prevailing rounding mode. */
__MATHCALL (rint,, (_Mdouble_ __x));
/* Return X + epsilon if X < Y, X - epsilon if X > Y. */
__MATHCALL (nextafter,, (_Mdouble_ __x, _Mdouble_ __y));
# if defined __USE_ISOC99 && !defined __LDBL_COMPAT && !__MATH_DECLARING_FLOATN
__MATHCALL (nexttoward,, (_Mdouble_ __x, long double __y));
# endif
# if __GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN
/* Return X - epsilon. */
__MATHCALL (nextdown,, (_Mdouble_ __x));
/* Return X + epsilon. */
__MATHCALL (nextup,, (_Mdouble_ __x));
# endif
/* Return the remainder of integer divison X / Y with infinite precision. */
__MATHCALL (remainder,, (_Mdouble_ __x, _Mdouble_ __y));
# ifdef __USE_ISOC99
/* Return X times (2 to the Nth power). */
__MATHCALL (scalbn,, (_Mdouble_ __x, int __n));
# endif
/* Return the binary exponent of X, which must be nonzero. */
__MATHDECL (int,ilogb,, (_Mdouble_ __x));
#endif
#if __GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN
/* Like ilogb, but returning long int. */
__MATHDECL (long int, llogb,, (_Mdouble_ __x));
#endif
#ifdef __USE_ISOC99
/* Return X times (2 to the Nth power). */
__MATHCALL (scalbln,, (_Mdouble_ __x, long int __n));
/* Round X to integral value in floating-point format using current
rounding direction, but do not raise inexact exception. */
__MATHCALL (nearbyint,, (_Mdouble_ __x));
/* Round X to nearest integral value, rounding halfway cases away from
zero. */
__MATHCALLX (round,, (_Mdouble_ __x), (__const__));
/* Round X to the integral value in floating-point format nearest but
not larger in magnitude. */
__MATHCALLX (trunc,, (_Mdouble_ __x), (__const__));
/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
and magnitude congruent `mod 2^n' to the magnitude of the integral
quotient x/y, with n >= 3. */
__MATHCALL (remquo,, (_Mdouble_ __x, _Mdouble_ __y, int *__quo));
/* Conversion functions. */
/* Round X to nearest integral value according to current rounding
direction. */
__MATHDECL (long int,lrint,, (_Mdouble_ __x));
__extension__
__MATHDECL (long long int,llrint,, (_Mdouble_ __x));
/* Round X to nearest integral value, rounding halfway cases away from
zero. */
__MATHDECL (long int,lround,, (_Mdouble_ __x));
__extension__
__MATHDECL (long long int,llround,, (_Mdouble_ __x));
/* Return positive difference between X and Y. */
__MATHCALL (fdim,, (_Mdouble_ __x, _Mdouble_ __y));
/* Return maximum numeric value from X and Y. */
__MATHCALLX (fmax,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
/* Return minimum numeric value from X and Y. */
__MATHCALLX (fmin,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
/* Multiply-add function computed as a ternary operation. */
__MATHCALL (fma,, (_Mdouble_ __x, _Mdouble_ __y, _Mdouble_ __z));
#endif /* Use ISO C99. */
#if __GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN
/* Round X to nearest integer value, rounding halfway cases to even. */
__MATHCALLX (roundeven,, (_Mdouble_ __x), (__const__));
/* Round X to nearest signed integer value, not raising inexact, with
control of rounding direction and width of result. */
__MATHDECL (__intmax_t, fromfp,, (_Mdouble_ __x, int __round,
unsigned int __width));
/* Round X to nearest unsigned integer value, not raising inexact,
with control of rounding direction and width of result. */
__MATHDECL (__uintmax_t, ufromfp,, (_Mdouble_ __x, int __round,
unsigned int __width));
/* Round X to nearest signed integer value, raising inexact for
non-integers, with control of rounding direction and width of
result. */
__MATHDECL (__intmax_t, fromfpx,, (_Mdouble_ __x, int __round,
unsigned int __width));
/* Round X to nearest unsigned integer value, raising inexact for
non-integers, with control of rounding direction and width of
result. */
__MATHDECL (__uintmax_t, ufromfpx,, (_Mdouble_ __x, int __round,
unsigned int __width));
/* Return value with maximum magnitude. */
__MATHCALLX (fmaxmag,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
/* Return value with minimum magnitude. */
__MATHCALLX (fminmag,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
/* Total order operation. */
__MATHDECL_1 (int, totalorder,, (_Mdouble_ __x, _Mdouble_ __y))
__attribute__ ((__const__));
/* Total order operation on absolute values. */
__MATHDECL_1 (int, totalordermag,, (_Mdouble_ __x, _Mdouble_ __y))
__attribute__ ((__const__));
/* Canonicalize floating-point representation. */
__MATHDECL_1 (int, canonicalize,, (_Mdouble_ *__cx, const _Mdouble_ *__x));
/* Get NaN payload. */
__MATHCALL (getpayload,, (const _Mdouble_ *__x));
/* Set quiet NaN payload. */
__MATHDECL_1 (int, setpayload,, (_Mdouble_ *__x, _Mdouble_ __payload));
/* Set signaling NaN payload. */
__MATHDECL_1 (int, setpayloadsig,, (_Mdouble_ *__x, _Mdouble_ __payload));
#endif
#if (defined __USE_MISC || (defined __USE_XOPEN_EXTENDED \
&& __MATH_DECLARING_DOUBLE \
&& !defined __USE_XOPEN2K8)) \
&& !__MATH_DECLARING_FLOATN
/* Return X times (2 to the Nth power). */
__MATHCALL (scalb,, (_Mdouble_ __x, _Mdouble_ __n));
#endif
|